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The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory.

However, the exact role of the VH–BLA circuit in IA memory consolidation is unclear. This study investigated the effect of

post-training reversible disconnection of the VH–BLA circuit in IA memory consolidation. Male Wistar rats with implanted

guide cannulae were trained with a one-trial IA task, then received immediate intracerebral injections of muscimol or saline,

and were tested 24 h later. Muscimol injection into the bilateral BLA, or the unilateral VH and contralateral BLA, but not

the unilateral VH and ipsilateral BLA, significantly decreased the retention latencies (versus saline treatment). The results

suggest that the VH–BLA circuit could be an important circuit to modulate consolidation of IA memory in rats.

The ventral hippocampus (VH) and basolateral amygdala (BLA, in-
cluding the lateral and basal nuclei of the amygdala) are two crucial
temporal lobe structures in modulation of emotion-related learn-
ing and memory (such as fear conditioning and inhibitory avoid-
ance [IA]) (LeDoux 2000; McGaugh 2004). Both structures are
connected by direct reciprocal circuit, which is called ventral hip-
pocampal–basolateral amygdaloid (VH–BLA) circuit (Canteras
and Swanson 1992; Pikkarainen et al. 1999; Pitkänen et al. 2000;
French et al. 2003; Herry et al. 2008). In the VH–BLA circuit, the
VH is one of the primary providers of contextual information to
the BLA (especially to the basal nucleus), and the BLA is the
main input region of the amygdala, which receives extensive affer-
ent projections from other brain areas (Maren and Fanselow 1995;
Pitkänen et al. 2000; Maren 2001; Herry et al. 2008). Therefore, dif-
ferent sensory and regulatory information can converge in the BLA
to form new emotion-related mnemonic traces (Davis 2008; Herry
and Johansen 2014).Meanwhile, the BLA also regulates hippocam-
pal neuronal activity, synaptic plasticity, andmemory functions. A
series of animal experiments conducted by Abe and colleagues
showed that the induction of long-term potentiation in the den-
tate gyrus was partially impaired by lesion or inactivation of the
BLA, or injection of the NMDA receptor antagonist or the
β-adrenoceptor antagonist into the BLA (Abe 2001). Experiments
combining in vivo/in vitro electrophysiological and behavioral
methods showed that theta oscillations of the lateral amygdala
were synchronized with the hippocampus following cued and
contextual fear conditioning in rodents, which suggested that
the theta synchronization means the activity in amygdalo–hippo-
campal pathways is associated with consolidation of fear memory
(Seidenbecher et al. 2003; Pape et al. 2005; Narayanan et al. 2007).
Furthermore, functional imaging researches also showed that there
is enhanced amygdala–hippocampal connectivity in emotion-
related memory-retrieval tasks in humans (Smith et al. 2006; de
Voogd et al. 2016). Optogenetic activationof the BLA→VHprojec-

tion has been proven to enhance consolidation of foot-shock
learning, anxiety levels, and social interactions in rodents
(Felix-Ortiz et al. 2013; Felix-Ortiz and Tye 2014; Janak and Tye
2015; Huff et al. 2016). These studies supported that there is a close
relationship between the BLA and VH, and the VH–BLA circuit is
involved in emotion-related memory and behaviors.

TheVH and BLAhave frequently been reported to be involved
in the consolidation of IA memory in animal and human experi-
ments. IA memory is a kind of contextual memory with emotional
(fear/aversion) arousal tested by an instrumental conditioning
task, which depends on the functional intactness of the hippocam-
pus and amygdala (Bianchin et al. 1999; Tovote et al. 2015).
Inactivation of the BLA can impair consolidation of IA memory
in rats (Liang et al. 1994; Parent and McGaugh 1994; Wilensky
et al. 2000; Rossato et al. 2004; Lalumiere and McGaugh 2005).
Post-training optogenetic manipulation (stimulating/inhibiting)
of the activity of BLA neurons can enhance or impair IA retention,
respectively (Huff et al. 2013); and the right, but not left, BLA is
mainly involved in modulation of IA memory consolidation by
the cholinergic, and catecholaminergic systems (Lalumiere et al.
2004; Lalumiere and McGaugh 2005). However, Lalumiere and
McGaugh (2005) reported that only bilateral, but not unilateral, in-
activation of the BLA by sodium channel blocker lidocaine or
GABAA receptor agonist muscimol can impair IA memory consoli-
dation in rats. Han et al. (2009) reported that the contextual and
auditory fear memory were impaired by selective erasure of the cy-
clic adenosine monophosphate response element-binding protein
(CREB) overexpressed neurons from the bilateral, but not unilater-
al, BLA. Thoseworks indicated that the inhibitory roles (such as the
GABAergic agonismeffect ofmuscimol) of BLAon consolidation of
fear memory were different from the enhancement effect of the
cholinergic and catecholaminergic systems (which is right

Corresponding authors: gw_wang@163.com, xiaoqinwang2001@163
.com

# 2017Wang et al. This article is distributed exclusively byCold SpringHarbor
Laboratory Press for the first 12 months after the full-issue publication date (see
http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is avail-
able under a Creative Commons License (Attribution-NonCommercial 4.0
International), as described at http://creativecommons.org/licenses/by-nc/4.0/.Article is online at http://www.learnmem.org/cgi/doi/10.1101/lm.044701.116.

24:602–606; Published by Cold Spring Harbor Laboratory Press
ISSN 1549-5485/17; www.learnmem.org

602 Learning & Memory

mailto:gw_wang@163.com
mailto:gw_wang@163.com
mailto:xiaoqinwang2001@163.com
mailto:xiaoqinwang2001@163.com
http://www.learnmem.org/site/misc/terms.xhtml
http://www.learnmem.org/site/misc/terms.xhtml
http://www.learnmem.org/site/misc/terms.xhtml
http://www.learnmem.org/site/misc/terms.xhtml
http://www.learnmem.org/site/misc/terms.xhtml
http://learnmem.cshlp.org/site/misc/terms.xhtml
http://learnmem.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.learnmem.org/cgi/doi/10.1101/lm.044701.116
http://www.learnmem.org/cgi/doi/10.1101/lm.044701.116
http://www.learnmem.org/site/misc/terms.xhtml


hemisphere lateralization). That is, either the right BLA or the left
BLA could independently accomplish the inhibitory role of IA
memory consolidation. Hence, if one side of the BLA does not
work, it will be compensated by the other side.

Similarly, previous work has shown that inactivation of bilat-
eral, but not unilateral, VH impaired the IA performance, especially
the consolidation of IA memory, in rats (Ambrogi Lorenzini et al.
1997; Wang and Cai 2008). Moreover, disconnection of the
VH-prefrontal cortical circuits could impair spatial learning and
working memory, but not IA memory (Floresco et al. 1997; Wang
and Cai 2006, 2008). Therefore, there may be other circuits con-
nected with the VH being in charge of IA memory. In view of the
importance of the VH and BLA in IA memory consolidation, as
well as the association of enhanced amygdala–hippocampal syn-
chronized activities at theta frequencies and emotional memory
consolidation, we speculated that the VH–BLA circuit is a potential
candidate circuit for IA memory consolidation. Furthermore, the
role of the VH–BLA circuit in IA memory has not been studied by
direct disconnection methods. We hypothesized that IA memory
consolidation would be impaired by bilateral disconnection of
the circuit, but not unilateral circuit inactivation. To verify this hy-
pothesis, we used post-training infusion of muscimol to discon-
nect the VH–BLA circuit in rats asymmetrically (see Fig. 1A), and
the animal behavioral performances in a step-through IA task
were evaluated.

Sixty male adult Wistar rats (aged 10 wk at the beginning of
the experiment, purchased from Dossy Biological Technology,
Chengdu, China; License number: SCXK (Chuan) 2015-030) were
used in this study. The rats were group housed in a temperature
(23 ± 1°C) and light (12 h light–dark cycle, 8 a.m. to 8 p.
m.)-controlled animal room with water and food available ad libi-
tum. The animal care and experimental protocol was approved by
the Animal Ethics Supervision Committee of Yunnan Normal

University. All procedures were performed in accordance with the
Yunnan Province Guidelines for Use and Care of Laboratory Animals.

All animals were stereotaxically implanted with guide cannu-
lae before behavioral training. They were deeply anesthetized with
sodium pentobarbital (55 mg/kg, intraperitoneally [i.p.]) after pre-
treatment with sulfate atropine (0.2 mg/kg, i.p.). An incision was
made along the midline of the scalp, and two stainless steel guide
cannulae (outside diameter: 0.48 mm; RWD Life Science) were im-
planted into two target brain regions (see Fig. 1A). The stereotaxic
coordinates were derived from a rat brain atlas (Paxinos and
Watson 1986). For inactivation of the unilateral VH–BLA circuit
(uVH–BLA group), a cannula was unilaterally implanted in the
VH (AP, −5.4 mm from the bregma; ML, ±5.2 mm from the mid-
line; DV, −7.6 mm from the surface of the skull), and another
one was implanted in the ipsilateral BLA (AP, −2.4 mm; ML, ±5.0
mm;DV,−8.0mm). For BLA inactivation, two cannulaewere bilat-
erally implanted in the BLA (bBLA group). For bilateral disconnec-
tion of the VH–BLA circuits, two cannulae were asymmetrically
implanted in the unilateral VH and the contralateral BLA (cVH/
BLA group). There were 10 saline animals and 10 muscimol ani-
mals in each of the three groups (uVH–BLA, bBLA, and cVH/
BLA). Such an asymmetrical treatment procedure would bilaterally
disconnect the VH–BLA circuit but reserve other connections with
the VH and the BLA unilaterally, on account of the compensatory
effects of their intact contralateral parts. The cannulae were affixed
to the skull using dental cement secured with sterile stainless steel
screws. A sterile stylet (outside diameter: 0.29 mm) was inserted
into the guide cannula to prevent occlusion (0.5 mm beyond the
tip of guide cannula). Surgical incisions were painted with mupir-
ocin ointment mixed with Yunnan baiyao, and benzylpenicillin
sodium (intramuscularly) was applied on four consecutive post-
operative days. The animals were given at least 7 d to recover
from surgery before the start of behavioral training.

Before drug injection, the animals
were habituated initially to the injection
procedure using a mock method. On in-
jection days, the animals were gently re-
strained by hand while the stylets were
replaced with sterile injection needles
(outside diameter: 0.29 mm) that extend-
ed 0.5 mm below the tips of the guide
cannulae. Either saline (0.25 µL) or mus-
cimol (0.5 µg dissolved in 0.25 µL saline,
Sigma Chemical) was injected (0.25 µL/
side) into the target areas at a rate of
0.125 µL/min driven by a microsyringe
pump (Longer Precision Pump) using 5
µL microsyringes. The dosage, volume,
and injection rate of muscimol have
been validated by local EEG power analy-
sis and behavioral tasks in our previous
experiments (Wang and Cai 2006). After
completion of the injection, the injection
needle remained in place for 1 min for
drug diffusion. Then, the injection nee-
dles were retracted and stylets were imme-
diately replaced into the guide cannulae.
The injection procedure was performed
immediately after the training phase of
the IA task (see Fig. 1B). After injection,
the animals were returned to their home
cages. The peak inactivation effect of
muscimol could last for 6 h, and
completely disappear 24 h after injection
(Martin and Ghez 1999). The critical peri-
od of memory consolidation in the

Figure 1. A schematic of the VH–BLA circuits in saline rats and rats in which the circuits were discon-
nected (A), and a timeline depicting the behavioral testing procedures in the step-through inhibitory
avoidance task (B). In intact rat brains (Saline), there are ipsilateral, reciprocal projections (double-
headed arrows with solid lines) between the VH and BLA. Control rats with unilateral inactivation of
the VH–BLA circuit (unilateral VH–BLA, uVH–BLA) maintained normal connectivity between the VH
and BLA in the intact hemisphere. However, along with bilateral inactivation of the BLA (bBLA), contra-
lateral inactivation of the VH and BLA (cVH/BLA) disconnected the VH–BLA circuits in both hemispheres.
The little lightning symbol means an electric shock will be given immediately after the animal’s four
limbs have stepped into the dark chamber and the door has automatically closed in the training
phase. The little syringe symbol indicates infusions into the target brain areas immediately after the
training phase.
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hippocampus or BLA is <6 h (Igaz et al.
2002; Zheng et al. 2008; Huff et al.
2013; Benetti et al. 2015); hence, themus-
cimol could fulfill the requirements of the
present tasks.

After recovery from surgery, the ani-
mals were trained with a one-trial step-
through IA task. The apparatus was a
computer-controlled system (San Diego
Instruments), in which two adjacent
chambers (26 × 20 × 19 cm)were connect-
ed by an automatic guillotine door (9 × 8
cm). The grid floor was connected by an
inbuilt constant current stimulator. On
the day before training, each animal was
placed into the right chamber with the
light on (lighted chamber). The left
chamber was a dark chamber. The guillo-
tine door was opened for 300 sec so that
the animal could move freely between
the two chambers. In the training phase,
each animal was placed into the lighted
chamber with the guillotine door open
and with its tail toward the door. When
the four limbs of the animal stepped
into the dark chamber, the door was
closed immediately and a shock (constant
current: 0.9 mA, 3 sec) was given (see Fig.
1B). Then the animal was removed to re-
ceive drug injection. The animal would
be excluded from the task if it did not en-
ter the dark chamber within 300 sec.
Twenty-four hours later, animals were
placed into the apparatus again for a re-
tention test, with the situation the same
as the training phase, but without a
shock. The latency of entering the dark
chamber was recorded. If an animal did
not enter the dark chamber within 300
sec, the trial was terminated with its la-
tency recorded as 300 sec.

After the behavioral tasks, each ani-
mal was killed by overdose of sodium
pentobarbital, and a stainless steel elec-
trode (outside diameter: 0.25mm)was in-
serted into the same position of the
injection needle in order to mark the in-
jection point using an anodal current (6 V, 10 sec). The rat bodies
were treated with intra-ascending aorta infusions of physiological
saline followed by a formaldehyde solution (4%) containing potas-
sium ferrocyanide (1%). The brains were stored in a formaldehyde
solution for several days, and then sectioned for histological verifi-
cation. The positions of the injection needle tips weremarkedwith
Prussian blue against a background of cresyl violet staining.

The latencies in entering the dark chamber in the IA task were
analyzed using either independent or paired-samples T tests, or
one-way analysis of variance (ANOVA) followed by a Post Hoc
Dunnett’s test. All data were shown as mean ± SEM with P < 0.05
as the standard of significance.

The positions of the injection needle tips in the animals are
shown in Figure 2. Six rats (two saline rats and two muscimol
rats from the bBLA group, a muscimol rat from the uVH–BLA
group, and amuscimol rat from the cVH/BLAgroup)were excluded
from the data analysis as their injection positions were not in the
target area. Before the IA task, no abnormal behavior was observed
in any of the animals. During the training phase of the IA task, the

latencies of the animals in the three groups were similar between
saline and muscimol treatments (unpaired-sample T test, All T≤
0.992, P≥ 0.338). There was no significant difference between
the three groups in the similarly treated animals (ANOVA: Saline,
F(2,25) = 0.708, P = 0.502; Muscimol, F(2,19) = 0.421, P = 0.662).
These data showed that all animals could rapidly step into the
dark chamber, and their vision and motor abilities and scototaxis
(preference for dark environments) would be normal and similar.

During the retention phase, the latencies of all saline animals
were significantly longer than during the training phase in all
groups (paired-sample T test, All T≥ 4.151, P≤ 0.004). There was
no significant difference between the three groups in saline
animals (ANOVA, F(2,25) = 0.378, P = 0.689). So the saline animals
in the three groups formed IA memory normally. In muscimol an-
imals, significant difference emerged between the groups (ANOVA,
F(2,20) = 8.454, P = 0.002). Post hoc analysis showed that the laten-
cies of the bBLA group (P = 0.003) and cVH/BLA group (P = 0.007)
were significantly shorter than that of the uVH–BLA group. At
the same time, unpaired-sample T test showed that the latencies

Figure 2. The locations of the tips of injected needles in the rat brain areas. On the left are the repre-
sentative microphotographs (4×) of the tracks of injected needle tips in the BLA (A) and VH (B); on the
right are overlaid locations of the injected needle tips in the unilateral VH and ipsilateral BLA (C ), in the
bilateral BLA (D), or in the unilateral VH and contralateral BLA (E), marked by open or solid dots ([○]
saline; [●] muscimol). The maps of brain coronal sections were adapted from Paxinos and Watson
(1986). Each section was marked with distance to the bregma (mm). (BLA) Basolateral amygdala;
(CE) central amygdala nucleus; (VH) ventral hippocampus.
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of muscimol animals were significantly shorter than that of the sa-
line animals in the bBLA group (T(14) = 2.785, P = 0.015) and cVH/
BLA group (T(17) = 3.596, P = 0.002). However, therewas no such ef-
fect on the uVH–BLA group (T(17) = 0.232, P = 0.819). Compared
with their training phase, a similar tendency in muscimol animals
was shown in uVH–BLA group, but not in bBLA and cVH/BLA
groups (paired-sample T test: uVH–BLA, T(8) = 3.741, P = 0.006;
bBLA, T(7) = 1.173, P = 0.279; cVH/BLA, T(8) = 2.076, P = 0.072; see
Fig. 3). These results show that post-training inactivation of the
bilateral BLA or contralateral VH and BLA, but not ipsilateral VH
and BLA inactivation, could decrease IA retention latencies, indi-
cating an impairment effect on memory consolidation.

Bilateral BLA inactivation impaired consolidation of IA
memory, which was similar to previous studies on amnesia effects
of post-training BLA optogenetic modulation or inactivation by
lidocaine or muscimol, infusion of glutamate receptor antagonists
or inhibition of the protein kinase C in the BLA (Liang et al. 1994;
Parent and McGaugh 1994; Roesler et al. 2000; Wilensky et al.
2000; Rossato et al. 2004; Bonini et al. 2005; Lalumiere and
McGaugh 2005; McIntyre et al. 2005; Huff et al. 2013; Nazari-
Serenjeh and Rezayof 2013). And other researchers have reported
that inactivation of the VH, or changes of the cannabinoid CB1 re-
ceptor and histamine receptor in it, could impair or modulate IA
memory consolidation (Ambrogi Lorenzini et al. 1997; Alvarez
and Banzan 2008; Wang and Cai 2008; Mohammadmirzaei et al.
2016). The data in this study, in combination with that of previous
studies, supports that BLA and VH are key anatomical structures in
IA memory consolidation.

Similar to the findings from the BLA and VH, an important
discovery in this study is that the VH–BLA circuit also contributes
to IA memory consolidation (Ambrogi Lorenzini et al. 1997;
Lalumiere and McGaugh 2005; Wang and Cai 2008; Han et al.
2009). The VH and the BLA are the two ends of this reciprocal cir-
cuit (Canteras and Swanson 1992; Pikkarainen et al. 1999;
Pitkänen et al. 2000; French et al. 2003; Herry et al. 2008). Thus,
inactivation of either of these regions will block the neural trans-
mission through the VH–BLA circuit. Consequently, bilateral inac-
tivation of the VH or the BLA could result in bilateral
disconnection of the VH–BLA circuit (Ambrogi Lorenzini et al.
1997; Lalumiere and McGaugh 2005; Wang and Cai 2008; Han

et al. 2009). Ipsilateral inactivation of the VH and the BLA pro-
duced little effect on IAmemory consolidation, which could be ex-
plained by the compensation effect from the intact side of the VH–

BLA circuit. However, although there was an intact VH on one side
and an intact BLA on the other side in rats with inactivation of the
cVH/BLA, these arrangements could not compensate for the im-
pairment of memory consolidation resulting from bilateral VH–

BLA circuit disconnection. Therefore, the impairment effect of
asymmetrical disconnection of the VH–BLA circuit would not re-
sult from the accumulative effect of inactivation of the two regions,
but be the effect of bilateral circuit disconnection. As the route of
BLA modulation on the hippocampus, the BLA→VH projection
is the indispensable part of the reciprocal VH–BLA circuit, which
is involved in anxiety, social interaction, and consolidation of foot-
shock learning in contextual fear conditioning in rats (Felix-Ortiz
et al. 2013; Felix-Ortiz and Tye 2014; Huff et al. 2016). The results
of our study further proved that post-training reversible disconnec-
tion of the bilateral VH–BLA circuit could produce similar impair-
ment effects as bilateral BLA inactivation in consolidation of IA
memory.

However, in some situations as reported by Roozendaal and
McGaugh (1996), animals with pretraining lesion of the BLA could
perform IA tasks normally, but lost the memory enhancement or
impairment effect of stress hormones (Roozendaal and McGaugh
1997; Roozendaal et al. 1998). In reality, the BLA is more like a
gathering node of different emotional information, by which,
the BLA can modulate memory formation, anxiety, and social in-
teraction (McGaugh 2004; Davis 2008; Felix-Ortiz et al. 2013;
Felix-Ortiz and Tye 2014; Huff et al. 2016). There would be some
other circuits connected with the hippocampus to afford the IA
memory independently in a nonemotional way if the BLA does
not work (such as permanent lesion). According to the memory
modulation hypothesis, the amygdala, especially the BLA, is a piv-
otal temporal lobe structure to facilitate the processes of stressful
and emotionally arousing experiences forming long-termmemory
by modulation of memory-related brain regions in a permissive-
like way (Gerard 1961; McGaugh 2004). These results, consistent
with previous works, support that the BLAGABAergic system plays
a critical inhibitory modulation role in fear memory consolidation
(Wilensky et al. 2000; Rossato et al. 2004; Lalumiere andMcGaugh
2005; McIntyre et al. 2005; Nazari-Serenjeh and Rezayof 2013).
Our present study further verified our hypothesis, proving that
the VH–BLA circuit can also play a prominent role in inhibitory
modulation of IA memory consolidation in rats.

In general, our results suggest that the VH–BLA circuit, as well
as the BLA, would be regulated by the GABAergic system in emo-
tionally arousing memory consolidation. However, the detailed
mechanism of the VH–BLA circuit in memory modulation is not
clearly known. This knowledgewould help to develop usefulmeth-
ods to prevent or cure memory and emotion-related diseases, such
as post-traumatic stress disorder, in future (Parsons and Ressler
2013).
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