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Abstract: Poly(L-lactic acid) with high molecular weight was used to prepare PLLA films by means
of the solvent casting technique. Poly(D-lactic acid) (PDLA) and poly(D-lactic acid-co-glucose)
copolymer (PDLAG) with a low molecular weight were synthesized from D-lactic acid and glucose
through melt polycondensation. PLLA films were immersed in PDLA or PDLAG solution to prepare
surface-modified PLLA films. The modified PLLA film presented stereocomplex crystal (SC) on
its surface and homogeneous crystals (HC) in its bulk. The HC structure and surface morphology
of modified PLLA films were obviously damaged by PDLA or PDLAG solution. With increasing
immersion time, the PLLA films modified by PDLA decreased both the HC and SC structure, while
the PLLA films modified by PDLAG increased the SC structure and decreased the HC structure.
Hydrophilic glucose residues of PDLAG on the surface would improve the hydrophilicity of surface-
modified PLLA films. Moreover, the hydrophilicity of glucose residues and the interaction of glucose
residues with lactic acid units could retard HC destruction and SC crystallization, so that PLLA films
modified by PDLAG possessed lower melting temperatures of HC and SC, the crystallinity of SC
and the water contact angle, compared with PDLAG-modified PLLA films. The SC structure could
improve the heat resistance of modified PLLA film, but glucose residues could block crystallization
to promote the thermal degradation of PLA materials. The surface modification of PLLA films will
improve the thermal stability, hydrophilicity and crystallization properties of PLA materials, which
is essential in order to obtain PLA-based biomaterials.

Keywords: poly(L-lactic acid); poly(D-lactic acid); poly(D-lactic acid-co-glucose); stereocomplex;
surface modification

1. Introduction

Poly(lactic acid) (PLA) can replace traditional plastic in food packaging [1–6], bioengi-
neering materials [7–9], composites [10–12] and other fields due to its good biodegradability,
biocompatibility, and processability. However, PLA still has many inherent defects, such as
the long degradation period and poor hydrophilicity, as well as low heat resistance which
may increase PLA processing difficulty [13–16].

The blending modification of PLA is one of the important ways to improve PLA
performance, which will extend the application of PLA materials [17–19]. In 1987, Ikada [20]
first blended poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) in solutions to obtain
the stereocomplex of PLA (sc-PLA) with a melting point about 50 ◦C higher than that of
PLLA or PDLA, which can effectively improve PLA heat resistance, thereby reducing
PLA processing difficulty and expanding PLA application fields. Enantiomeric PDLA
and PLLA chains in close contact can form stereocomplex crystal (SC) in sc-PLA through
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hydrogen bonding. Ajiro [21] controlled the mobility of PDLA and PLLA chains to conduct
stereocomplex crystallization owing to the good chain mobility of PDLA and PLLA chains.
Tretinnikov [22] found that PDLA could be selectively adsorbed on the surface of PLLA
via stereocomplexation between PLLA and PDLA.

Many researchers have recently devoted attention to the surface modification of PLA
in order to improve PLA performance and expand its applications [4,23–28]. Aulin [29]
built up a transparent nano-cellulose multilayer film on PLA with adjustable gas bar-
rier properties using the layer-by-layer deposition method. Albertsson [30] utilized the
“grafting” method to obtain an electroactive hydrophilic PLA surface through covalent
modification with tetraaniline.

In our previous papers, we prepared poly(L-lactic acid-co-glucose) copolymer (PLLAG)
and poly(D-lactic acid-co-glucose) copolymer (PDLAG) from L-lactic acid (L-LA), D-lactic
acid (D-LA) and glucose, respectively, through melt copolymerization. The average molec-
ular weights (Mw) of PLLAG and PDLAG were about 15,600–20,600 with the PDI being
about 1.90. PLLAG and PDLAG were blended to obtain sugar-containing stereocomplexes
of PLA (sc-PLAG) [31,32], which resulted in higher heat-resistance and better hydrophilic-
ity of sc-PLAG compared with PLLAG and PDLAG. Due to low Mw usually reducing PLA
properties, in this paper, we utilized a PLLA with high molecular weight (Mw) to prepare
PLLA film, and surface-modified the film with low-Mw PDLA and PDLAG through stereo-
complexation of enantiomeric PLA chains with amphiphilicity due to glucose residues and
lactic acid segments. Low-Mw PDLA and PDLAG were synthesized from D-LA and glucose
through melt copolycondensation. PLLA films were prepared by the solvent casting tech-
nique, and immersed in PDLA or PDLAG solution to proceed with surface-modification.
The stereocomplex of PLLA with PDLA or PDLAG would form on the surface of modified
PLLA films, while glucose residues of PDLAG sticking to the surface would improve the
hydrophilicity of these films. Stereocomplex formation between enantiomeric sections of
PLLA with PDLA or PDLAG is related to the increase in the Tm of PLLA [31,32]. Therefore,
the surface modification of PLLA films would improve the thermostability and hydrophilic-
ity, and change the surface structure of PLA materials, which is essential in order to obtain
PLA-based biomaterials. The surface modified PLA films can be used in food packaging
and biological materials.

2. Materials and Methods
2.1. Materials

Poly(L-lactic acid) (Ningbo Global Biomaterials Co., Ltd., Ningbo, China), D-lactic
acid(A.R., 90%, Musashino Chemical Co., Ltd., Yichun, China), Anhydrous glucose(A.R.,
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), Stannous chloride(A.R., Shang-
hai Jiuyi Chemical Reagent Company, Shanghai, China), p-Toluenesulfonic acid(A.R.,
Shanghai Lingfeng Chemical Reagent Company, Shanghai, China), Stannous octoate(A.R.,
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), Methanol(A.R., Nanjing Chemi-
cal Reagent Co., Ltd., Nanjing, China), Trichloromethane (A.R., Shanghai Pilot Chemical
Corporation, Shanghai, China), other reagents are of analytical grade.

2.2. Preparation of Samples
2.2.1. Synthesis of Poly(D-lactic acid) (PDLA)

The synthetic route of poly(D-lactic acid) is shown in Scheme 1 via direct melt poly-
merization [32]. A certain amount of D-LA was added into a three-necked flask and heated
up to 150 ◦C under normal pressure for 1 h. Then, the catalyst stannous octoate with 0.5
wt% of the total mass of D-LA was added to the flask. The reactor was heated to 170 ◦C
and reacted under a complete vacuum for 8 h. The obtained product was dissolved in
chloroform and precipitated by adding methanol in excess. The separated precipitates
were dried under vacuum at 50 ◦C for 10 h to obtain PDLA samples with a Mw of 19,000
and a PDI of 1.11, as determined by gel permeation chromatography (GPC).
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2.2.2. Preparation of Poly(D-lactic acid-co-glucose) Copolymer (PDLAG)

The synthetic route of PDLAG is shown in Scheme 1. After the obtained PDLA was
melted, glucose with a mass fraction of 2 wt% of PDLA and stannous octoate with 0.5 wt%
of the total mass of reactants were added to the flask. Then, the reaction proceeded at
a pressure less than 1000 Pa for 6 h. The products were dissolved in chloroform and
precipitation by excess methanol. The separated precipitates were dried under vacuum at
50 ◦C for 10 h to obtain PDLAG samples. The obtained PDLAG were multi-arm amphiphilic
copolymers with the Mw of 15,600 and the PDI of 1.90 determined by GPC [32].

2.2.3. Preparation and Modification of PLLA Film

Poly(L-lactic acid) was purified by the precipitation method and its Mw was 138,000
with its PDI being 1.54, as detected by GPC. Then, PLLA was dissolved in chloroform
to prepare the solution with the mass concentration of 10 wt%. The PLLA solution was
dropped into a polytetrafluoroethylene mold and dried at room temperature to prepare
PLLA films with the thickness about 1 mm. Then, the PLLA film was cut into a 1 cm × 1 cm
square with a flat surface for surface modification.

PDLA and PDLAG samples were dissolved in chloroform, respectively, to obtain the
solutions with a mass concentration of 5 wt%. Then, PLLA films were immersed in PDLA
or PDLAG solution for 0.5~3 min, then the upper surface and lower surface of the film
were in contact with the solutions and the modification was performed homogeneously
on both surfaces and the surrounding cross-sections. The optimal immersion time was
determined by observing the state of PLLA films in the dissolutions. If immersion time
was longer than 3 min, the swelling of PLLA film was clearly observed, and the PLLA film
would become smaller due to partial dissolution or be broken into pieces. The modified
PLLA films were washed with deionized water and dried under vacuum at 50 ◦C for 10 h.
Here, m-PLLA stood for the surface-modified PLLA film in PDLA solution, while m-PLAG
for the modified PLLA film in PDLAG solution. The structural schematic of modified
PLLA films is shown in Figure 1. All modified PLLA samples are listed in Table 1.

Table 1. Modification time of PLLA films modified by PDLA and PDLAG.

Sample
Modification Time
in PDLA Solution

(min)
Sample

Modification Time
in PDLAG Solution

(min)

m-PLLA-1 0.5 m-PLAG-1 0.5
m-PLLA-2 1.0 m-PLAG-2 1.0
m-PLLA-3 3.0 m-PLAG-3 3.0



Polymers 2021, 13, 1757 4 of 14Polymers 2021, 13, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Structural schematic of modified PLLA film. 

Table 1. Modification time of PLLA films modified by PDLA and PDLAG. 

Sample Modification Time in PDLA 
Solution (min) Sample Modification Time in PDLAG 

Solution (min) 
m−PLLA−1 0.5 m−PLAG−1 0.5 
m−PLLA−2 1.0 m−PLAG−2 1.0 
m−PLLA−3 3.0 m−PLAG−3 3.0 

2.3. Characterization Methods 
An FT-IR-360 infrared spectrometer (Thermo Nicolet Corporation, Beijing, China) 

was used to measure the infrared spectra (FT−IR) of samples, with KBr tableting, scan-
ning range being 500 to 4500 cm−1. 

Gel permeation chromatography (GPC) was performed by Agilent 1100 gel perme-
ation chromatography (Agilent Technologies (China) Co., Ltd., Shanghai, China) to 
measure the molecular weight of samples and tetrahydrofuran (THF) was used as the 
mobile phase to dissolve the sample in THF at a concentration of 1 mg/mL with a flow 
rate of 1 mL/min and an injection volume of 20 µL. 

The thermal performance of the sample was measured using differential scanning 
(DSC) by means of the DSC−200F3 differential scanning calorimeter (NE-
TZSCH−Gerätebau GmbH, Selb, Germany). The test temperature range was 10~250 °C. 
under a nitrogen gas flow of 30 mL/min, and the heating rate was 10 °C/min. The samples 
were first heated to 200 °C, kept for 3 min at this temperature and cooled rapidly to 
eliminate the heat history. The second heating process was recorded. Each sample was 
analyzed three times, and the DSC curve obtained each time were the same. The crystal-
linity was calculated by Proteus Analysis software. 

Q5000 thermogravimetric analyzer (USA TA) was used to determine the TGA curve 
of the polymers with the temperature range from 20 to 600 °C at the heating rate of 10 
°C/min, with the flow rate of N2 being 10 mL/min. 

X−ray diffraction (XRD) analysis was performed with a Rigaku D/max−Ra X−ray 
diffractometer (Rigaku Corporation, Tokyo, Japan) with Cu−Kα radiation(λ = 0.154 nm), 
40 kV working voltage, and electric current 30 mA. The range of 2θ was from 5° to 40° at 
a scan rate of 5°/min. 

Polarized optical microscopy (POM) was used to observe the crystal morphology by 
means of the ECLIPSE polarizing microscope (Nikon Corporation, Tokyo, Japan). All 
samples were dried at 50 °C for 10 h before detection.  

The surface morphology of films was observed using the Quanta 200 scanning elec-
tron microscope (SEM) (USA FEI, Hillsboro, OR, USA). 

The static water contact angles were characterized by the JC2000C1 contact angle 
meter (Shanghai Zhongchen Digital Technology Equipment Co., Ltd., Shanghai, China). 
The measurement time of each point was 10 s, and the contact angle was the average 
value of five measurements. 
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2.3. Characterization Methods

An FT-IR-360 infrared spectrometer (Thermo Nicolet Corporation, Beijing, China) was
used to measure the infrared spectra (FT-IR) of samples, with KBr tableting, scanning range
being 500 to 4500 cm−1.

Gel permeation chromatography (GPC) was performed by Agilent 1100 gel perme-
ation chromatography (Agilent Technologies (China) Co., Ltd., Shanghai, China) to measure
the molecular weight of samples and tetrahydrofuran (THF) was used as the mobile phase
to dissolve the sample in THF at a concentration of 1 mg/mL with a flow rate of 1 mL/min
and an injection volume of 20 µL.

The thermal performance of the sample was measured using differential scanning
(DSC) by means of the DSC-200F3 differential scanning calorimeter (NETZSCH-Gerätebau
GmbH, Selb, Germany). The test temperature range was 10~250 ◦C. under a nitrogen gas
flow of 30 mL/min, and the heating rate was 10 ◦C/min. The samples were first heated to
200 ◦C, kept for 3 min at this temperature and cooled rapidly to eliminate the heat history.
The second heating process was recorded. Each sample was analyzed three times, and the
DSC curve obtained each time were the same. The crystallinity was calculated by Proteus
Analysis software.

Q5000 thermogravimetric analyzer (USA TA) was used to determine the TGA curve of
the polymers with the temperature range from 20 to 600 ◦C at the heating rate of 10 ◦C/min,
with the flow rate of N2 being 10 mL/min.

X-ray diffraction (XRD) analysis was performed with a Rigaku D/max-Ra X-ray
diffractometer (Rigaku Corporation, Tokyo, Japan) with Cu-Kα radiation(λ = 0.154 nm),
40 kV working voltage, and electric current 30 mA. The range of 2θ was from 5◦ to 40◦ at a
scan rate of 5◦/min.

Polarized optical microscopy (POM) was used to observe the crystal morphology
by means of the ECLIPSE polarizing microscope (Nikon Corporation, Tokyo, Japan). All
samples were dried at 50 ◦C for 10 h before detection.

The surface morphology of films was observed using the Quanta 200 scanning electron
microscope (SEM) (USA FEI, Hillsboro, OR, USA).

The static water contact angles were characterized by the JC2000C1 contact angle
meter (Shanghai Zhongchen Digital Technology Equipment Co., Ltd., Shanghai, China).
The measurement time of each point was 10 s, and the contact angle was the average value
of five measurements.

All polymer samples were prepared and measured at least three times, and the data
from the repeated experiments had good reproducibility.
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3. Results and Discussion
3.1. FT-IR Analysis of the Crystal Structure of Modified PLLA Films

FT-IR was used to evaluate the changes in the crystalline structure of PLLA due to
the surface treatments. All FT-IR spectra of PLLA and modified PLLA films were similar.
In order to investigate the crystal structure of modified PLLA films, FTIR spectra only
considered the crystalline regions. Figure 2 gave IR spectra of PLLA, PDLA, m-PLLA and
m-PLAG in crystalline regions.
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In Figure 2a, PLLA spectrum shows a peak at 870 cm−1 due to the PLLA amorphous
phase and a peak at 920 cm−1 due to the homogeneous crystals (HC) of PLLA [33–35].
After modification using PDLA, the IR spectra of surface-modified PLLA showed a new
peak at 908 cm−1 due to the stereocomplex crystals (SC) [33,36]. This result indicated
that the surface of PLLA films was swelled in PDLA dissolution and then PLLA chains
interacted with PDLA chains to form stereocomplex crystal structure on PLLA surface
in a period of time. Meanwhile, the IR spectra of m-PLLA samples also had the peak at
920 cm−1 due to HC structure of PLLA in bulk as well as SC on the surface of m-PLLA.
The intensity of the SC peak increased with the increase in surface modification time, and
HC peak and the SC peak overlapped to eventually form one peak. The FT-IR spectra of
modified PLLA film confirmed the formation of stereocomplex crystals on surface.

As show in Figure 2b, the IR spectra of m-PLAG samples were similar to those of
m-PLLA samples, while the effect of modification time on the surface structure was alike,
too. The FT-IR spectra of m-PLAG showed a peak at 908 cm−1 due to the SC structure
as well as a peak at 920 cm−1 due to the HC structure. This result indicates that the SC
structure formed on the PLLA surface owing to the interaction of PLLA chains with PDLA
blocks of PDLAG, while the HC structure in the bulk of the polymer was affected due to the
penetration of the polymer dissolutions into the bulk of the film. Moreover, the intensity of
the SC peak of m-PLAG was weaker than that of m-PLLA with the same modification time,
because the glucose residues in PDLAG chains may interact with PLLA and PDLA blocks,
retard crystallization, and result in imperfect HC and SC structures [32,37].

The FT-IR results show that both PDLA and PDLAG could be used for the surface
modification of PLLA films by stereocomplexation on the PLLA surface, while the HC
structure of PLLA was retained in the bulk of PLLA films. Moreover, there was the
interaction of glucose with lactic acid units.



Polymers 2021, 13, 1757 6 of 14

3.2. Analysis of Thermal Performance of Modified PLLA Film

The thermal performance of PLLA films before and after surface modification was
analyzed using the DSC method. Figure 3 shows the DSC curves of PLLA, PDLA, PDLAG,
and PLLA films modified by PDLA and PDLAG, respectively. The glass transition temper-
ature (Tg), homogeneous crystal melting temperature (Tm,HC) and stereocomplex crystal
melting temperature (Tm,SC) obtained from the DSC curve were shown in Table 2. The
HC crystallinity (f c,HC) of all samples was calculated by the percentage of sample melting
enthalpy and the melting enthalpy of PLLA with the crystallinity of 100% (93.6 J/g) [26,33].
The SC crystallinity (f c,SC) of the modified PLLA films was calculated by the percentage
of sample melting enthalpy and the melting enthalpy of sc-PLA with 100% crystallinity
(142 J/g) [38,39].
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Table 2. DSC and TGA Thermal properties, crystallinity of polymer samples table.

Sample Modification
Time/min Tm, HC/◦C Tm, SC/◦C Tg/◦C f c,HC/% f c,SC% Tb/◦C Tmax/◦C Wr/%

PLLA 0 147.9 / 61.9 21.8 / 301.7 349.6 2.0
PDLA 0 140.6 / 52.8 18.1 / 239.7 278.1 0.9

PDLAG 0 128.8 / 44.2 17.6 / 233.1 276.8 6.5
m-PLLA-1 0.5 150.8 210.8 61.6 8.2 8.2 249.2 321.2 1.1
m-PLLA-2 1 151.0 211.2 62.4 3.4 5.7 278.1 357.1 1.4
m-PLLA-3 3 151.6 211.4 63.2 3.1 2.1 256.3 355.0 1.7
m-PLAG-1 0.5 150.6 208.4 61.2 4.9 0.4 253.7 342.1 2.0
m-PLAG-2 1 151.0 208.6 61.4 4.7 0.7 252.1 339.2 2.0
m-PLAG-3 3 150.2 208.8 61.8 4.1 1.2 249.3 327.4 0.6

In Figure 3a, PLLA had the Tm of 147.9 ◦C due to the HC of L-lactic units [40] and the
Tg of 61.9 ◦C, while PDLA had the Tm of 140.9 ◦C due to the HC formed by D-LA segment
and the Tg of 52.8 ◦C. Compared with PDLA, PLLA with higher Mw possessed higher Tm
and higher Tg [27]. In the DSC curves of m-PLLA films, the melting temperature due to
SC structure (Tm,SC) appeared at about 210 ◦C [3,41], while the melting temperature due
to the HC structure of PLLA (Tm,HC) remained at 150 ◦C, slightly higher than that of neat
PLLA film. This result indicates that the stereocomplex crystal was formed on the surface
of PLLA films during modification, while the HC structure in the bulk of the polymer was
affected due to the swelling of the polymer during the surface treatment. The crystallinity
of the PLLA film was 21.8%, while the crystallinity of the PDLA film was 18.1% owing to
its low Mw. The f c,HC of m-PLLA was much lower than the crystallinities of PLLA and
PDLA, and decreased gradually with increasing modification time. The f c,SC of m-PLLA,
as well as the sum of f c,HC and f c,SC of m-PLLA, decreased gradually with increasing
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modification time, while the sum of f c,HC and f c,SC was far less than the crystallinities of
PLLA and PDLA. These results indicate that surface modification by immersing PLLA films
in PDLA dissolution could destroy the imperfect HC structure of PLLA and form imperfect
SC structure, which resulted in higher Tm,HC and lower f c,HC. As the modification time
increases, the Tm,SC of m-PLLA was higher and the f c,SC of m-PLLA was lower [42].

In Figure 3b and Table 2, PDLAG had a Tm,HC of 128.8 ◦C due to the HC of PDLA
segments, a Tg of 44.2 ◦C and f c,HC of 17.6%, which showed that PDLAG with lower
Mw and glucose residues in chains may lead to crystal imperfection, so its Tm, Tg and
f c,HC were lower than those of PDLA. In the DSC curves of m-PLAG films, the Tm,SC was
208 ◦C due to the SC of m-PLAG and the Tm,HC was 150 ◦C due to the HC of PLLA, which
indicates that the SC structure appeared on the m-PLAG surface during modification, and
the HC structure in the bulk of the polymer was affected due to the penetration of the
polymer dissolutions into the bulk of the film. The f c,HC of m-PLAG and the sum of f c,HC
and f c,SC of m-PLAG were much lower than the crystallinities of PLLA and PDLAG, and
decreased gradually with increasing modification time, while f c,SC of m-PLAG increased
slightly. These results indicate that surface modification by immersing PLLA films in PDLA
and PDLAG dissolutions could destroy the imperfect HC structure of PLLA and form an
imperfect SC structure, which results in higher Tm,HC and lower f c,HC for both m-PLLA
and m-PLAG compared with the neat PLLA. Compared with m-PLLA, m-PLAG had lower
Tm,HC, Tm,SC and f c,SC [42]. The hydrophilic glucose groups interacting with PLLA and
PDLA segments could cover the surface of PLLA films, and would prevent chloroform
from approaching and dissolving PLLA films. Thus, the HC destruction of PLLA was
retarded, and the f c,HC of m-PLAG was slightly decreased with increasing immersion
time compared with m-PDLA. The difference between m-PLAG and m-PLLA showed
that the interaction of glucose residues with PLLA or PDLA segments, together with the
hydrophilicity of glucose residues, could retard HC destruction and SC crystallization.
Moreover, the PDI of PDLAG was less than that of PDLA, but its Mw was similar to that
of PDLA. Therefore, PDLAG might possess more low Mw fractions, and low-Mw PDLAG
would reduce SC crystallization and increase defects in the crystal structure. Thus, under
the comprehensive effects of all of the above factors, m-PLAG possessed lower Tm,HC,
Tm,SC and f c,SC than m-PLLA.

Table 3 presents one-way ANOVA for the f c,SC of m-PLLA-1 and m-PLAG-1. The
calculated p-value of 0.0002 was smaller than the test hypothesis α (0.05), which meant that
PDLA and PDLAG had a significant effect on the f c,SC of the modified PLLA films with a
modification time of 0.5 min. When the modification time was 1 and 3 min, respectively, the
results of the one-way ANOVA are similar to that with the 0.5 min modification time. The
results of the one-way ANOVA for f c,HC are similar to those of f c,HC. As for the one-way
ANOVA for Tm,HC of m-PLLA and m-PLAG, the p-value (0.5551 and 0.8298) was larger
than the test hypothesis α of 0.05 when the modification time was 0.5 and 1 min, which
showed that PDLA and PDLAG had no significant effect on the Tm,HC of the modified
PLLA films. When the modification time was 0.5 min, the p-value of 0.0936 was bigger than
the test hypothesis α of 0.05, and showed PDLA and PDLAG had no significant effect on the
Tg of the modified PLLA films. In order to compare the effects of PDLA and PDLAG on the
modified PLLA, the one-way ANOVA was performed with PLLA with the test hypothesis
α of 0.01. The p-value (near zero) was much smaller than α, indicating that PDLA and
PDLAG had significant effects on the thermal properties of modified PLLA films.

The DSC results correspond with those of FT-IR. Both PDLA and PDLAG could be
used for the surface modification of PLLA films by means of stereocomplexation on the
surface of PLLA films, while the HC structure in the bulk of the polymer was affected due
to the swelling of the polymer during the surface treatment. Moreover, the hydrophilicity
of glucose residues and the interaction of glucose residues with lactic acid units could
retard HC destruction and SC crystallization, which led to m-PLAG samples having lower
Tm,HC, Tm,SC and f c,SC.
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Table 3. One-way ANOVA for f c,SC of m-PLLA-1 and m-PLAG-1.

Sample Number Sum Mean Variance / /

m-PLLA-1 3 632.4 210.8 0.01 / /
m-PLAG-1 3 625.2 208.4 0.09 / /
Source of
difference SS df MS F p-value F crit

Between
groups 8.64 1 8.64 172.8 0.000193 7.708647

Within
groups 0.2 4 0.05 / / /

sum 8.84 5 / / / /

Thermogravimetric analysis (TGA) can also effectively evaluate the thermal properties
of polymers. Figure 4 shows the TGA curves of PLLA, PDLA, PDLAG and modified PLLA
films. The beginning degradation temperature (Tb) (at 5 wt% mass loss), the maximum
degradation temperature (Tmax) (at 50 wt% mass loss) and the residual carbon ratio (Wf)
at 600 ◦C obtained from the analysis of TGA curves are listed in Table 2. As seen in
Figure 4 and Table 2, the Tb of PLLA film was higher than that of PDLA, PDLAG and
modified PLLA films, which indicated that PLLA with high Mw was more stable at low
temperature. The Tmax of PLLA film was about 70 ◦C higher than that of PDLA and
PDLAG and about 8~20 ◦C higher than that of m-PLAG, but it was slight lower than
that of m-PLLA films. As modification time increased, the Tb and Tmax of m-PLLA were
higher than those of m-PLAG. These results show that the stereocomplex crystals formed
on the surface of modified PLLA films, and there was still a HC structure in the bulk phase
during surface modification. The crystal structure has important influence on the thermal
properties of polymers. The SC structure could improve the heat resistance of PLA films.
The rigidity of the glucose group and its strong interaction with PLA chains would confine
the ordered arrangement of PLLA and PDLA chains and block crystallization so as to
lessen the crystallinity of m-PLAG, which may promote the thermal degradation of PLA
materials [43,44].
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PDLAG and m-PLAG.

3.3. XRD Analysis of Modified PLLA Film

Figure 5 shows the XRD curves of the PLLA, PDLA, PDLAG and modified PLLA films,
respectively. The XRD curves of PLLA, PDLA and PDLAG films show four diffraction
peaks at 2θ of 14.7◦, 16.6◦, 18.9◦ and 22.3◦, corresponding to the (010), (200)/(110), (203)
and (015) planes of PLA α form crystal, respectively, i.e., PLLA, PDLA and PDLAG had a
HC structure [45,46]. Moreover, the peak intensities of PDLA and PDLAG were obviously
weaker than those of PLLA, indicating that low Mw and the addition of glucose could
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increase the crystal defects. All modified PLLA films presented diffraction peaks at 2θ of
11.9◦, 20.7◦ and 23.9◦, corresponding to the characteristic diffraction peaks of stereocomplex
crystal, respectively [3,26,47], as well as weaker HC peaks. The intensity of the HC peaks
of modified PLLA films decreased with increasing immersion time, while the intensity of
SC peaks of modified PLLA films increased, which illustrated the trend of the SC structure
on the surface and the HC trend in the bulk phase of modified PLLA. The XRD results are
consistent with the above DSC conclusions.
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3.4. POM Analysis of the Crystal Morphology of Modified PLLA Films

Figure 6 shows polarized optical microscope (POM) photographs of PLLA films
before and after surface modification in PDLA or PDLAG dissolution. We can observe
that the PLLA film had regular and uniform-sized spherulites with an obvious black cross
extinction phenomenon [48,49]. As the modification time increased, the size and shape of
the spherulites changed due to swelling and recrystallization, and the black cross extinction
phenomenon disappeared. In addition, the crystal size of m-PLAG was smaller than
that of m-PLLA with modification time accordingly, which implied that glucose residues
could act as heterogeneous nucleation to promote crystallization and create more small
crystallites [31,32].
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3.5. SEM Analysis of the Morphology of Modified PLLA Films

The SEM photographs of the surface and the cross section of PLLA film and its surface
modified samples are given in Figure 7. The surface of PLLA film was uniform and the
surface roughness was invisible.

Polymers 2021, 13, x FOR PEER REVIEW 11 of 14 
 

 

 
  

  

  

  

  

  

(a) (b) (c) 

  

  

  

  

  

  

(d) (e) (f) 

Figure 7. The SEM photographs o of PLLA and modified PLLA films:(a) surface of PLLA film; (b) surface of m−PLLA−3; 
(c) surface of m−PLAG−3; (d) cross section of PLLA film; (e) cross section of m−PLLA−3; (f) cross section of m−PLAG−3. 

3.6. Hydrophilic Analysis of of Surface−Modified PLLA Films 
In order to study the hydrophilic properties of the PLLA films before and after 

modification, the water contact angle test of PLLA and its modified films was carried out. 
Figure 8 and Table 4 present the water contact angle pictures and parameters of the 
PLLA, m−PLLA and m−PLAG before and after modification, respectively. 

  

  

  

  

  

  

  

Figure 8. Water contact angle photographs of PLLA and modified films. (a).PLLA; (b).m−PLLA−1; (c).m−PLLA−2; 
(d).m−PLLA−3; (e).m−PLAG−1; (f).m−PLAG−2; (g).m−PLAG−3. 

Table 4. Water contact angle parameters of PLLA and modified films. 

Sample Modification Time/min Water Contact Angle/° 
PLLA 0.0 84.1 

m−PLLA−1 0.5 76.5 
m−PLLA−2 1.0 72.5 
m−PLLA−3 3.0 68.5 
m−PLAG−1 0.5 69.5 
m−PLAG−2 1.0 63.2 

Figure 7. The SEM photographs o of PLLA and modified PLLA films: (a) surface of PLLA film; (b) surface of m-PLLA-3;
(c) surface of m-PLAG-3; (d) cross section of PLLA film; (e) cross section of m-PLLA-3; (f) cross section of m-PLAG-3.

Both m-PLLA-3 and m-PLAG-3 showed a damaged surface morphology after mod-
ification. In the cross-section of PLLA, there was a thin layer near to the surface which
was morphologically different to the bulk of PLLA. The cross-sections of m-PLLA-3 and
m-PLAG-3 were similar, which indicated that the swelling of the polymers could affect the
entire volume of PLLA films as well as the film surface. These results show that the surface
modification might affect the bulk structure of PLLA films, if the thickness of PLLA films
were small and the modification time was long enough.

3.6. Hydrophilic Analysis of of Surface-Modified PLLA Films

In order to study the hydrophilic properties of the PLLA films before and after modifi-
cation, the water contact angle test of PLLA and its modified films was carried out. Figure 8
and Table 4 present the water contact angle pictures and parameters of the PLLA, m-PLLA
and m-PLAG before and after modification, respectively.

We can see from Figure 8 and Table 4 that the contact angle of PLLA was 84.1◦,
indicating PLLA’s poor hydrophilicity. Compared with PLLA, the contact angles of m-
PLLA and m-PLAG lessened, due to the damaged state and decreased crystallinity of
the surface of modified PLLA films. The water contact angles of m-PLAG decreased
significantly and were much less than those of m-PLLA, while the water contact angles
of m-PLLA and m-PLAG all decreased with increasing immersion time. The m-PLAG-
3 sample reached the smallest contact angle at 60.1◦, which meant that it had the best
hydrophilicity. All these outcomes suggest that the addition of hydrophilic glucose can
significantly improve the hydrophilicity of PLA stereocomplex crystals [50].
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Figure 8. Water contact angle photographs of PLLA and modified films. (a) PLLA; (b) m-PLLA-1; (c) m-PLLA-2; (d) m-
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Table 4. Water contact angle parameters of PLLA and modified films.

Sample Modification Time/min Water Contact Angle/◦

PLLA 0.0 84.1
m-PLLA-1 0.5 76.5
m-PLLA-2 1.0 72.5
m-PLLA-3 3.0 68.5
m-PLAG-1 0.5 69.5
m-PLAG-2 1.0 63.2
m-PLAG-3 3.0 60.1

4. Conclusions

The high-Mw PLLA was used to prepare PLLA films, and the PLLA films were surface-
modified using low-Mw PDLA and PDLAG synthesized from D-LA and glucose through
melt copolycondensation. Both PDLA and PDLAG could modify PLLA films through the
stereocomplexation of enantiomeric PLA chains. The surface treatment destroyed most of
the HC crystals of PLLA due to the swelling of the film, allowing the formation of some
SC structures on the surface of the modified PLLA films. PLLA had a Tm of 147.9 ◦C and
f c,HC of 21.8%, while m-PLLA had a higher Tm,HC of 150.8 ◦C and a lower f c,HC of 8.2%,
as well as a Tm,SC of 210.8 ◦C and f c,HC of 8.2%, along with m-PLAG having a Tm,HC of
150.6 ◦C and f c,HC of 4.9%, as well as Tm,SC of 208.4 ◦C and f c,HC of 0.4%. The m-PLLA
films decreased both the HC and SC structure with increasing immersion time; the f c,HC of
m-PLLA varied from 8.2% to 3.1%, while the f c,SC of m-PLLA varied from 8.2% to 2.1%.
As the modification time increased, m-PLAG films increased the SC structure along with
decreasing the HC structure, and the f c,SC of m-PLAG varied from 0.4% to 1.2%, while the
f c,HC of m-PLAG varied from 4.9% to 4.1%, which was due to the effect of glucose residues.

Glucose residues of PDLAG sticking to the surface would improve the hydrophilicity
of these films. Moreover, the hydrophilicity of glucose residues, the interaction of glucose
residues with lactic acid units, and the effect of low-Mw PDLAG could retard HC destruc-
tion and SC crystallization and increase crystal defects, which led to m-PLAG samples
having lower Tm,HC, Tm,SC, f c,SC and water contact angles. The SC structure of modified
PLLA film could improve its heat resistance, but glucose residues could block crystalliza-
tion to promote the thermal degradation of PLA materials. The surface modification of
PLLA films will improve the thermostability and the hydrophilicity of PLA materials and
change the crystallization properties of PLA materials, which is essential in order to obtain
PLA-based biomaterials. The surface-modified PLA films can be used in food packaging
and biological materials.
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