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Background
Over the past decade, there has been an increased focus on the 
development of new methods and technologies to efficiently 
and reliably record, organize, and utilize patient data in com-
plex healthcare settings. Clinical data are increasingly captured 
in digital form, and the volume and diversity of such data is 
increasing rapidly. To make best use of the growing range and 
number of clinical data from new laboratory tests and imaging 
studies, leading health care centers across the country have 
been making steep investments to establish enterprise-wide, 
data warehouses. The primary benefits that can be realized 
through such efforts include cost savings, efficient tracking of 
patient outcomes, enhanced decision support at point of care, 

improved prognostic accuracy and improved clinical trials 
matching. A significant limitation of typical data warehouse 
design, however, is that it relies completely upon the use of 
alphanumeric information to conduct searches and queries 
with resulting retrievals often highly dependent upon finding 
exact matches. Recognizing those limitations, our team has 
begun to design, develop and maintain an Intelligent Search and 
Retrieval System (IRIS) that exploits the combined use of com-
putational imaging, genomics and data-mining capabilities. In 
this paper, we report on the design and implementation of 
IRIS, describe its current capabilities, and future development.

IRIS is designed to feature 2 modes of operation: (1) con-
tent-based search and retrieval based on image signatures and 
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genomic profiles to facilitate efficient mining of both large and 
small clinical and research repositories; and (2) artificial 
Intelligence-based histo-genomic analysis to provide decision 
support for classifying subtypes of cancer and predicting disease 
recurrence. IRIS includes a multi-modal, Clinical & Research 
Data Warehouse (CRDW) that is operates in conjunction with 
a suite of computational and machine-learning tools to provide 
insight into the underlying tumor characteristics that would not 
be apparent by traditional methods of analysis. The system is 
designed to conform with all Clinical Data to Health (CD2H) 
program guidelines1 and is guided by evolving approaches for 
establishing Learning Health Systems (LHS)2 in which cyclical 
hypothesis generation and evidence evaluation become integral 
to improving the quality of patient care.

The Design and Key Capabilities of IRIS
Data warehouse and configurable extract, 
transform and load capabilities

A key requirement for modern clinical and research data ware-
house systems is the capacity to reliably aggregate and harmo-
nize information originating from multiple data sources 
including electronic medical records, clinical trial management 
systems, tumor registries, biospecimen repositories, radiology 
and pathology archives, and next generation sequencing ser-
vices. One of the key distinguishing features of the IRIS is that 
it is designed with a configurable extract, transform and load 
(ETL) interface that enables it to adapt to different clinical 
and research data sources depending on the environmental 
parameters chosen by the investigative team. See Figure 1. For 
example, stewards for each institution’s warehouse are free to 
choose which modalities (digital pathology, radiology, and 
genomics) that are to be included and which EHR data reposi-
tories (eg, Cerner and Epic) to draw from based on the data 
access guidelines and requirements at each site. Innovative 
solutions have already been implemented to automate the 
extraction of unstructured clinical information embedded in 
paper/text documents, including synoptic pathology reports.

Content based image retrieval capabilities

The extremely rich vocabulary and wide range of terms utilized 
throughout the medical field can often lead to inconsistencies 
since 2 healthcare providers or investigators may utilize differ-
ent terms to refer to the same histology, diagnosis or condition. 
To address this limitation, a significant amount of work was 
undertaken by the research community over the course of 
nearly 30 years to develop content-based image retrieval 
(CBIR) methods that can quickly search through large datasets 
based on an objective, reproducible feature-based description 
of the visual content of images to provide diagnostic decision 
support or to facilitate efficient browsing and identification of 
digitized specimens exhibiting staining and histological char-
acteristics most similar to a given query, To maximize the util-
ity of IRIS when in the CBIR mode of operation, the user 
interface for the System is being developed using human-cen-
tered design to enable users to iteratively refine queries by 
clicking on any one of the ranked image retrievals that in-turn 
are used to initiate subsequent queries using the selected 
retrieval as the new query input. Inspired by advances in 
machine learning and high-performance computing, investiga-
tors are also revisiting this area of search functionality while 
adding the capacity of the search algorithms to integrate signa-
tures arising from a plurality of data sources including genom-
ics, digital pathology and/or radiology imaging studies.3

Once a query image is loaded into IRIS, the System gener-
ates a feature vector and forwards it to the server for processing, 
to automatically locate and retrieve ranked sets of digitized 
pathology specimens and correlated molecular studies of cases 
from within the Warehouse that exhibit spectral and spatial 
profiles that most closely match that of the query. We have 
made sustained efforts to design, develop and optimize algo-
rithms and methods that can quickly and reliably search through 
reference libraries of cases that have had their diagnosis of 
record and histologic type independently confirmed, to auto-
matically identify and retrieve previously analyzed lesions which 
exhibit the most similar characteristics to a given query case to 

Figure 1. Warehouse workflow.
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assist in clinical decisions and to conduct systematic compari-
sons of tumors within and across patient populations. One of 
the advantages of the CBIR approach over purely alphanumeric 
search strategies is it enables investigators to systematically 
review the data while visualizing the most relevant digitized 
pathology specimens. Furthermore, by utilizing a standard com-
putational imaging toolset to both generate indices and search 
for matches it is possible to reduce inter- and intra-observer 
inconsistencies in searches and improve the objectivity with 
which large image repositories are interrogated.

Artif icial intelligence-based analysis capabilities

The AI mode of operation for IRIS is implemented through 
the development of a module that uses information originating 
from different data types to enable decision support. IRIS uti-
lizes digital pathology to facilitate interpretation of genomic 
data within the histopathologic context of disease onset and/or 
progression. This is accomplished by leveraging recent advances 
in computational imaging, machine learning and genomics 
that make it possible to assess combinations of clinical and 
pathologic data points, simultaneously. To achieve these capa-
bilities IRIS implements workflows that perform automated 
detection of nuclei and delineation of tumor regions through-
out the imaged specimens while generating image-based mor-
phological features within the specimen.

As in many other similar applications that utilize machine 
learning and/or artificial Intelligence a significant challenge for 
our team in optimizing the decision support algorithms arises 
primarily due to limitations in assembling a sufficiently large 
data set to adequately train and test these methods. Other chal-
lenges that we are confronting include batch effects that are 
introduced during preparation of specimens and discordance 
among pathologists regarding the annotation of digitized spec-
imens. Despite these drawbacks, recent studies show potential 
as to how AI can improve the decision-making process during 
cancer diagnosis while saving resources, improving reliability, 
and reducing patient discomfort. One of the important find-
ings that was reported using computational technologies was 
recently published by New York University, USA. In this study, 
Coudray et al trained a large number of high-definition digi-
tally imaged pathology glass slide specimen images (also known 
as Virtual Slides) using a deep learning algorithm called 
InceptionV3 for histopathological classification (lung cancer 
(adenocarcinoma and squamous cell carcinoma) and normal 
lung).4 The results revealed a very high accuracy with 0.97 
AUC for tissue classification. Both frozen and formalin-fixed 
paraffin-embedded sections were available for analysis as speci-
mens. Furthermore, using the developed AI analysis system, 6 
gene mutations, STK11, EGFR, FAT1, SETBP1, KRAS, and 
TP53, could be accurately predicted from the pathological 
images (AUC: 0.733-0.856). These results suggest that the 
analysis of pathological virtual slide images using AI and 

computational methods can enable accurate classification of 
lung cancer tissues and prediction of genetic mutations.

Current Applications of IRIS
IRIS is currently fully functional as an automated multi-modal 
repository equipped with an automated ETL interface, but 
expansion and optimization of the System continues. To date, 
we have: (1) established a large and growing repository of digi-
tized pathology specimens; (2)  extracted computational fea-
tures and established linkages with national tumor registry data; 
(3) developed software, technologies and quantitative tools 
based on deep-learning to support diagnostic classifications; 
and (4) developed data management tools that enable investiga-
tors to reliably search through large repositories to automati-
cally retrieve targeted digitized pathology and correlated clinical 
data. In the next section, we describe the applications and capa-
bilities supported by the current implementation.

IRIS data warehouse applications

The current instance of the CRDW at Rutgers enables physi-
cians to systematically review the molecular, genomic, image-
based, and correlated clinical information of patient tumors 
individually or as part of large cohorts to identify changes and 
patterns that may influence treatment decisions and potential 
outcomes.5,6 The CRDW core system has also yielded several 
peer-reviewed publications and funded grants including a col-
laboration with Stony Brook, Emory University and University 
of Kentucky to enhance the cancer registry data in Georgia, 
Kentucky, New Jersey and New York, with machine-learning 
based classifications and quantitative pathomics feature sets. 
Currently, the collection of cases and correlated pathology 
specimens from the collaboration are focused primarily on 
prostate cancer, lymphoma, NSCLC, melanoma, breast cancer 
and colorectal cancer.7 As part of this effort, a collection of 
deep learning pipelines was developed and deployed to partici-
pating sites to glean salient Pathomics features from whole 
slide tissue images. These pipelines implement deep learning 
models (1) to predict distribution of tumor infiltrating lym-
phocytes in a tissue specimen (TIL analysis), (2) to detect and 
segment tumor regions (Tumor segmentation), and (3) to seg-
ment nuclei (Nucleus segmentation). The TIL analysis pipe-
line was trained with manually annotated image patches 
extracted from whole slide images from multiple cancer types. 
It partitions a whole slide image into image patches of 50 × 50 
square microns and predicts if a patch is TIL positive, that is, 
the patch contains lymphocytes. The Tumor segmentation 
pipeline contains deep learning models for several cancer types; 
each model was trained with manually annotated patches 
extracted whole slide images from the corresponding cancer 
type. The current pipeline has established models for breast, 
lung, prostate, and pancreatic cancers. It partitions a whole 
slide image into patches of 88 × 88 square microns and predicts 
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if a patch is a tumor patch, that is, the patch is in or intersects 
with a tumor region. The nucleus segmentation pipeline imple-
ments an instance segmentation model which was trained with 
an innovative training process consisting of both real and syn-
thetic segmentation training data. In the collaborative project, 
the pipelines have been used to process more than 5000 whole 
slide images from breast, lung, and prostate cancer cases curated 
from SEER datasets. The imaging features from the analysis 
pipelines and the source whole slide images are managed in 
instances of a software platform, called QuIP, deployed at each 
collaborating site.

The CRDW has also facilitated a collaboration with the 
Massachusetts Veterans Epidemiology Research and 
Information Center (MAVERIC) at the U.S. Department of 
Veterans Affairs to develop and test algorithms and workflows 
to automate the analysis of lung adenocarcinoma. Those stud-
ies showed that combining computational nuclear signatures 
with traditional WHO criteria through the use of deep convo-
lutional neural networks (CNNs) led to improved discrimina-
tion among tumor growth patterns.8 In those studies, our team 
began to explore the use of nuclear signatures as a means for 
discriminating among different tumor growth patterns. The 
2015 World Health Organization (WHO) lung cancer classi-
fication is based on histologic architectural patterns and is the 
current standard for rendering diagnosis and determining 
prognosis for patients afflicted with adenocarcinoma. However 
the WHO schema does not incorporate a measure of the 
nuclear grade exhibited in the specimen into the criteria, which 
may contribute additional prognostic value. Our team showed 
that well-differentiated tumors (lepidic pattern) tend to exhibit 
low nuclear grade, whereas poorly-differentiated tumors 
(micropapillary, solid patterns) tend to exhibit high nuclear 
grade. Moderately-differentiated tumors (acinar, papillary pat-
terns) demonstrated intermediate grade nuclei with acinar pat-
tern exhibiting the broadest distribution of nuclear grade. In 
those experiments we utilized transfer learning based on pre-
trained state-of-the-art convolutional neural network (CNN) 
models to achieve multi-subtype classifications of tumor 
growth patterns including low-grade (LG), intermediate-grade 
(IG), high-grade (HG).

As a part of the precision medicine initiatives that are 
underway at our collaborating healthcare centers at Rutgers, 
Boston VA and Stony Brook, new clinical decision support 
algorithms, methods and strategies are being developed and 
tested for their capacity to improve diagnostic and prognostic 
accuracy and therapy planning for the care of our patients. 
Guided by the leadership of the learning health system (LHS) 
workgroup at Rutgers, the CRDW has been leveraged for a 
wide range of cancer and non-cancer efforts and initiatives. For 
example, some of the projects already underway include: (1) 
Comparative effectiveness of different cancer screening out-
reach strategies; (2) Identification of COVID-19 patient pop-
ulation susceptible to relapse after treatment with Paxlovid; (3) 

Identification of high risk patient for opioid overdose or 
relapse; and (4) Improving capacity to identify those patients 
presenting to the emergency department seemingly unrelated 
urgent care who are most likely to eventually receive diagnosis 
of cancer to ultimately develop an intervention to streamline 
navigation and treatment.

Artif icial intelligence-Based analysis applications

In a set of parallel efforts, our team has been investigating the 
potential of utilizing a combination of genomic and computa-
tional imaging signatures to characterize prostate cancer and 
survival models to study their correlations in prostate cancer. 
The results of the study show that integrating image biomark-
ers from CNN with a recurrence network model, called long 
short-term memory (LSTM) and genomic pathway scores, is 
more strongly correlated with disease recurrence than using 
standard clinical markers and image-based features.9 In addi-
tion, 5 survival models were assessed in the context of other 
prostate clinical prognostic factors, including primary and sec-
ondary Gleason patterns, prostate-specific antigen levels, age, 
and clinical tumor stages. The highest hazard ratio for predict-
ing prostate cancer recurrence was based on Cox regression 
using an elastic net penalty. Based on knowledge gained from 
these studies, the team built a unified system using whole-slide 
histology images and corresponding genomic data through 
deep neural networks to identify the most salient computa-
tional biomarkers. The experimental results showed that the 
computational biomarkers extracted by this approach resulted 
in a hazard ratio of 5.73 and C-index of 0.74, which were 
higher than those using standard clinical prognostic factors 
and other image-based features. Given the clinical impact that 
predicting disease recurrence in patients with Gleason score 7 
prostate cancer can have on treatment and care, continues to 
optimize the workflow to fully investigate the potential use of 
integrated histo-genomic signatures for these purposes. Once 
optimized, we plan to integrate these capabilities into the deci-
sion support module of IRIS.

Alignment and analytical pipelines

Most recently, in an effort to improve user experience and 
reproducibility, we developed a shell script to orchestrate align-
ment and analysis pipelines in Linux containers. This script 
requires the following arguments: directory of tumor detection 
outputs, directory of TIL detection outputs, a comma-sepa-
rated values (CSV) table with the survival information for each 
case, and the path to an output directory. The alignment and 
survival analyses are implemented in R and are contained in a 
Linux container with R version 4.2.1. The shell script down-
loads this versioned Linux container and runs it with either 
Apptainer/Singularity or Docker, depending on which is avail-
able on the host machine. All code is version controlled with 
Git and is available publicly on GitHub. The shell script is 
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available at https://github.com/SBU-BMI/tumor-til-survival-
analysis and the alignment and analysis pipelines are available 
at https://github.com/SBU-BMI/til_align .

The following analyses are implemented by the above con-
tainer. Lymphocyte and tumor detection pipelines generate 
predictions at patch sizes that are optimized for each task. 
Subsequent calculation of lymphocyte invasion into tumor-
containing patches requires rescaling and alignment. Once 
overlaid, the lymphocyte and tumor probability heatmaps are 
thresholded based on the thresholds derived from individual 
training (Inception Lymphocyte: 0.1, ResNet Cancer: 0.5). For 
each Whole Slide Image, we then calculate what percentage of 
predicted tumor-containing patches are also predicted to be 
lymphocyte-containing patches (Percent Invasion). For 
descriptive statistics of invasion, Percent Invasion is applied 
directly. For downstream survival analysis, a patient’s Percent 
Invasion is scaled by the standard deviation of Percent Invasion 
within the dataset (Scaled Invasion). This calculation is the 
same as previously reported.10

Following alignment, we implement a standardized analyti-
cal pipeline to interrogate tumor-TIL invasion characteristics. 
Patients are classified as TIL-high or TIL-low by binning 
around the mean invasion value for the dataset. We then gener-
ate survival analyses for both categorical invasion (TIL-High 
vs TIL-Low) and the impact of continuous lymphocyte inva-
sion (Scaled Invasion). This allows us to quickly understand 
the correlation of lymphocyte invasion with patient outcomes 
in a stable way across a multitude of cohorts. These same pipe-
lines will also be made available as part of the IRIS toolset.

Conclusions and Future Work
Key innovations in IRIS can be summarized as follows: (1) 
algorithms, tools and analytic pipelines that enable investiga-
tors to systematically interrogate large-scale repositories based 
on computational imaging signatures and genomic markers to 
facilitate clinical assessment and translational research—this 
capability enables systematic examination of relationships and 
correlations among the morphologic and genomic characteris-
tics of cancers and clinical patient outcomes in large and diverse 
datasets; (2) a scalable system that supports automated aggre-
gation and indexing of multi-modal data including genomics 
and digital pathology images; (3) a novel, multi-stage, hierar-
chical searching algorithm that enables fast content-based 
image retrieval and pre-sorting of large datasets of digital 
WSIs; (4) deep learning analytic pipelines that carry out inte-
grated analyses of genomic and computational pathology bio-
markers to predict survival and recurrence; and (5) methods to 
perform multi-site performance studies while receiving 
dynamic feedback from tumor boards.

To test and further optimize the performance of the con-
tent-retrieval algorithms we plan to leverage the consortium 
that has been established among investigators at Stony Brook, 
Rutgers and cancer registries at Georgia, Kentucky, New Jersey 

and New York and utilize precision, recall, and average preci-
sion metrics with relevance feedback, as well as SamMatch, 
average precision, mean average precision and median average 
precision. Classification performance of the lung tumor growth 
patterns and the non-tumor (NT) tissue will be conducted 
using confusion matrices with rows representing ground-truth 
and columns representing computed results in order for true 
positive (TP), true negative (TN), false positive (FP) and false 
negative (FN) counts and F1-scores to be reported. In addition, 
cross-validation will be used to assess classification accuracy 
with labeled (training) data partitioned into a training and a 
validation (test) set prior to open-set evaluations. Further, we 
will utilize mixed sets of cases from de-identified extracts 
including digitized pathology and genomic profiles from the 
VA Corporate Data Warehouse and the GDC data set of 
which none were used in the training set to enable our team to 
conduct “open-set,” prospective performance. The algorithms 
and methods will also be evaluated by direct comparison of 
expert decisions with those rendered by IRIS.

To improve efficiencies and further challenge and evaluate 
IRIS, we will implement and compare performance of the 
search and retrieval strategies with those based on binary vec-
tors. Specifically, we will explore the use of hashing techniques 
including joint kernel-based supervised hashing ( JKSH) to 
encode the high-dimensional feature vectors extracted from 
the computational imaging signatures and genomic profiles so 
that they can be encapsulated into short binary vectors. 
Hashing-based retrieval approaches are an active area of 
research that is gaining popularity in the medical imaging 
community due to their exceptional efficiency and scalability. 
A joint kernel function can be constructed as a linear combina-
tion of the kernels for individual features. A series of hashing 
functions can then be constructed based upon the characteris-
tics of the kernel. As part of an offline process, a supervised 
optimization algorithm will be utilized to learn the kernel 
weights and hashing functions based upon the cases within a 
given reference library. Individual queries can be classified 
according to a weighted majority vote of the retrievals. The 
next step of the algorithm requires transformation of the binary 
vectors from each of the different modalities into a single vec-
tor. Note that, this approach could conceivably include addi-
tional modalities including CT or MRI. The flexibility of the 
workflow of the system is shown in Figure 2.

Depending on the performance results we will either imple-
ment the best of breed approach or we may adopt a hybrid 
search and retrieval strategy. In either case, we will subsequently 
integrate online learning to the System so that we can effi-
ciently fine-tune the algorithms as new cases are added to the 
“ground-truth” Warehouse.

“Efficient validation and testing require multicenter assess-
ments involving multiple pathologists and datasets.”11 As an 
Enterprise Healthcare System, the VA has access to large, var-
ied datasets that facilitate the creation of pipelines to further 
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the goals of the Cancer Moonshot Initiative. In addition, the 
Boston VA Bioinformatics team offers expertise in machine 
learning, on premise scalable infrastructure at the VA-CRRC 
Martinsburg Data Center, and a growing collaboration with 
the Applied Proteogenomics OrganizationaL Learning and 
Outcomes (APOLLO) network. Through a collaboration 
between Rutgers and Boston VA we will utilize these data sets 
that include a range of different histopathology preparations 
and inter-observer variability across the VA Healthcare system 
to optimize these algorithms.

Through this collaboration the team will be able to expand 
the cancers under consideration to include: squamous cell car-
cinoma of the larynx, squamous cell carcinoma of the trachea, 
adenocarcinoma of the trachea, salivary gland-type tumors of 
the trachea, adenosquamous carcinoma of the lung, large cell 
carcinoma of the lung, salivary gland-type tumors of the lung, 
sarcomatoid carcinoma of the lung, and typical and atypical 
carcinoid of the lung.
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