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Increasing evidences show that the etiology of Parkinson’s disease (PD) is multifactorial.

Studying the combined effect of several factors is becoming a hot topic in PD research.

On one hand, iron is one of the essential trace metals for human body; on the other

hand, iron may be involved in the etiopathogenesis of PD. In our present study, the

rats with increased neonatal iron (120µg/g bodyweight) supplementation were treated

with rotenone (0.5mg/kg) when they were aged to 14 weeks. We observed that iron

and rotenone co-treatment induced significant behavior deficits (time-dependent) and

striatal dopamine depletion in the male and female rats, while they did not do so when

they were used alone. No significant change in striatal 5-hydroxytryptamine content was

observed in the male and female rats with iron and rotenone co-treatment. Also, iron

and rotenone co-treatment significantly decreased substantia nigra TH expression in

the male rats. Furthermore, co-treatment with iron and rotenone significantly induced

malondialdehyde increase and glutathione decrease in the substantia nigra of male

and female rats. There was no significant change in cerebellar malondialdehyde and

glutathione content of the rats co-treated with iron and rotenone. Interestingly, biochanin

A significantly attenuated striatal dopamine depletion and improved behavior deficits

(dose-dependently) in the male and female rats with iron and rotenone co-treatment.

Biochanin A treatment also significantly alleviated substantia nigra TH expression

reduction in the male rats co-treated with iron and rotenone. Finally, biochanin A

significantly decreased malondialdehyde content and increased glutathione content in

the substantia nigra of male and female rats with iron and rotenone co-treatment.

Our results indicate that iron and rotenone co-treatment may result in aggravated

neurochemical and behavior deficits through inducing redox imbalance and increased

neonatal iron supplementation may participate in the etiopathogenesis of PD. Moreover,

biochanin A may exert dopaminergic neuroprotection by maintaining redox balance.
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INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative
disorder clinically characterized by four major hallmarks
including resting tremor, rigidity, bradykinesia and postural
instability (Lang and Lozano, 1998; Dauer and Przedborski, 2003;
Fiesel et al., 2015). Accumulating studies have showed that the
etiology of Parkinson’s disease (PD) is multifactorial (Kidd, 2000;
Connolly and Lang, 2014; Mitsuyama et al., 2015; Richter et al.,
2017). Environmental factors are shown to play an important
role in the etiopathogenesis of PD (Olanow and Tatton, 1999;
Tanner et al., 1999; Ascherio and Schwarzschild, 2016). In recent
years, studying the combined effect of several risk factors is being
become a hot topic in PD research.

Iron is one of the essential trace metals for human body
especially for neural development. Iron deficiency negatively
impacts on myelinogenesis, synthesis of neurotransmitters and
construction of neural connections (Beard, 2003; Stankiewicz
et al., 2007). Insufficient iron supplement also results in a
number of neurological and psychiatric conditions such as
pediatric restless leg syndrome and attention deficit hyperactivity
disorder (Millichap, 2008; Benton, 2010). In addition, anemia
due to iron deficiency in infants contributes to cognitive and
social impairments (Carter et al., 2010; Wang L. et al., 2016).
Because of the essential role of iron in neurological as well
as overall development, it has been recommended that breast
milk which contains iron nutrition is preferred benefit for
infants and may be replaced with iron-fortified formula to
those who cannot receive breastfeed. However, studies have
shown that increased neonatal iron supplementation could
result in increased iron content in the substantia nigra and
subsequent nigrostriatal dopaminergic neurodegeneration in
aging rats (Kaur et al., 2007; Chen H. et al., 2015). Rotenone,
a mitochondrial complex I inhibitor, has been extensively
used as pesticides in a rural environment. Rotenone is being
widely employed into PD models because of its highly selective
toxicity on dopaminergic neurons and effective reproduction
of pathological and clinical features of PD (Betarbet et al.,
2000; Sherer et al., 2003b; Cannon et al., 2009; Sanders and
Greenamyre, 2013; Jagmag et al., 2016). However, little is
known about whether increased neonatal iron supplementation
enhances susceptibility of dopaminergic neurons to subsequent
exposure of rotenone.

In our present study, the rats with increased neonatal
iron (120µg/g bodyweight) supplementation were treated with

rotenone (0.5mg/kg) for 35 days when they were aged to
14 weeks. We investigated the combined effect of iron and
rotenone treatment and mechanism of action on behavioral
and neurochemical indexes in male and female rats. Biochanin
A, an O-methylated isoflavone, is classified as phytoestrogen

due to its similar chemical structure with mammalian estrogen.
Moreover, biochanin A has been suggested to be protective
in several in vitro and in vivo models (Chen et al., 2007;
Su et al., 2013; Wang J. et al., 2016). Therefore, in this
study, we also investigated biochanin A’s effect and mechanism
of action in male and female rats co-treated with iron and
rotenone.

MATERIALS AND METHODS

Animals and Treatment
All animals were from Sino-British SIPPR/BK Lab Animal LTD
(Shanghai, People’s Republic of China). Sprague-Dawley rat
pups were fed either saline vehicle or carbonyl iron daily by
oral gavage from days 10 to 17 post-partum. Based on the
previous studies (Kaur et al., 2007; Stankiewicz et al., 2007;
Chen H. et al., 2015), the rat pups were fed with increased
iron (120µg/g bodyweight). The rats were aged to 14 weeks.
Then, rotenone, emulsified in sunflower oil at 0.5mg/mL, was
given intraperitoneally, at 1 mL/kg once a day for 35 days,
to the rats (Wang et al., 2015). Biochanin A was dissolved in
dimethyl sulfoxide (DMSO) and administered intraperitoneally
(0.1ml/100 g/day) to different groups of rats at two different
concentrations of 3 and 30mg/kg. Together with rotenone
injection, the rats were continuously treated with biochanin A
for 35 days. To investigate the combined effect of iron and
rotenone treatment and mechanism of action on behavioral and
neurochemical indexes in male and female rats, rats (male and
female) were randomly divided into four groups: Veh group
(rats co-treated with saline and sunflower oil), Ir group (rats co-
treated with iron and sunflower oil), Rot group (rats co-treated
with saline and rotenone), and Ir+Rot group (rats co-treated
with iron and rotenone). To investigate biochanin A’s effect and
mechanism of action in male and female rats co-treated with iron
and rotenone, rats (male and female) were randomly divided into
five groups: Veh group (rats co-treated with saline, sunflower oil
and DMSO), Ir+Rot group (rats co-treated with iron, rotenone
and DMSO), Ir+Rot+BA3 group [rats co-treated with iron,
rotenone and biochanin A (3mg/kg)], Ir+Rot+BA30 group [rats
co-treated with iron, rotenone and biochanin A (30mg/kg)],
and BA30 group [rats co-treated with saline, sunflower oil and
biochanin A (30 mg/kg)]. For research involving biohazards,
biological select agents, toxins (including rotenone), restricted
materials or reagents, the standard biosecurity or institutional
safety procedures were carried out in our experiments. The
use of toxic or biohazards substances was approved by the
Health, Safety and environment (HSE) Committee of Xinhua
Hospital Affiliated to Shanghai Jiao Tong University School of
Medicine. This study was reviewed and approved by the Ethical
Committee of Xinhua Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine. All experiments were carried out
in accordance with the approved guidelines and regulations of the
National Institutes of Health for the care and use of laboratory
animals. All attempts were made to minimize the number of
animals used and their suffering.

Behavior Tests
Rotarod and open-field tests were performed to evaluate rat
behavior on the 15th and 45th day after the last injection of
rotenone. The rotarod apparatus required a roller, a power source
to turn the roller and four separators that divided the roller into
equal-sized compartments. Rats were placed onto the rotating
rod and trained at accelerated speeds of 5, 10, and 15 rotations
per minute (rpm). After completing the training, each rat was
given three trials at each rotarod speed and the latency time to
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fall was recorded. To assess the locomotor activity, the rats were
tested in an open field chamber (100 × 100 × 50 cm3) with
the floor divided into 25 equal squares of 20 × 20 cm2, which
is made of wood covered with impermeable formica. Each rat
was initially placed in the center of the open field to acclimatize
for 10min and then behavioral parameters including crossing
number (entering of another square with all four paws) and
rearing number (rearing with and without wall contact namely
standing only on hind legs) were measured during a period of
30min.

Neurochemical Analysis
High-performance liquid chromatography (HPLC) with
electrochemical detection (ECD) (HPLC-ECD) was used to
the biochemical analysis of neurotransmitters in the rat striata
as previously described (McNaught et al., 2004). Briefly, rat
striata were quickly removed on ice and weighed. Striata were
homogenized (10% wt/vol) in ice-cold homogenization buffer
containing perchloric acid (0.1mol/L) using sonication and
3,4-dihydroxybenzylamine is applied to be an internal control.
After lysis, samples were centrifuged at 4◦C for 10min and the
collected supernatants were then assayed for dopamine and
5-hydroxytryptamine content through HPLC-ECD equipped
with a column of 5µm spherical C18 particles. The mobile phase
consisted of 4.5% acetonitrile, 0.1M phosphate buffer (pH 2.6)
containing 2.5%methanol and 0.2mM octane sulfonic acid.
The content of each neurotransmitter was expressed as ng/g
equivalent striatal tissue.

Western Blotting
The substantia nigra tissues of rats were separated and
homogenized in cold lysis buffer. Protein lysates were adjusted
to equal protein concentrations using bicinchoninic acid
(BCA) protein assay kit (Beyotime Institute of Biotechnology,
Shanghai, China). After being separated by 10% sodium dodecyl
sulfate-polyacrylamide gels (SDS-PAGE), protein samples were
transferred onto polyvinylidene fluoride membranes (Millipore,
Bedford, MA, USA). Then, the membranes were blocked with
blocking solution for 1 h and incubated with primary rabbit
anti-tyrosine hydroxylase (TH) antibody (Abcam, Cambridge,
UK) or rabbit anti-β-Actin antibody (Abcam) at 4◦C overnight.
Subsequently, the membranes were washed and incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies
for another 1 h at room temperature. Finally, detection of protein
bands was performed by using an enhanced chemiluminescence
(ECL) assay kit (EMD Millipore, Billerica, MA, USA). The
density of bands was quantified by using ImageJ software
(National Institutes of Health, USA) and results presented the
ratio of density of the target protein to β-actin as densitometric
relative units.

Determination of Malondialdehyde and
Glutathione Levels
The levels of malondialdehyde and glutathione were measured
by commercially available kits (Cayman Chemical Co., Ann
Arbor, MI, USA) according to the manufacturer’s instructions.
Substantia nigra tissues were quickly removed on ice and

homogenized (10% wt/vol) with radioimmunoprecipitation
assay (RIPA) homogenizing buffer containing a protease
inhibitor for protein extraction. Then samples were centrifuged
at 1,600 g for 10min at 4◦C and supernatants were collected.
For malondialdehyde assay, thiobarbituric acid (TBA) reacts
with malondialdehyde to generate a thiobarbituric acid reactive
substance which can be quantified. Samples or standards (100
µl) were added to trichloroacetic acid and thiobarbituric acid
reactive substances reagent and then the mixture solutions were
boiled for 1 h. After incubating on the ice for 10min to stop
reaction, samples were centrifuged and the absorbance values
of the supernatants were read at 540 nm. For glutathione assay,
the determination was based on the enzymatic recycling method.
Since glutathione reductase is used in the Cayman GSH assay,
both GSH and GSSG are measured and the assay reflects total
glutathione. Briefly, 100 µl of supernatant from substantia nigra
sample was deproteinated with 100 µl metaphosphoric acid
reagent, added by triethanolamine reagent (50 µl/ml, 4M) and
pipetted 50 µl of the solution. Then, this was followed by the
addition of 150 µl of freshly prepared Assay Cocktail consisting
of 11.25ml of MES Buffer, 2.1ml of reconstituted Enzyme
Mixture, 0.45ml of reconstituted Cofactor Mixture, 0.45ml of
reconstituted DTNB [5,5′-dithio-bis-(2-nitrobenzoic acid)] and
2.3ml of water and incubated for 25min. The absorbance value
was read at 405 nm.

Statistical Analysis
Data were expressed as the mean ± standard error of the mean
(SEM). Results were analyzed by two-tailed Student’s t-test for
comparison between two groups and an analysis of variance
(ANOVA) followed by Bonferroni post hoc test for comparison
betweenmore than two groups. Normality of sample distribution
and homogeneity of variances were tested before each ANOVA.
A value of p < 0.05 was considered to be statistically
significant.

RESULTS

Effect of Iron and Rotenone Co-treatment
on Behavioral and Neurochemical Indexes
of Male and Female Rats
To evaluate the effect of iron and rotenone co-treatment on
motor behavior in male and female rats, the rotarod and open
field tests were performed on rats on the 15th and 45th day
after the last injection of rotenone. As shown in Figures 1, 2,
no significant behavior change was observed in the male and
female rats treated with iron (or rotenone) alone compared
with the vehicle-treated rats on both the 15th and the 45th
day after rotenone injection. However, iron and rotenone co-
treatment significantly decreased the latency time [male and
female: p < 0.01 (5 and 15 rpm); p < 0.05(10 rpm)] in rotarod
test and the number of crossing and rearing [male: p < 0.01
(crossing and rearing); female: p < 0.05 (crossing), p < 0.01
(rearing)] in open field test in the male and female rats on
the 45th day but did not significantly decrease them on the
15th day compared with the rats treated with vehicle, iron or
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rotenone (Figures 1, 2). Next, we investigated the effect of iron
and rotenone co-treatment on striatal neurotransmitters of male
and female rats. In accordance with behavior tests, no significant
striatal dopamine depletion was observed in the male and female
rats treated with iron (or rotenone) alone in comparison with
the vehicle-treated rats (Figure 3A). However, iron and rotenone
co-treatment significantly decreased striatal dopamine content in
the male and female rats compared with the rats treated with
vehicle, iron or rotenone (Figure 3A) (p < 0.01). Even though
male and female rats were co-treated with iron and rotenone,
no significant change in striatal 5-hydroxytryptamine level was
observed in the rats compared with those treated with vehicle,
iron or rotenone (Figure 3B). In addition, iron and rotenone co-
treatment significantly decreased substantia nigra TH expression
in the male rats compared with the rats treated with vehicle,
iron, or rotenone (p< 0.01, Figures 4A,C). No significant change
was observed in the substantia nigra TH expression of male rats
treated with iron (or rotenone) alone in comparison with the
vehicle-treated rats (Figures 4A,C).

Effect of Iron and Rotenone Co-treatment
on Substantia Nigra Malondialdehyde and
Glutathione Content in Male and Female
Rats
Oxidative stress has been shown to play an important role in
iron (or rotenone)-induced neurodegeneration (Betarbet et al.,
2000; Stankiewicz et al., 2007), so we measured the content of
malondialdehyde and glutathione in the substantia nigra of male
and female rat to investigate the potential mechanism underlying
behavioral and neurochemical deficits induced by iron and
rotenone co-treatment. As shown in Figure 5, no significant
change in the content of malondialdehyde and glutathione
was observed in the substantia nigra of male and female rats
treated with iron (or rotenone) alone in comparison with the
vehicle-treated rats. However, iron and rotenone co-treatment
significantly increased malondialdehyde content (p < 0.01) and
decreased glutathione content (p < 0.01) in the substantia nigra
of male and female rats compared with the rats treated with
vehicle, iron or rotenone (Figure 5). In addition, even though
male and female rats were co-treated with iron and rotenone, no
significant change in malondialdehyde and glutathione content
was observed in the cerebellum of rats compared with the rats
treated with vehicle, iron or rotenone (Figure 5).

Effect of Biochanin A on Behavioral and
Neurochemical Indexes in Male and
Female Rats with Iron and Rotenone
Co-treatment
Biochanin A has been suggested to be protective in several in
vitro and in vivo models (Chen et al., 2007; Su et al., 2013;
Wang J. et al., 2016). Therefore, we further investigated the
effect of biochanin A in the rats co-treated with iron and
rotenone. As shown in Figures 6, 7, biochanin A (30mg/kg)
administration significantly alleviated the reduction of latency
time (male: 5 rpm: p < 0.01, 10, and 15 rpm: p < 0.05; female:
p < 0.05) and crossing and rearing number (p < 0.05) in

the male and female rats co-treated with iron and rotenone,
although no significant behavior change but a trend toward
improvement was observed in the rats co-treated with iron
and rotenone after biochanin A (3 mg/kg) administration
compared with the vehicle-treated rats. In accordance with
behavior tests, biochanin A treatment significantly alleviated
striatal dopamine depletion [p < 0.05 (3mg/kg), p < 0.01
(30mg/kg)] in the male and female rats co-treated with iron and
rotenone in comparison with the Ir+Rot group (Figure 8). In
addition, there was significant difference (p < 0.01) in striatal
dopamine content between the Ir+Rot+BA3 and Ir+Rot+BA30
group, indicating that biochanin A’s effect on striatal dopamine
content was dose-dependent in the male and female rats co-
treated with iron and rotenone. Furthermore, biochanin A
(30mg/kg) treatment significantly alleviated substantia nigra TH
expression reduction (p < 0.01) in the male rats co-treated
with iron and rotenone compared with the Ir+Rot group
(Figures 4B,D).

Effect of Biochanin A on Substantia Nigra
Malondialdehyde and Glutathione Conent
in Male and Female Rats with Iron and
Rotenone Co-treatment
Finally, we investigated the potential mechanism underlying
biochanin A’s neuroprotection in the male and female rats with
iron and rotenone co-treatment. As shown in Figure 9, treatment
with biochanin A significantly decreased malondialdehyde
[p < 0.05 (3mg/kg), p < 0.01 (30mg/kg)] content and increased
glutathione (p< 0.01) content in the substantia nigra of male and
female rats co-treated with iron and rotenone compared with the
Ir+Rot group.

DISCUSSION

Up to now, it remains unclear about the etiology and
pathogenesis of PD. The “multiple hit” hypothesis that multiple
risk factors may act together to induce PD neurodegeneration
is a widely-accepted potential mechanism for PD (Sulzer, 2007;
Ghanbari et al., 2016; Kim, 2017). Researchers estimated ambient
exposures to the pesticides in California’s heavily agricultural
central valley, showing patients exposed to paraquat, ziram, and
maneb together experienced increased risk for PD, suggesting
that pesticides, which are key environmental factors, may act
together to induce dopaminergic neurodegeneration (Wang
A. et al., 2011). Nowadays, studying the combined effect
of several risk factors is being become a hot topic in PD
research.

In our present study, the rats with increased neonatal iron
(120µg/g bodyweight) supplementation were treated with a
relatively low dose of rotenone (0.5mg/kg) for 35 days when they
were aged to 14 weeks. We observed that although no significant
behavioral and neurochemical change was observed in the male
and female rats treated with iron (or rotenone) alone compared
with the vehicle-treated rats, iron and rotenone co-treatment
significantly induced behavioral and neurochemical deficits in
the male and female rats on the 45th day after the last rotenone
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FIGURE 1 | Effect of iron and rotenone co-treatment on motor behavior of male (A,C,E) and female (B,D,F) rats in rotarod test (A,B: 5 rpm; C,D: 10 rpm; E,F: 15 rpm).

Results are expressed as mean ± SEM. N = 9. Latency time was analyzed using multi-factor ANOVA followed by Bonferroni post hoc test. #p < 0.05, compared

with the rats treated with vehicle, iron or rotenone; *p < 0.01, compared with the rats treated with vehicle, iron or rotenone. Veh, vehicle; Ir, iron; Rot, rotenone.

injection. Our results suggest that increased neonatal iron
supplement may enhance susceptibility of dopaminergic neurons
to subsequent exposure of environmental toxins and increase
risk for the development of PD, even though environmental
toxins may be at a relatively low dose which is not harmful for
ordinary individuals in our daily life. In addition, no significant
behavioral change was observed in the male and female rats co-
treated with iron and rotenone on the 15th day after the last
rotenone injection until on the 45th day, suggesting that the effect
of iron and rotenone co-treatment on behavior indexes was in
a time-dependent manner in the male and female rats. Clinical
and epidemiologic studies show that there are distinctions in
incidence and disease progression of PD between men and

women (Baldereschi et al., 2000; Taylor et al., 2007; Alves et al.,
2009; Pavon et al., 2010). The data that men are more likely to
develop PD and more severe phenotype than women highlight
the importance of dissecting gender disparities in PD research.
Therefore, based on previous studies (Dluzen et al., 1996; Chen
H. et al., 2015; Wu et al., 2016), male and female rats were
respectively, compared in our study. In the present study, no
significant difference was observed in the sensitivity to iron
and rotenone co-treatment between male and female rats. The
difference of our results from others’ may be attributable to
different experimental samples and conditions. Some gender
differences in epidemiologic and clinical features of PD may be
attributable to many factors including gender-related biological
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FIGURE 2 | Effect of iron and rotenone co-treatment on motor behavior of male (A,C) and female (B,D) rats in open field test (A,B: crossing number; C,D: rearing

number). Results are expressed as mean ± SEM. N = 9. Crossing and rearing number were analyzed using multi-factor ANOVA followed by Bonferroni post hoc test.
#p < 0.05, compared with the rats treated with vehicle, iron or rotenone; *p < 0.01, compared with the rats treated with vehicle, iron or rotenone. Veh, vehicle; Ir,

iron; Rot, rotenone.

FIGURE 3 | Effect of iron and rotenone co-treatment on striatal dopamine (A) and 5-hydroxytryptamine (B) conent in male and female rats. Results are expressed as

mean ± SEM. N = 9. DA and 5-HT content were analyzed using multi-factor ANOVA followed by Bonferroni post hoc test. *p < 0.01, compared with the rats treated

with vehicle, iron or rotenone. Veh, vehicle; Ir, iron; Rot, rotenone. DA, dopamine; 5-HT, 5-hydroxytryptamine.

and environmental differences. Although iron is important for
human body especially for neural development, disruption of
iron metabolism may be involved in the etiopathogenesis of
PD, which is indicated by the evidence that iron levels are
selectively increased in the substantia nigra of PD patients
and pharmacological or genetic chelation of iron could exert
neuroprotective effect in animal models of PD (Sofic et al.,
1991; Griffiths et al., 1999; Kaur et al., 2003; Gaeta and
Hider, 2005; Stayte and Vissel, 2014; Ward et al., 2014). In

addition, direct injection of ferric iron into the substantia
nigra was observed to lead to behavioral changes associated
with dopamine depletion in the striatum (Lin and Ho, 2000;
Junxia et al., 2003). Peripheral iron overload resulted in loss
of dopaminergic neurons in rats (Jiang et al., 2007). Moreover,
the correlation between increased dietary iron supplementation
and PD has also been reported in aging rats (Kaur et al.,
2007; Chen H. et al., 2015). At present, infant iron-fortified
formula is increasingly popular as an alternative to breastfeeding
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FIGURE 4 | Effect of iron, rotenone and biochanin A co-treatment on substantia nigra TH expression in male rats. Results are expressed as mean ± SEM. N = 9. TH

expression was analyzed using multi-factor ANOVA followed by Bonferroni post hoc test. *p < 0.01(C), compared with the rats treated with vehicle, iron or rotenone.

*p < 0.01(D), compared with the rats treated with vehicle. +p < 0.01, compared with the rats co-treated with iron and rotenone. 1, Veh1(saline)+Veh2(sunflower oil);

2, Ir+Veh2; 3, Veh1+Rot; 4, Ir+Rot; 5, Veh1+Veh2+Veh3(DMSO); 6, Ir+Rot+Veh3; 7, Ir+Rot+BA30; 8, Veh1+Veh2+BA30; Veh, vehicle; Ir, iron; Rot, rotenone;

BA30, biochanin A (30mg/kg).

FIGURE 5 | Effect of iron and rotenone co-treatment on malondialdehyde (A,B) and glutathione (C,D) conent in the substantia nigra and cerebellum of male (A,C)

and female (B,D) rats. Results are expressed as mean ± SEM. N = 9. MDA and GSH content were analyzed using multi-factor ANOVA followed by Bonferroni post

hoc test. *p < 0.01, compared with the rats treated with vehicle, iron or rotenone. Veh, vehicle; Ir, iron; Rot, rotenone. MDA, malondialdehyde; GSH, glutathione; SN,

substantia nigra; CBM, cerebellum.

for iron supplementation (Hare et al., 2015). Therefore, the
possible neurotoxicity of increased dietary iron supplementation
should be seriously taken into consideration. Further studies are
needed to determine optimal dose of iron for infancy dietary
intake.

Oxidative stress is believed to play a crucial role in the
pathogenesis and development of PD (Jensen and Oliveira, 2014;
Niranjan, 2014; Javed et al., 2016; Jiang et al., 2016; Niedzielska
et al., 2016; Xie and Chen, 2016; Tio et al., 2017; Zhao et al., 2017).
Oxidative stress is the result of an imbalance between pro-oxidant
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FIGURE 6 | Effect of biochanin A on motor behavior (rotarod test) in male and

female rats with iron and rotenone co-treatment (A: 5 rpm; B: 10 rpm; C: 15

rpm). Results are expressed as mean ± SEM. N = 9. Latency time was

analyzed using multi-factor ANOVA followed by Bonferroni post hoc test. *p <

0.01 compared with the vehicle-treated rats. p < 0.05, compared with the

rats co-treated with iron and rotenone. +p < 0.01, compared with the rats

co-treated with iron and rotenone. Veh, vehicle; Ir, iron; Rot, rotenone; BA3,

biochanin A (3mg/kg); BA30, biochanin A (30mg/kg).

and antioxidant causing the generation of toxic reactive oxygen
species (Barnham et al., 2004; Metherell et al., 2016; Hefti et al.,
2017). In recent years, multiple studies have suggested that
iron, as well as rotenone, potentially results in the formation of
reactive oxygen species (ROS) such as superoxide free radical
and may consequently contribute to inducing selective and
progressive dopaminergic neurotoxicity (Gao et al., 2002; Sherer
et al., 2003a; Kaur et al., 2007; Sanders and Greenamyre, 2013;
Zhang et al., 2014). In the present study, co-treatment with
iron and rotenone significantly induced malondialdehyde (a
product of oxidative damage to lipids) increase and glutathione
(an antioxidant) decrease in the substantia nigra of male and
female rats, indicating that iron and rotenone co-treatment

FIGURE 7 | Effect of biochanin A on motor behavior (open field test) in male

and female rats with iron and rotenone co-treatment (A: crossing number; B:

rearing number). Results are expressed as mean ± SEM. N = 9. Crossing and

rearing number were analyzed using multi-factor ANOVA followed by

Bonferroni post hoc test. *p < 0.01 compared with the vehicle-treated rats.

p < 0.05 compared with the rats co-treated with iron and rotenone. Veh,

vehicle; Ir, iron; Rot, rotenone; BA3, biochanin A (3mg/kg); BA30, biochanin A

(30mg/kg).

FIGURE 8 | Effect of biochanin A on striatal dopamine conent in male and

female rats with iron and rotenone co-treatment. Results are expressed as

mean ± SEM. N = 9. DA content was analyzed using multi-factor ANOVA

followed by Bonferroni post hoc test. *p < 0.01, compared with the

vehicle-treated rats. p < 0.05, compared with the rats co-treated with iron

and rotenone. +p < 0.01, compared with the rats co-treated with iron and

rotenone. DA, dopamine; Veh, vehicle; Ir, iron; Rot, rotenone; BA3, biochanin A

(3mg/kg); BA30, biochanin A (30mg/kg).

may act together to induce behavioral and neurochemical
deficits through inducing redox imbalance. Moreover, there
was no significant change in cerebellar malondialdehyde and
glutathione content of the rats co-treated with iron and
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FIGURE 9 | Effect of biochanin A on substantia nigra malondialdehyde and

glutathione conent in male (A) and female (B) rats with iron and rotenone

co-treatment. Results are expressed as mean ± SEM. N = 9. MDA and GSH

content were analyzed using multi-factor ANOVA followed by Bonferroni post

hoc test. *p < 0.01, compared with the vehicle-treated rats. p < 0.05,

compared with the rats co-treated with iron and rotenone. +p < 0.01,

compared with the rats co-treated with iron and rotenone. MDA,

malondialdehyde; GSH, glutathione; Veh, vehicle; Ir, iron; Rot, rotenone; BA3,

biochanin A (3mg/kg); BA30, biochanin A (30mg/kg).

rotenone, suggesting regional selectivity of redox imbalance
induced by co-treatment with iron and rotenone. Of the
various populations of neurons in the brain, substantia nigra
dopaminergic neurons are particularly vulnerable to oxidative
insult. Enhanced susceptibility of dopaminergic neurons to
oxidative damage so far has been mainly attributed to their
decreased intrinsic antioxidant capacity (Jenner and Olanow,
1998; Gao et al., 2002; Wang X. J. et al., 2011). In the
present study, iron and rotenone co-treatment significantly
decreased substantia nigra TH expression while no significant
change was observed in the substantia nigra TH expression
of male rats treated with iron (or rotenone) alone. Therefore,
we infer that elevated neonatal iron supplement may produce
moderate oxidative stress, which does not induce significant
dopaminergic neurotoxicity. It is triggered by a second hit such
as rotenone in later life, and then exaggerated oxidative stress
may seriously impair dopaminergic neurons. Collectively, redox
imbalance may be a mechanism for dopaminergic neurotoxicity
induced by iron and rotenone co-treatment. Further studies
will be needed to investigate precise mechanism underlying
dopaminergic neurotoxicity induced by iron and rotenone co-
treatment.

Biochanin A, an O-methylated isoflavone, is extracted from
soy, chickpea or red clover. Being a natural compound,

biochanin A is traditionally used as a carminative, antispasmodic,
expectorant, and emmenagogue in some countries (Wang et al.,
2014). Moreover, biochanin A may improve lipid profile as
a peroxisome proliferator-activated receptor gamma (PPARγ)
agonist and provide beneficial effects on metabolic syndrome
such as hyperglycaemia (Wang et al., 2014; Park et al.,
2016). It has been reported that biochanin A may be useful
in the prevention and treatment of breast cancer, prostate
cancer and hepatocellular carcinoma (Sun et al., 1998; Khan
et al., 2011; Chen J. et al., 2015; Youssef et al., 2016). In
addition, biochanin A was shown to exert neuroprotective
effect in neurodegenerative diseases via inhibiting microglia
activation or attenuating L-glutamate cytotoxicity (Chen et al.,
2007; Tan et al., 2013; Wang J. et al., 2016). Here, we
showed that biochanin A could improve behavioral and
neurochemical deficits in male and female rats with iron
and rotenone co-treatment in a dose-dependent manner.
Malondialdehyde content decrease and glutathione content
increase were also observed in the substantia nigra of male
and female rats co-treated with iron and rotenone after the
administration of biochanin A, indicating that maintaining redox
balance may be a potential mechanism for neuroprotection
by biochanin A.

In conclusion, our results show that co-treatment with iron
and rotenone may result in aggravated neurochemical and
behavioral deficits in male and female rats through inducing
redox imbalance. Increased neonatal iron supplementation may
enhance susceptibility of dopaminergic neurons to subsequent
exposure of rotenone. Biochanin A may exert dopaminergic
neuroprotection by maintaining redox balance.
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