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A B S T R A C T

The novel coronavirus SARS-CoV2 causes COVID-19, a pandemic threatening millions. As protective immunity does not exist in humans and the virus is capable of
escaping innate immune responses, it can proliferate, unhindered, in primarily infected tissues. Subsequent cell death results in the release of virus particles and
intracellular components to the extracellular space, which result in immune cell recruitment, the generation of immune complexes and associated damage. Infection
of monocytes/macrophages and/or recruitment of uninfected immune cells can result in massive inflammatory responses later in the disease. Uncontrolled pro-
duction of pro-inflammatory mediators contributes to ARDS and cytokine storm syndrome. Antiviral agents and immune modulating treatments are currently being
trialled. Understanding immune evasion strategies of SARS-CoV2 and the resulting delayed massive immune response will result in the identification of biomarkers
that predict outcomes as well as phenotype and disease stage specific treatments that will likely include both antiviral and immune modulating agents.

1. Introduction

Until the SARS outbreak (2002), during which coronaviruses (CoV)
showcased their potential for epidemic spread and significant patho-
genicity in humans, they were mainly known as causes of mild re-
spiratory and gastrointestinal disease [1]. Over the last two decades,
three novel Betacoronaviruses, Severe Acute Respiratory Syndrome
(SARS)-CoV, Middle East Respiratory Syndrome (MERS)-CoV and
SARS-CoV2, have crossed the species barrier and caused significant
outbreaks characterized by high case-fatality rates in humans [2–4] .
The latest addition to human pathogenic coronaviruses (hCoVs) is
SARS-CoV2, the cause of COVID-19. At the time of submission of this
review SARS-CoV2 has infected over 2.6 million people worldwide and
claimed 185.000 lives, threatening many more (https://gisanddata.
maps.arcgis.com/apps/opsdashboard/index.html#/
bda7594740fd40299423467b48e9ecf6). In the following, epidemiolo-
gical and clinical features of COVID-19, pathophysiological mechan-
isms, and already available and future therapeutic options will be dis-
cussed based on limited evidence available, and extrapolation from
related viral disease.

2. Epidemiology & clinical presentation

The first hCoVs were described in 1966, E229-CoV and OC43-CoV
[5,6]. They are part of a group of currently four known seasonal hCoVs
(shCoV) that also includes HKU1-CoV and NL63-CoV, which were only
discovered in 2005 [7,8]. All shCoVs are globally endemic and

frequently cause common colds, accounting for 2-18% of all respiratory
tract infections [9–13]. By their fourth birthday, 75% of children show
antibodies directed against at least one of the shCoVs [14,15]. Anti-
shCoVs antibodies provide some cross-immunity and antibody-medi-
ated protection against infection by other species within the group [16].
While their overall pathogenic potential is comparatively low, in the
immunocompromised, infants, the elderly and those with pre-existing
pulmonary disorders, shCoVs can cause severe respiratory or sepsis-like
presentations [17–21]. OC43 displays some neurotropism and can
cause demyelination and CNS infections in vulnerable patient groups
[22,23]. While estimates of their contribution to annual respiratory
illness vary, shCoVs remain asymptomatic in approximately 50% of
cases [24–26].

This is in stark contrast to the clinical presentation encountered in
infections with so-called “novel coronaviruses” SARS-CoV, MERS-CoV
and SARS-CoV2, which are associated with morbidity and case-fatality
ratios that far exceed the ones in shCoVs.

The SARS pandemic of 2002/3 originated in Foshan, Guangdong
province, China and spread to South East Asia, Europe and North
America [27]. Containment was declared by the end of 2003, with no
re-emergence reported since. Overall, 8096 probable cases caused 774
deaths, resulting in a mortality rate of 9.6% (https://www.who.int/csr/
sars/en/). Mortality strongly correlated with age, approaching 7% for
those younger, and 55% for those older than 60 years [28]. Health care
workers in contact with SARS patients demonstrated a very low ser-
oconversion rate of 2% in asymptomatic individuals. Less than 5% of all
affected were children, and post-containment seroprevalence among
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children considered high-risk for significant exposure was extremely
low. This suggests that subclinical SARS among children had not oc-
curred [29–31]. Approximately 20% of SARS patients required in-
tensive care support for acute respiratory distress syndrome (ARDS),
half of who died within the following 28 days [32].

The severe clinical phenotype of SARS was replicated during the
emergence of MERS in 2012, which continues to circulate, albeit to a
lesser extent [36]. To date, 2494 cases of MERS have occurred world-
wide, presenting as severe pneumonia, and resulting in respiratory and
multiorgan failure, with a case-fatality-ratio of 35%-45% [37]. In-
dividuals with comorbidities, males, and the immunocompromised are
considered at particularly high risk.

In both previous novel coronavirus outbreaks, the severity of the
clinical manifestation has puzzled clinicians. Common features in-
cluded massive inflammatory cell infiltration of the lungs resulting in
acute lung injury (ALI) and ARDS, highly elevated inflammatory mar-
kers in the serum, evidence of monocyte/macrophage activation, acti-
vated coagulation and pro-inflammatory cytokine and chemokine pro-
files [33–38]. This soon led to the implication of the host response as an
important factor in this fulminant disease process [38]. Animal models
of SARS suggest that lung inflammation intensifies after viral clearance,
peaking as late as 14 days after infection [39], and similar observations
were made in human SARS patients. This suggests that clinical dete-
rioration later in the disease course was likely not due to uncontrolled
viral replication, but rather uncontrolled immune responses and asso-
ciated damage [40,41].

Similar descriptions of clinical presentations in COVID-19 are now
emerging. Presenting features of cough and fever subacutely progress to
respiratory distress and acute respiratory distress sydrome (ARDS) in 8-
19% of patients, with the elderly and those with underlying co-
morbidities especially cardiovascular disease, diabetes mellitus, chronic
pulmonary disorders or renal disease especially at risk https://www.
epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_24_marzo_
eng.pdf [42–45]. It is estimated that about 14% of COVID-19 patients
develop respiratory symptoms requiring supplemental oxygen, and
approximately 5% develop a need for mechanical ventilation [44–46]
The CDC reports an overall case-fatality rate of 2.3%, though higher at
14.8% in patients over 80 years of age and 49% among the critically ill
requiring mechanical ventilation [46].

The pulmonary pathology in COVID-19 is characterized by diffuse
alveolar damage, and focal reactive hyperplasia of pneumocytes with
patchy inflammatory cellular infiltration and evidence of intravascular
thrombosis. Monocytes, macrophages, and lymphocytes infiltrate the
pulmonary interstitium [47,48]. The severe pulmonary inflammatory
infiltrate of pulmonary tissue impedes alveolar gas exchange. In addi-
tion, one fifth of hospitalized patients develop significant cardiovas-
cular morbidity, characterized by troponin rise, tachyarrhythmias and
thromboembolic events, which is strongly associated with mortality
risk [49–51]. Common features of COVID-19 patients requiring hospi-
talization and intensive care level support therefore are severe pneu-
monia with hypoxic respiratory failure of subacute onset evolving into
ARDS, with a clinical picture characterized by fevers, lymphopenia,
highly elevated C-reactive protein, proinflammatory cytokines, serum
ferritin, and D-Dimers. Histopathological evidence of a prominent
pulmonary infitrate dominated by monocytes and macrophages, vas-
culitis and hypercoagulability is seen [52,53].

Based on current knowledge, clinical pictures, disease pathology
and progression of SARS-CoV2 infections are similar causing significant
morbidity and mortality that may be associated with hyperin-
flammatory responses in a subset of patients.

3. Viral structure, host range and cell entry mechanisms

Coronaviruses are highly prevalent animal pathogens with a wide
host range. Overall, thousands of species of coronaviruses are known
[54,55]. Currently, seven CoVs are recognized as human pathogens [1].

The family of Coronaviridae is divided into two subfamilies: Cor-
onavirinae and Torovirinae. Coronavirinae include the genera Alpha-,
Betacoronaviruses, infecting only mammals, and Gamma-, and Delta-
coronaviruses which infect both mammals and birds. Human CoVs
E229 and NL63 are human pathogenic alpha-, while OC43 and HKU1
and all novel CoVs (including SARS-CoV2) are betacoronaviruses. The
potential of Toroviruses to cause disease is humans is unknown https://
talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-
viruses-2011/w/posrna_viruses/222/coronaviridae .

Coronaviruses (CoVs) are large enveloped viruses with a single-
stranded, nonsegmented, positive sense RNA genome that spans ap-
proximately 30 kilobases, making it the largest known genome of any
RNA virus [56]. Being RNA viruses, CoVs readily evolve by mutation
and homologous and non-homologous recombination, which expands
their host range and facilitates crossing of species barriers. Extensive
animal reservoirs, especially among bats, genetic recombination among
CoVs, and their plasticity in terms of receptor use renders CoVs highly
effective at host switching, sometimes across wide taxonomic distances
[57,58].

All hCoVs are thought to be zoonoses. Novel coronaviruses SARS-
CoV, MERS-CoV and SARS-CoV2 are comparatively poorly adapted to
humans, which affects their pathogenic potential [55,59]. Their
genomic proximity to animal CoVs may allow for ongoing interspecies
recombination events, as observed in MERS [60]. MERS-CoV, SARS-
CoV and SARS-CoV2 have a natural reservoir in bats. Infection of hu-
mans likely occurred through intermediate hosts, including dromedary
camels (MERS), the masked palm civet (SARS) and the pangolin (SARS-
CoV2) [61]. As wild palm civets do not carry SARS-CoV, it must be
assumed that the proximity of animals in markets facilitates re-
combination events and the emergence of novel viruses that may be
pathogenic in humans [62,63].

Coronaviruses are spherical in shape. Their most prominent feature
are club-like projections on the virus surface which are referred to as
“spikes”. The virus membrane contains four structural components, the
spike (S), envelope (E), membrane (M) and nucelocapsid (N) protein
[56] (Fig. 1). For SARS-CoV and SARS-CoV2, the S protein is the pri-
mary determinant for host tropism and pathogenicity. It is the main
target for neutralizing antibodies and therefore of great interest in
terms of immunological response and vaccine design [64]. The spike
structure is formed by homotrimers of S-glycoproteins, each of which

Fig. 1. Structure of SARS-CoV2. The spike protein (S) facilitates binding to the
trans-membrane ACE2 host receptor; the envelope (E) protein together with the
membrane (M) protein form the viral envelope and determine its shape; the
hemagglutinin esterase (HE) protein may resemble another cell entry me-
chanism of novel CoVs; the nucleocapsid (N) protein in bound to the RNA
genome of the virus to form the nucleocapsid.
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consists of two subunits, whereby S1 forms the part involved in receptor
recognition, and S2 is highly conserved, anchors the protein in the viral
membrane and facilitates viral fusion [65–67]. S1 contains a hy-
pervariable loop which differs greatly between betacoronaviruses on
both size and sequence. Viral entry requires the proteolysis of the S
protein in two locations, a process that utilizes host proteases, and re-
sults in irreversible conformational changes of the S protein [64,67].
Some anti-SARS-CoV antibodies in humans mimic receptor engage-
ment, thus modeling conformational S protein changes upon antigen-
antibody interaction [67]. The amino acid sequence of receptor binding
sites of SARS-CoV2 is 74% homologous to that of SARS- CoV suggesting
similar or even identical cell entry mechanisms for both viruses [68].

NL63, SARS-CoV and SARS-CoV2 all use the transmembrane an-
giotensin converting enzyme (ACE)2 as host receptor, whereas MERS
CoV utilizes dipetidylpeptidase-4 (DPP4) [65]. Both receptors are
transmembrane ectoenzymes that are highly conserved among mam-
mals, thus facilitating interspecies transfer. However, their enzymatic
activity in itself is not necessary for successful binding and fusion
[69–71].

Binding affinity of the S protein of SARS-CoV2 and ACE2 is high.
High sequence and conformational conservation of the S protein ob-
served across SARS-CoV2 and SARS-CoV allows for some level of cross
neutralization of the two viruses in vitro [64,68].

Hemagglutinin residues enhance binding by allowing interactions
with sialic acid residues on host cell surfaces. Betacoronaviruses feature
yet another structural protein, hemagglutinin-esterase (HE) which
binds sialic acid on cell surfaces [72] (Fig. 1). This may enhance the
virus’ ability to bind and invade host cell surfaces and may constitute a
virulence factor in novel hCoVs.

4. Immune pathology of COVID-19

While an estimated 80% of SARS-CoV2 infections are asymptomatic
or result in mild disease, the remaining 20% of patients are severely or
critically unwell [73,74]. Currently, limited information is available on
host factors affecting individual outcomes in COVID-19.

4.1. Mechanisms of infection and immune evasion

While data on SARS-CoV2 are still sparse, aforementioned parallels
with SARS-CoV and MERS-CoV may (for now) allow extrapolation of
knowledge to understand how SARS-CoV2 escapes the host’s immune
response. Notably, SARS-CoV2 shares almost 80% RNA sequence
homology with SARS-CoV, and 50% with MERS-CoV [75], with SARS-
CoV2 exhibiting additional genomic regions when compared to SARS-
CoV. In particular, the viral spike protein, which binds to the host cell
receptor, is 20-30 amino acids longer than SARS-CoV, and other closely
related coronaviruses [75]. Thus, it is possible, even likely, that SARS-
CoV2 uses similar immune evasion strategies to other coronaviruses,
but additional as yet undiscovered mechanisms may also be utilized by
SARS-CoV2 [76].

As mentioned above, SARS-CoV and SARS-CoV2 both use ACE2 as
their host cell receptor to establish infection (Fig. 2A) [77]. ACE2 is
expressed in almost all organs in the body. ACE2 has been shown to be
highly expressed on surfactant producing type 2 alveolar cells, and on
ciliated and goblet cells in the airways; these cells likely provide a
portal of entry for the virus in humans [78–80]. High ACE2 expression
is also observed on the intestinal epithelium [81]. Furthermore, ACE2 is
expressed on cardiac cells and vascular endothelia, which may explain
cardiovascular complications in some patients [53]. For SARS-CoV,
infection of immune cells including monocytes/macrophages and T
cells has been observed. It is not clear to date whether and to what
extent SARS-CoV-2 can also infect these cell types. ACE2 is also, but at
lower levels and not ubiquitously, expressed on monocytes and mac-
rophages, so this may also provide an entry mechanism into immune

cells for SARS-CoV-2. However, other receptors and/or phagocytosis of
virus containing immune complexes may also be involved (Fig. 1B)
[76,82,83].

The host response and clearance of viral infections heavily relies on
type I interferon (T1IFN) expression [84]. Expression of T1IFN and
down-stream signals modulate cell responses and reprogram cells into
an “anti-viral state”, subsequently promoting infection control and
pathogen clearance [85]. As a first step, immune cells sense viral in-
fection through identification of virus derived pattern associated mo-
lecular patterns (PAMPs), such as viral RNA. These bind to and activate
pattern recognition receptors (PRRs) in/on immune cells and result in
immune cell activation (Fig. 2). RNAs viruses, such as SARS-CoV, SARS-
CoV2 and MERS-CoV are detected by endosomal RNA PRRs, including
Toll-like receptors (TLR-)3 and 7 and/or cytoplasmic RNA sensors,
namely retinoic acid-inducible gene I (RIG-I) and melanoma differ-
entiation-associated protein 5 (MDA5) (Fig. 2). Usually, TLR3/7 acti-
vation results in nuclear translocation of the transcription factors NFκB
and IRF3, while RIG-1/MDA5 activation result in activation of IRF3. In
turn, this triggers increased expression of T1IFN (through IRF3) and
other innate pro-inflammatory cytokines (IL-1, IL-6, TNF-α through
NFκB) [76,86]. In this context, T1IFN and other innate pro-in-
flammatory cytokines promote their own expression through auto-am-
plification: T1IFN activate the IFN-α receptor complex (IFNAR) which
results in the phosphorylation/activation of STAT family transcription
factors 1 and 2 (Fig. 2), while IL-1, IL-6, and TNF receptor activation
feeds into pro-inflammatory cytokine expression though the transcrip-
tion factor NFκB (Fig. 2) [85–87]. Activation and priming of innate and
adaptive immune responses should result in pathogen clearance and
recovery.

However, in a proportion of infected individuals, SARS-CoV, MERS-
CoV and likely SARS-CoV2 evade immune system recognition through
suppression of these mechanisms, a phenomenon associated with more
severe disease and poorer prognosis [38,88,89](Fig. 2, red symbols).
SARS-CoV has been shown to alter ubiquitination and degradation of
RNA sensors (RIG-I and MDA5). It inhibits activation of mitochondrial
antiviral-signaling protein (MAVS), which are essential for the activa-
tion and nuclear translocation of IRF3 in response to cytoplasmic RNA
sensor activation. Furthermore, SARS-CoV, and likely SARS-CoV2, in-
hibit the TNF receptor-associated factors (TRAF) 3 and 6, which are
central for the induction of IRF-3/7 in response to TLR3/7 and/or RIG-I
and MDA-5 ligation as well as NFκB signalling pathways (which are
usually activated in response to TLR3/7 ligation or cytokine receptor
signaling) [88]. Lastly, novel coronaviruses can counteract T1IFN sig-
naling through inhibition of STAT family transcription factor phos-
phorylation [86]. Taken together, suppression of innate immune me-
chanisms in infected epithelial cells and, to some extent, infected
monocytes/macrophages allow novel coronaviruses to proliferate
without triggering the innate anti-viral response machinery of these
cells.

However, at a later stage, infected cells undergo cell death and re-
lease virus particles together with intracellular components that trigger
innate inflammatory mechanisms through their recognition by PRRs in/
on innate immune cells. As a result of this innate immune activation
and resultant expression of pro-inflammatory cytokines (including IL-
1β, IL-6, TNF-α, etc.), adaptive immune cells become involved in the
host’s defense against viral infections. T lymphocytes play a central role
in this anti-viral response, including CD4+ T cell derived cytokines,
CD8+ T cell mediated cytotoxicity, and B cell activation resulting in
antibody production. Novel coronaviruses may also (partially) escape
these mechanisms through the induction of T cell apoptosis [90].
However, lymphocytes may also become depleted due to the expression
of pro-inflammatory cytokines by (not infected) innate immune cells
that become recruited to the lungs and trigger hyper-inflammation,
seen during the development of a “cytokine storm” [91].
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4.2. Hyperinflammation and cytokine storm

While symptoms of COVID-19 disease may be (sometimes only
slightly) milder in comparison to infections with SARS-CoV or MERS-
CoV, several key pathogen-associated and clinical features of disease
are similar and we can extrapolate knowledge from what is already
known about the pathophysiology of SARS and MERS .

In COVID-19, as in SARS or MERS, several key findings were asso-
ciated with poor outcomes in cohort studies, and suggest hyper-in-
flammation may be linked to more severe disease. Three early studies
from Wuhan linked cytopenia and/or significantly elevated in-
flammatory parameters with severe disease and unfavorable outcomes.
One study, involving 99 patients reported neutrophilia (38%), lym-
phopenia (35%), and increased systemic inflammatory proteins (IL-6 in
52%, and CRP in 84%) as common symptoms in COVID-19 disease
[45]. Another study involving 41 individuals, linked severe disease
culminating in ICU admission and mortality, with neutrophilia and
lymphopenia [4]. The third study reported significant leukopenia
(11.8%), lymphopenia (77.6%), thrombopenia (41.2%), anemia
(48.2%), hypofibrinogenemia (22.4%), and hypo-albuminemia (78.8%)
in a cohort of 85 patients who died from COVID-19 [83,92]. These

observations are in line with findings in severe or lethal cases of SARS
and MERS, in which increased numbers of neutrophils and monocytes/
macrophages are present in the airways [83,93]. Other groups reported
severe clinical phenotypes and ICU dependency of patients to be asso-
ciated with increased plasma levels of innate chemokines, specifically
C-X-C motif chemokine 10 (CXCL10)/Interferon gamma-induced pro-
tein 10 (IP-10), chemokine (C-C motif) ligand 2 (CCL2)/monocyte
chemoattractant protein 1 (MCP-1), Macrophage Inflammatory Protein
(MIP-)1A/CCL3, and the pro-inflammatory cytokine TNF-α [2]. This,
indeed, is similar to the situation reported in SARS and MERS in which
uncontrolled inflammation centrally contributes to poor outcomes
[94–96].

Though seemingly contradictory to mechanisms of immune evasion
discussed above, enhanced innate immune activation, including in-
creased T1IFN, IL-1β, IL-6, and TNF-α expression centrally contributes
to morbidity and mortality in COVID-19, MERS and SARS. One possible
explanation is the induction of endothelial and vascular cell damage
and cell death as a result of viral replication. Virus-induced in-
flammatory cell death, including necrosis or pyroptosis result in pro-
inflammatory cytokine expression, (uninfected) immune cell recruit-
ment and activation [97]. Mice infected with SARS-CoV exhibit

Fig. 2. Immune evasion strategies of SARS-CoV2. A)
SARS-CoV2 infects airway epithelial cells through
interactions with the trans-membrane enzyme ACE2
(a). While RNA viruses usually activate TLR3 and/or
7 in endosomes (b) and cytosolic RNA sensors RIG-I
and MDA-5 (c), SARS-COV2 effectively suppresses
the activation of TNF receptor-associated factors
(TRAF) 3 and 6, thereby limiting activation of the
transcription factors NFκB and IRF3 and 7, thereby
suppressing early pro-inflammatory responses
through type I interferons (IFN) and pro-in-
flammatory effector cytokines IL-1, IL-6 and TNF-α
(red symbols). Furthermore, novel CoVs inhibit the
activation of STAT transcription factors (d) in re-
sponse to type I IFN receptor activation, which fur-
ther limits antiviral response mechanisms.
Altogether, this prohibits virus containment through
activation of anti-viral programs and the recruitment
of immune cells. B) Tissue monocytes/macrophages
express ACE2 to a significantly lower extent, making
infection through this route less likely (a). However,
immune complexes consisting of ineffective anti-
bodies against e.g. seasonal CoVs and virus particles
may be taken up by macrophages through Fcγ re-
ceptors resulting in their infection (b). In a process
referred to as antibody directed enhancement (ADE),
virions inhibit type I IFN signaling in infected mac-
rophages while allowing pro-inflammatory IL-1, IL-6
and TNF-α expression, which may contribute to hy-
perinflammation and cytokine storm syndrome (c,d).
Inhibited type 1 IFN signaling suppresses anti-viral
programs, while increased IL-1, IL-6 and TNF-α ex-
pression auto-amplifies itself through positive feed-
back loops (f).
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excessive T1IFN secretion from myeloid cells in infected tissues. Indeed,
immune evasion through the suppression of anti-viral responses and
T1IFN expression in respiratory epithelia results in high viral loads
[38]. From this, it is hypothesized that (not infected) monocytes/
macrophages and neutrophils recruited to the site of infection exhibit
strong and poorly controlled inflammatory responses, resulting in tissue
damage and systemic inflammation, both of which contribute to mor-
bidity and mortality [53](Fig. 3).

Another factor thought to contribute to organ damage and poor
outcomes is the early production of neutralizing antibodies against
coronaviruses. Antibody-dependent enhancement (ADE) is a phenom-
enon shown to contribute to damage accrual during viral infections. It
has been shown to promote cellular uptake of virus particles bound in
immune complexes, through their binding to Fcγ receptors (FcγR). This
may contribute to aforementioned persistent viral replication in im-
mune cells (including newly infected antigen-presenting cells), but also
immune complex mediated inflammatory responses (Figs. 2,3,4), that
contribute to tissue and organ damage, including acute respiratory
distress syndrome (ARDS) [98–100]. Indeed, a subset of COVID-19
patients reportedly develop vasculitic lesions, blood vessel occlusion
and infarctions. Histopathologic reports from tissue sections suggests
features associated with immune complex mediated vasculitis, in-
cluding infiltration of monocytes and lymphocytes within and around

blood vessels, wall thickening, and focal hemorrhage [53,101–103].
As is true for a number of systemic autoimmune/inflammatory

conditions, uncontrolled activation of immune responses is (likely) not
limited to the innate mechanisms. As a result of pro-inflammatory cy-
tokine expression and the presence of nuclear antigens (from cell and
tissue damage), adaptive immune cells may become activated and
trigger a “second wave” of inflammation (potentially in those patients
who deteriorate after 7-10 days of infection). Indeed, adaptive immune
cells, namely T lymphocytes, which are observed in lung tissue sections
of COVID-19 patients with ARDS and/or cytokine storm, may drive
inflammation at later disease stages. Similar mechanisms have been
reported in influenza and other viral infections [104,105]. Overall,
severely ill COVID-19 patients experiencing cytokine storm exhibit
lymphopenia and sometimes atrophy of the lymphatic tissues, namely
lymph nodes and spleen [51,106,107]. This is in line with reports in
primary and secondary forms of Hemophagocytic lymphohistiocytosis
(HLH) and associated cytokine storm, which result in inflammatory cell
death and hypo-cellularity of lymphatic organs [108–110].

4.3. Host factors affecting individual risk and outcomes

Poor outcomes are associated with age; indeed, children appear to
contract SARS-CoV2 and usually do not develop severe symptoms or

Fig. 3. Inflammatory response through monocytes
macrophages. Uninfected monocytes/macrophages
from the blood stream invade the lungs where they
detect virus particles and/or cytoplasmic and nuclear
components. Within immune complexes, these par-
ticles are taken up into the cell (a) where they are
presented to TLRs, activating NFκB and/or IRF de-
pendent pro-inflammatory pathways (b,c). As a re-
sult, uninfected monocytes/macrophages produce
significant amounts of pro-inflammatory cytokines
(d,e) which recruit additional innate and adaptive
immune cells and cause additional tissue damage.

Fig. 4. Inflammatory mechanisms in immune complex vasculitis.
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complications. This is surprising as children are prone to viral infections
including severe manifestations. More than 75% of children get exposed
to seasonal coronaviruses before their 4th birthday and seroconverts.
However, antibody titres wane over time, most obvious in those over 60
years [110]. This may reduce immune response to SARS-CoV2 in the
elderly as (limited) cross-reactivity between anti-seasonal coronavirus
and anti-SARS antibodies exists, but also contribute to increased in-
flammation and complications. Immunological recall effects exist as
anti-seasonal coronavirus titres increase in sera of convalescent SARS
patients [111] which may influence immune pathology. As mentioned
above, antibody-bound virions can enter susceptible cells, such as
macrophages through Fcγ receptor ligation in a process termed anti-
body-dependent enhancement (ADE) [112]. In other viral infections
(e.g. Dengue fever), ADE allows immune cell infection and reduces type
I IFN dependent antiviral responses while promoting pro-inflammatory
IL-6 and TNF-α expression [113,114]. Furthermore, massive recall an-
tibody production in individuals with a history of exposure to seasonal
coronaviruses but waning titres, such as the elderly, can result in im-
mune complex deposition and promote inflammation and damage, in-
cluding immune complex vasculitis [110].

Another age-dependent disease mechanism may be associated with
live vaccinations (e.g. measles or BCG). Vaccines protect beyond their
target antigen through induction of innate immune mechanisms termed
non-specific heterologous effects. Individuals who received BCG vac-
cination produce increased levels of pro-inflammatory IL-1β and TNF-α
in response to S. aureus or Candida spp., and BCG vaccinated infants
exhibit reduced infection-related mortality [115]. However, hetero-
logous immune responses to unrelated antigens may also contrite to
inflammation-related complications. Frequently, adults exhibit memory
T cells that are specific to antigens they were never exposed to, and
cross-reactive memory T cells can narrow the T cell response by fa-
voring “high affinity” clones. Indeed, limited memory T cell repertoires
are a feature of immune senescence and associated with disease pro-
gression and T cell mediated damage in other viral infections, such as
virus hepatitis and infective mononucleosis [116].

As mentioned above, ACE2 acts as transmembrane cellular receptor
for SARS-CoV2 allowing cell infection [117]. Variable ACE2 expression
patterns affect disease susceptibility between tissues (e.g. respiratory
epithelia vs immune cells), but potentially also between individuals
(men vs women, children vs adults) thereby determining disease pro-
gression and outcomes. Recently, it has been suggested that ACE2 ex-
pression is highest in children and young women, that its expression
decreases with age, and is lowest in individuals with chronic disease,
including diabetes and hypertension, inversely correlating with risk for
severe disease and unfavorable outcomes [118]. While ACE2 facilitates
viral entry into cells, it also plays a role in controlling infection and
inflammation. ACE2 is part of the ACE2/angiotensin- [1–7]/MAS
system as it counteracts the pro-inflammatory effects of the angio-
tensin-2. It catalyzes angiotensin-2 processing into angiotensin-1-7,
which counteracts vasoconstriction, modulates leukocyte migration,
cytokine expression, and fibrogenic pathways [119]. Thus, ACE2 con-
tributes to limiting tissue inflammation while favoring repair mechan-
isms. Furthermore, “high“ ACE2 expression may be of benefit as SARS-
CoV2 virus particles may compete with angiotensin-2 for cell surface
binding sites and cellular uptake. Thus, relatively increased ACE2 ex-
pression may explain why children and young adults, especially young
women, are relatively protected from COVID19 and associated com-
plications.

Taken together, novel coronaviruses, such as SARS-CoV2, may ef-
fectively suppress early T1IFN responses, which contributes to un-
controlled virus replication resulting in delayed and potentially in-
creased cytokine responses at later stages. Early and sufficient control
of virus replication and pathogen clearance may be altered in in-
dividuals at risk, such as the elderly, patients with diabetes or metabolic
syndrome, etc. [74,75]. Healthy children and young people, on the
other hand, may effectively control viral load at early stages of infection

and less frequently develop severe disease and life-threatening com-
plications. Lastly, early antibody production may result in integration
of viable virus into immune cells and increased viral replication, re-
sulting in immune complex mediated pathology, which may contribute
to pathology in young patients with no obvious risk factors [100].

5. Treatment

The rapid spread of SARS-CoV2 infection globally, has led to the
immediate need for a vaccine or therapeutic intervention to prevent or
treat COVID-19 disease. Due to the speed at which the virus has spread
globally there are few studies on potential therapeutics interventions or
vaccine candidates. Further, due to the minimal severity of the SARS
(774 deaths globally) and MERS (866 deaths globally) epidemics, few
studies to generate a vaccine or therapeutic for other closely related
coronaviruses have been undertaken, which could have efficacy for
COVID-19 disease. Clinical trials testing treatments for COVID-19 are
being undertaken, results from large randomized studies though remain
outstanding at this stage. As a result, the following sections are not to be
mistaken as evidence based treatment recommendations, but reflect
(mostly) anecdotal experience with experimental treatment, extra-
polation of data from related conditions, and expert opinion (Fig. 4).

5.1. Anti-viral treatment

5.1.1. (Hydroxy-)Chloroquine
Medical use of Chloroquine dates back decades. Its phosphate and

sulphate derivatives are administered as antimalarials, and hydroxy-
chloroquine is widely used as immunomodulatory agent in systemic
lupus erythematosus. In addition, chloroquine has antiviral activity
against Influenza, Chikungunya virus, seasonal CoVs, and SARS
[120–123]. As for these viruses, cell entry and replication of SARS-
CoV2 depends on pH-dependent internalization by endocytosis and
lysosomal fusion (Fig. 2). Itself being a weak base, hydroxychloroquine
follows the cellular pH gradient and accumulates in the acid environ-
ment of endolysosomes and other acidic cell organelles, thereby alka-
linizing endosomes. In addition, hydroxychloroquine interferes with the
terminal glycosylation of ACE2, interfering with virus binding [123].

Antiviral activity of chloroquine derivatives against SARS-CoV2 was
identified in vitro early on [124]. Based on this, the drug was rapidly
introduced into clinical use, and preliminary reports suggested im-
proved viral clearance and clinical outcomes in COVID-19 patients re-
ceiving a 10-days course of Hydroxychloroquine [125]. A small French
pilot study, randomizing 36 patients with COVID-19 suggested ac-
celerated viral clearance in patients treated with a combination of hy-
droxychloroquine and azithromycin [126]. However, others have
challenged results and found no benefit in either disease outcome or
viral clearance [127] . Disappointingly, the largest (also retrospective)
study to date assessing Hydroxychloroquine on its own or in combi-
nation with azithromycin found no benefit, but indeed an increased
mortality risk among patients receiving hydroxychloroquine [128]. A
study exploring chloroquine diphosphate in two dosing regimens was
forced to terminate early for concerns over increased mortality in the
high dose arm. The authors conclude that treatment with high dose
chloroquine for 10 days is not sufficiently safe and should no longer be
used in severe SARS-CoV2 patients [129].

Immunomodulatory effects of hydroxychloroquine are well estab-
lished, and may enhance its therapeutic effect in COVID-19 complicated
by macrophage activation and cytokine storm [130]. Alkalization of
endosomes reduces proteolysis, chemotaxis, phagocytosis, receptor re-
cycling, and interferes with processing of epitopes displayed by antigen-
presenting cells [131]. This overall contributes to decreased production
of IL-1, IL-6 and prostaglandins, and alters intracellular calcium and
TLR dependent signaling. Furthermore, preventing the acidification of
lysosomes, hydroxychloroquine impairs cellular autophagy, a critical
step for innate and adaptive immunity activation [132]. Finally,
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hydroxychloroquine has antithrombotic effects, which may be bene-
ficial in COVID-19, where inflammatory stimuli and endothelial injury
activate coagulation and promote micro-thrombus formation
[133,134].

While generally deemed safe when administered at correct dosing
and under close monitoring, the therapeutic range of chloroquine and
its derivatives is narrow. Side effects include conduction defects, car-
diomyopathy, retinopathy and hypoglycemia [135,136].

5.1.2. Azithromycin
As mentioned above, synergistic effects of azithromycin and hy-

droxychloroquine against SARS-CoV2 have been observed in vitro,
which appeared to translate into clinical practice [126,137,138]. In-
terestingly, azithromycin is also a weak base, and also accumulates in
endosomes, with an alkalinizing effect at least equivalent to Hydroxy-
chloroquine. In addition to its antimicrobial properties, azithromycin is
sometimes used for its immunomodulatory properties, especially in
patients with chronic pulmonary disorders. Azithromycin polarizes
macrophages towards an anti-inflammatory M2 phenotype, and inhibits
pro-inflammatory STAT1 and NFκB signaling pathways [139,140]. In
the context of anti-inflammatory effects, it is of particular interest that
azithromycin is used in patients requiring intensive care for non-
COVID-19 related ARDS and is associated with a significant reduction
in mortality and shorter time to extubation [141–143].

Adverse cardiac effects and proarrhythmogenic properties of hy-
droxychloroquine, especially in combination with macrolide anti-
biotics, such as Azithromycin, deserves particular mention [144]. Hy-
droxychloroquine, azithromycin and, to a lesser extent, lopinavir have
been associated with prolongation of the QTc interval and increase the
risk for tachyarrhythmias and sudden cardiac death. Careful con-
sideration of patient risk profile, pre-treatment ECG assessment and
monitoring of pharmacokinetics, fluid and electrolyte status and poly-
pharmacy are essential for the management of critically ill COVID 19
patients [145].

5.1.3. Remdesivir and other nucleoside analogues
Nucleoside analogues are explored as treatment options for COVID-

19. Candidates include favipiravir, geldesivir, ribavirin, and remdesivir,
with the latter having received the most attention. Remdesivir, a pro-
drug to adenosine [146], was originally developed for the treatment of
hemorrhagic fever viruses, namely Ebola (EBOV) and Marburg viruses,
but underperformed in EBOV treatment compared to antibody

strategies. Both have antiviral in vitro activity in MERS and SARS
[147,148]. Competing with ATP and substituting for adenosine during
RNA synthesis, remdesivir inhibits the viral RNA dependent RNA
polymerase (RdRp) [149]. Human mitochondrial RdRp show sig-
nificantly lower affinity to remdesivir as compared to their viral
counterparts, mitigating side effects for the host cell [150].

The presence of CoV-specific, proof-reading exonucleases capable of
removing phosphorylated remdesivir from the RNA chain could present
a potential for development of resistance. Remdesivir treatment for
murine hepatitis virus in a mouse model showed that, while conferring
resistance, the trade-off in viral fitness was of a magnitude sufficient to
significantly attenuate viral pathogenicity [147]. The timing of ad-
ministration in animal models of EBOV and MERS was crucial for re-
mdesivir’s efficacy, with most benefit achieved when given early [148].
This is in keeping with aforementioned phases of the disease with
highest virus replication rates early in disease, and host-mediated da-
mage through immune responses at later stages. A recent case report,
however, highlights persisting benefits also if late administration [151].

Remdesivir underwent in vitro testing at the Wuhan Virus Research
Institute early during the SARS-CoV2 outbreak [124], and was identi-
fied as potently inhibiting viral infection in cell cultures at concentra-
tions readily achievable in vivo. It was first used successfully in a
COVID-19 patient in January 2020 [152]. Since, remdesivir has been
employed on a compassionate use basis, and results for its use as a 10
day course reported for 53 patients with SARS-CoV2, 34 of whom re-
quired ECMO [4] or mechanical ventilation [30] at baseline [153];
significantly reducing mortality. Assessment in randomized controlled
trials is needed, two of which had been in place in China for the
treatment of moderate to severe COVID-19, with recruitment termi-
nated in March following declaration of containment (NCT04257656;
NCT04252664). Trials are currently ongoing in Europe and North
America. With effective reduction of pulmonary viral load in animal
models, an acceptable safety profile in Ebola patients and a small group
of COVID-19 patients, remdesivir may offer an effective and viable
future treatment option.

5.1.4. Protease inhibitors Lopinavir/ritonavir (LPV/r)
The combination of lopinavir and ritonavir (LPV/r), better known

by tradenames Aluvia® and Kaletra®, is a frequently used antiretroviral
treatment for HIV. Combining two protease inhibitors limits otherwise
extensive CYP3A4 activation and drug metabolism, thereby resulting in
much improved bioavailability of LPV [154]. Proteases are critical for

Fig. 5. Potential therapeutic targets in COVID-19.
While no approved and evidence-based treatments
are available for COVID-19, a number of treatments
promise potential. Virus particles may be caught and
inactivated using antibodies from convalescent pa-
tients. Recombinant soluble ACE2 protein may bind
SARS-CoV2 and/or mediate anti-inflammatory ef-
fects to prevent pulmonary damage and hyper-in-
flammation. (Hydroxy-)chloroquine, potentially in
combination with azithromycin), can change the pH
of endosomes and reduce virus entry and replication.
Furthermore, both medications have immune-mod-
ulating effects that may control pro-inflammatory
cytokine expression. Anti-viral treatment with pro-
tease inhibitors (lopinavir, ritonavir, etc.) and/or
nucleoside analogues (remdesivir, etc.) can limit
virus replication. As SARS-CoV2 suppresses antiviral
cytokine production, virus clearance may also be
supported by the substitution of type 1 interferons,
which activate their cytokine receptor (IFNAR) and
induce anti-viral cellular programs.

Hyperinflammation and resulting tissue damage may be prevented through immune modulation. Blocking IL-1 signaling (e.g. through recombinant IL-1 receptor
antagonist anakinra) or IL-6 signaling (e.g. through IL-6 receptor antibody tocilizumab) may limit further immune activation, tissue damage and cytokine storms.
Additional, less specific effects may be mediated through corticosteroids, immunoglobulins, hydroxychloroquine and/or azithromycin.
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viral replication, as they cleave both structural and functional proteins
from precursor viral polypeptides (Fig. 5), thus enabling maturation
into an infectious virion particle. LPV/r is mainly metabolized in the
liver, and thus pre-existing hepatic impairment is considered a relative
contraindication [154].

In SARS, LPV/r in combination with Ribavirin was associated with a
significant reduction in unfavorable outcomes (ARDS and death) as
compared to ribavirin alone (2.4% versus 28.8%) [155]. Similar ob-
servations were made in a retrospective cohort study involving >1000
SARS patients, where LPV/r was associated with significantly reduced
mortality and need for intubation [73,156]; and it is currently being
investigated by the WHO for use in MERS patients in an ongoing ran-
domized clinical trial. Early use of LPV/r was recommended, based on
aforementioned pathophysiological considerations rather than clinical
data.

In view of the in vitro activity against both SARS and MERS and the
limited clinical data available for LPV/r in treatment of critically ill
SARS-CoV2 patients, a randomized open-label trial was undertaken in
Wuhan, China [157]. It recruited almost 200 COVID-19 patients, ran-
domized to either standard treatment or added LPV/r for 14 days.
Whilst confirming safety of LPV/r use in COVID-19, no significant dif-
ferences were seen between groups in relation to survival or time to
recovery; thus leaving the authors question whether a combination of
LPV/r with a nucleoside analogue, such as ribavirin, would have re-
sulted in improved outcomes. Trials exploring the therapeutic potential
for LPV/r are currentlyongoing (https://www.remapcap.org/
coronavirus; https://www.who.int/emergencies/diseases/novel-
coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/
solidarity-clinical-trial-for-covid-19-treatments).

5.1.5. Recombinant soluble ACE2
As ACE2 has been identified as a key molecule for cell invasion (see

above), its therapeutic blockade to control disease and aid viral clear-
ance has been suggested [158]. However, unselective ACE blockade
with currently available agents may be problematic as it could alter
angiotensin-1 through -7, which have anti-inflammatory and anti-fi-
brotic properties [159]. Indeed, depletion of ACE2 by SARS-CoV2 may
potentially contribute to increased disease activity in critically ill
COVID-19 patients. In animal studies, ACE2 protects from ARDS
[160–162], while angiotensin II contributes to pulmonary pathology,
including edema and fibrosis [163]. Thus, accumulation of angiotensin
II in the absence of ACE2 may aggravate disease and organ damage.
Consequently, ACE2 induction has recently been suggested for COVID-
19 treatment [85,159,164,165] . However, effects of ACE2 may vary
between tissues and environments. Intestinal epithelia produce much
higher levels of ACE2 than bronchial epithelia which is notable as not
all patients develop gastrointestinal symptoms and when they do,
symptoms tend to be mild, and some patients remain SARS-CoV2 po-
sitive in stool samples long after respiratory specimen became negative
[78,166–168] . Based on these observations, one could suggest that
high-level ACE2 expression such as that seen in the intestine and in
contrast to the respiratory tract, or in children and young people as
compared to individuals at risk (the elderly, especially when obese or
chronically ill), may protect from inflammation and tissue damage.
However, additional factors, such as the immunological micro-en-
vironment or regionally variable microbiomes may significantly affect
virus uptake, replication and/or clearance. Thus, the exact role(s) of
ACE2 in the context of COVID-19 remains to be unveiled and may be
complex.

The administration of recombinant human ACE2 to neutralize vir-
ions prior to their attachment to the host cells is also being explored as a
therapeutic option in the future. In the attempt of exploiting the anti-
inflammatory effect of the ACE2/ Ang- [1–7]/Mas axis in non-COVID-
19 related ARDS, first pilot trials in humans have been published [169],
and whilst data supporting its efficacy as an ARDS treatment option
remains outstanding, the treatment appeared safe and was well

tolerated.

5.1.6. Type 1 interferons
As mentioned above, SARS-CoV2 effective inhibits the expression of

type 1 interferons [38]. Resulting tissue damage and expression of pro-
inflammatory cytokines and chemokines from infected monocytes/
macrophages promote excessive immune cell infiltration and cytokine
responses [114]. More recently, also abortive infection in T lympho-
cytes with SARS-CoV2 has been suggested [170], but detailed char-
acterization remains outstanding. Altogether, unaltered virus replica-
tion in the presence of tissue damage and inflammatory cytokine
expression can explain ARDS and cytokine storms in COVID-19. Over-
coming immune evasion and enhancing antiviral activity may be a lo-
gical treatment strategy.

In SARS and MERS patients, recombinant interferons have been
used with varying success. While antiviral activity of recombinant IFN-
α2a, IFN-α2b, IFN-β1a and IFN-β1b was shown in vitro for MERS, SARS
and SARS CoV2, neither mortality nor viral clearance were affected by
recombinant interferons in MERS [171,172]. However, the time of
administration may be critical, as suggested by a mouse model of IFN I
treatment for MERS [173], therefore human patients may have received
treatment too late to be fully effective.

5.1.7. Plasma from convalescent patients
Convalescent plasma, i.e. plasma from individuals following COVID-

19 resolution and rich in immunoglobulins directed against SARS-
CoV2, is being entertained as possible treatment option [174,175].
Anecdotal use in SARS, MERS, Ebola and Influenza patients supports its
use as a neutralizing and/or immunomodulatory agent [176,177].
However, a larger randomized controlled assessment of hyperimmune
intravenous immunoglobulin use for severe influenza [178,179] and
Ebola [180] showed this intervention to not be superior to placebo.
Similarly, rigorously evaluated data for its use in coronaviral infections
is lacking - not only for its use in SARS-CoV2 [181], and a feasibility
study exploring its use in MERS found that in many survivors, antibody
titres were not high enough, thus further limiting the donor pool [182].
Variable dosing, issues surrounding donor recruitment in times of ra-
pidly increasing patient numbers, and drawbacks regarding safety of
widespread use of human blood products all limit the availability and
utility as widely available treatment option.

Finally, in viruses that are subject to ADE (such as SEARS-CoV2, see
above) by non-neutralizing antibodies, the option of plasma therapy
also holds significant risks. This complication has recently been ex-
emplified by anti-Zika virus antibodies enhancing Dengue virus infec-
tion [183]. Thus, the administration of hyperimmune/convalescent
plasma may carry the risk of significant illness upon future exposure to
related or yet-to-emerge coronaviruses.

5.2. Calming the cytokine storm through immune modulation

As mentioned above, current management of COVID-19 is mainly
supportive and approved treatments based on scientific evidence are
not available. Main causes of death include ARDS and cytokine storm
syndrome (also referred to as macrophage activation syndrome, MAS or
secondary Hemophagocytic histiocytosis, HLH) [74,92,106,107]. In-
deed, ARDS occurs in 50% of patients with cytokine storm syndrome
[184]). Considering impressively rapid development of systemic and
pulmonary inflammation in a subset of patients with COVID-19, early
identification and control of derailed immune responses is of utmost
importance. Based on data from Chinese cohorts, markers associated
with cytokine storm in other conditions may be predictive of poor
outcomes in COVID-19, which include leukopenia, lymphopenia,
thrombopenia, hypoalbuminemia, significantly elevated CRP and IL-6,
hyperfibringenemia, and prolongedthrombin time [74,185,186]. How-
ever, this needs to be tested prospectively, and other more sensitive and
specific biomarker may be identified.
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First data on cytokine storm syndrome and its catastrophic effects
on tissues and organs was generated in patients with familial HLH, in
which mutations in associated genes (including PRF1, UNC13D, STX1,
STXP2, LYST, XIAP, and others) result in systemic inflammation and, if
not controlled, death [109]. Standard treatment in these conditions
include high-dose corticosteroids (dexamethasone), the calcineurin in-
hibitor cyclosporine A, chemotherapy with etoposide, and ultimately
stem cell transplantation [187]. While the underlying molecular causes
of familial HLH are different to COVID-19 associated cytokine storm
syndrome, clinical (fevers, organomegaly in some patients) and la-
boratory features (cytopenias, massively elevated inflammatory para-
meters including CRP, ESR and ferritin, hypalbuminemia, hyperfi-
brinogenaemia, etc.) and consequences (tissue and organ damage,
death) overlap. Furthermore, based on observations in the H1N1 in-
fluenza pandemic in 2009, a significant proportion of individuals de-
veloping disease-associated secondary cytokine storm syndrome may
have mutations in one or more genes associated with familial HLH (in
H1N1 36% of fatalities were associated with mutations in genes asso-
ciated with the perforin pathway [188].Thus, clinical management of
COVID-19 associated cytokine storm syndrome may, to some extent, be
informed by what we know from familial HLH. However, treatment of
COVID-19 associated cytokine storm should be more targeted and not
include cytotoxic drugs and/or stem cell transplantation, as it is sec-
ondary to an infection, which will hopefully be cleared.

Corticosteroids are used in primary and secondary forms of HLH,
and can control inflammation in ARDS [91,189]. First preliminary data
from SARS and COVID-19 suggest that high-dose steroids did not have
beneficial effects on lung injury [190,191]. Instead, high-dose corti-
costeroids are associated with complications in other forms of ARDS,
including avascular osteonecrosis [192]. Short courses of low- or
medium-dose corticosteroids, however, have been suggested to be of
benefit in a Chinese cohort of critically ill COVID-19 patients [193].
Taken together, the limited data on the efficacy and safety of corti-
costeroids in ARDS are anecdotal and not conclusive; controlled trials
do not exist. As their use is associated with widely variable effects on
pathogen clearance, and evidence for their efficacy is lacking, high-dose
corticosteroids cannot be generally recommended for the treatment of
COVID-19 [194], and the use of low dose regimens must be trialed in
formal and controlled studies.

Intravenous immunoglobulins (IVIG) are used in systemic auto-
immune/inflammatory conditions to control systemic inflammation
through several mechanisms, including the capture of activated com-
plement factors, blockade of Fcγ receptors, inhibition of B and T lym-
phocyte differentiation and activation, neutralisation of cytokines and
antibodies, etc. [195]. As mentioned above, immune complexes con-
taining viable virus may mediate infection, activate Fcγ receptors, and/
or be deposited in tissues and organs, lastly resulting in pro-in-
flammatory responses [196]. Of note, ARDS and cytokine storm in
SARS coincided with serum conversion in a majority of patients sup-
porting these arguments. Furthermore, patients who ultimately died,
seroconverted significantly earlier when compared to individuals who
recovered from infection [40,197]. Based on these observations, IVIG
may be of benefit to some patients by inhibiting Fcγ receptors and
limiting antibody-dependent enhancement (discussed above). Further-
more, aforementioned “classical” anti-inflammatory effects may limit
systemic inflammation, and anti-pathogen properties may be suppor-
tive in cases with bacterial superinfection or in patients who previously
cleared SARS-CoV2 and developed specific antibodies [186,198].

The blockade of cytokines associated with hyper-inflammation
during COVID-19 is a more targeted approach when compared to the
use of systemic corticosteroids, and is a promising therapeutic avenue.
Indeed, first anecdotal reports suggest efficacy at least in some patients.

The IL-6 receptor antagonist tocilizumab has been used successfully
in patients with secondary cytokine storm syndrome [199], including
COVID-19 [200,201]. Several studies have started or are about to be
launched, investigating efficacy and safety of tocilizumab in patients

with secondary cytokine storm syndrome in COVID-19 (including
ChiCTR2000029765 in China) [202].

The recombinant IL-1 receptor antagonist anakinra was originally
developed to control cytokine storm and associated tissue damage in
sepsis patients [203]. Subsequently, anakinra has successfully been
used in patients with cytokine storm syndrome secondary to auto-
immune/inflammatory [204,205] infectious or malignant disease
[206]. Anakinra may have significant potential at controlling hyper-
inflammation in severe COVID-19 disease, considering the absence of
severe side-effects in aforementioned sepsis trials [203], and reduced
frequency of neutropenia and hepatotoxicity when compared to tocili-
zumab. Currently, anakinra is being trialled in a randomised placebo-
controlled study in children and adults with COVID-19 associated cy-
tokine storm syndrome in China (NCT02780583) [91].

Inhibition of Janus kinases (JAK) with small molecules is a rela-
tively new concept used in systemic autoimmune/inflammatory con-
ditions. JAKs are involved in cytokine receptor signaling, including (but
not limited to) the IL-6 receptor, as well as type 1 and type 2 IFN re-
ceptors [91,207]. They mediate the phosphorylation of STAT family
transcription factors which are, in turn, involved in pro-inflammatory
cytokine expression. Thus, JAK inhibitors efficiently limit cytokine ex-
pression, and may aid in controlling cytokine storms [91]. However,
JAKs are also centrally involved in controlling the expression of T1IFN,
which plays a key role in limiting virus replication and initiating pa-
thogen clearance [208]. At least in the initial stages of COVID-19 dis-
ease, when virus replication and infection may be limited to the epi-
thelium, SARS-CoV2 likely limits T1IFN expression (see above).
Therefore, additional inhibition of JAK through small molecules may be
counterproductive as they further limit pathogen containment and
clearance, and may cause unforeseeable complications. Thus, JAK in-
hibition may not be the most suitable “target-directed” treatment op-
tion in COVID-19 associated cytokine storm syndrome and/or ARDS. To
our knowledge, at least two clinical trials are ongoing to test efficacy
and safety of JAK inhibitors in severe COVID-19 (ChiCTR2000030170,
ChiCTR2000029580).

6. COVID-19 in patients receiving immune modulating treatment

The previously discussed mechanisms of infection, immune evasion,
and dysregulation of innate and adaptive immune responses cause
significant concern for and among patients on systemic immune mod-
ulating treatments, including patients with malignant or systemic au-
toimmune/inflammatory diseases. Based on previous coronavirus out-
breaks (SARS and MERS) and first small observational studies in
COVID-19 cohorts, risk factors for poor outcomes include old age,
presence of comorbidities (diabetes, metabolic syndrome, etc.), obesity,
male sex, coronary heart disease, chronic obstructive pulmonary dis-
ease, and kidney disease [209]. Of note, immune modulation or sup-
pression was not identified as a risk factor for poor prognosis in China
or Italy [186,210]. While this could generally be considered “good
news”, immune suppression and associated altered immune function
may predispose patients to infection and potentially prolong virus
spreading. Furthermore, as COVID-19 is associated with lymphopenia,
patients receiving immune modulating treatment may be prone to
secondary infections, such as bacterial pneumonia.

As discussed above, some immune modulating drugs may protect
from viral infections. Antimalarial drugs (chloroquine, hydroxy-
chloroquine) may inhibit tissue infection and viral replication [53,103].
Furthermore, immune modulating medications (anti-malarial drugs,
classical as well as biologic DMARDs, and others) may prevent or
control cytokine storm syndromes.

Uncontrolled discontinuation of immune modulating treatment may
result in disease flares in autoimmune/inflammatory conditions, organ
rejection in transplant patients, or reoccurrence of malignancies, which
(on top of obvious effects) may also all increase the risk for viral in-
fection. Thus, national and international societies, including the ACR
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and EULAR, recommend continuation of treatment in the absence of
symptoms and alterations to existing treatment regimens only in
agreement with and under close monitoring by the responsible clinical
service [211,212]. International collaboration is needed and under way
to safely assess individual risk in these vulnerable patient groups. Until
reliable data is available, close clinical monitoring and social distancing
should be prioritized.

7. Conclusions

As immunity does not exist and a significant proportion of humans
develop severe disease, the novel coronavirus SARS-CoV2 is a threat to
millions globally. SARS-CoV2 has the capacity to escape innate immune
responses, which allows the pathogen to produce large copy numbers in
primarily infected tissues, usually airway epithelia. Through the in-
fection of innate immune cells and/or the recruitment of uninfected
cells from the circulation to the primary site of infection, massive im-
mune reactions induce hyperinflammation that can result in a cytokine
storm and life-threatening complications. We are only beginning to
understand host factors, such as differential expression of cell surface
proteins that may determine infection risk, disease presentation and
outcomes. Unveiling tissue and stage specific factors contributing to
pathology will result in new, effective and disease stage specific ther-
apeutic approaches that control virus replication while limiting in-
flammatory damage until vaccinations become available.
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