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Subsurface ocean warming preceded Heinrich
Events
Lars Max 1✉, Dirk Nürnberg 2, Cristiano M. Chiessi 3, Marlene M. Lenz 4 & Stefan Mulitza 1

Although the global environmental impact of Laurentide Ice-Sheet destabilizations on glacial

climate during Heinrich Events is well-documented, the mechanism driving these ice-sheet

instabilities remains elusive. Here we report foraminifera-based subsurface (~150m water

depth) ocean temperature and salinity reconstructions from a sediment core collected in the

western subpolar North Atlantic, showing a consistent pattern of rapid subsurface ocean

warming preceding the transition into each Heinrich Event identified in the same core of the

last 27,000 years. These results provide the first solid evidence for the massive accumulation

of ocean heat near the critical depth to trigger melting of marine-terminating portions of the

Laurentide Ice Sheet around Labrador Sea followed by Heinrich Events. The repeated build-up

of a subsurface heat reservoir in the subpolar Atlantic closely corresponds to times of

weakened Atlantic Meridional Overturning Circulation, indicating a precursor role of ocean

circulation changes for initiating abrupt ice-sheet instabilities during Heinrich Events. We

infer that a weaker ocean circulation in future may result in accelerated interior-ocean

warming of the subpolar Atlantic, which could be critical for the stability of modern, marine-

terminating Arctic glaciers and the freshwater budget of the North Atlantic.
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The deposition of ice-rafted debris layers in the glacial North
Atlantic (known as Heinrich Events) provides evidence for
a substantial freshwater release via melting icebergs in

response to past instabilities of the Laurentide Ice Sheet (LIS)1–3.
Although the impact of Heinrich Events on global climate has
been studied thoroughly during the last decades4–6, the driving
mechanism behind the episodic iceberg-discharge during Hein-
rich Events is a matter of ongoing debate7–10. A commonly dis-
cussed hypothesis is that Heinrich Events were initiated by the
periodic unstable flow of the LIS, controlled by internal ice-sheet
oscillations under otherwise stable environmental conditions,
known as “binge-purge” hypothesis7. It is assumed that the
massive freshwater release during Heinrich Events initiated
strong disruptions of the Atlantic Meridional Overturning Cir-
culation (AMOC)3 and surface-ocean cooling of the North
Atlantic4. However, surface ocean temperature and ice-rafted
debris (IRD) proxy data from the high latitudes of the North
Atlantic indicate that surface-ocean cooling occurred hundreds to
thousands of years earlier than ice-rafting events in the North
Atlantic10. Moreover, proxy data of AMOC strength show that
deep ocean-circulation weakened prior to Heinrich Events in the
North Atlantic6. Other studies propose a strong impact of weaker
overturning circulation on LIS dynamics and the onset of Hein-
rich Events9,11–13. Based on numerical modelling simulations, a
reduced AMOC would lead to strong subsurface warming and
rapid retreat of ice-shelves around the Labrador Sea that is fol-
lowed by the destabilization of the LIS during Heinrich
Events9,13. Proxy data of bottom-water temperatures show that
the mid-depth North Atlantic indeed warmed prior to Heinrich
Events and thus seem to support this mechanism14. Nevertheless,
proxy records reflecting subsurface ocean temperature variability
near the Labrador Sea, close to the grounding line of marine-
based portions of the LIS, are not available yet, hampering the
evaluation of subsurface ocean warming as the trigger of Heinrich
Events.

We studied fluctuations in subsurface ocean conditions relative
to the occurrence of Heinrich Events at a site located to the east of
Newfoundland in the subpolar western North Atlantic (marine
sediment core GeoB18530-1; 42° 50´ N, 49° 14´ W, 1888 m water
depth; Fig. 1a) at high temporal resolution (~250 years on aver-
age) over the last 27,000 years. We analysed the Mg/Ca ratio of
subsurface dwelling planktonic foraminifera Neogloboquadrina
pachyderma sinistral (N. pachyderma sin.) as a proxy for sub-
surface temperatures (subSSTMg/Ca at ~150 m water depth) from
site GeoB18530-1 (see “Methods” and Supplementary Figs. 1–3).
Combined information from subSSTMg/Ca data and the stable
oxygen isotopic composition (δ18O) of N. pachyderma sin. allow
calculating the regional ice-volume-corrected oxygen isotopic
composition of seawater (δ18Oivc-sw) as a proxy for salinity (see
“Methods”). The chronostratigraphy of sediment core
GeoB18530-1 is based on 20 accelerator mass spectrometer 14C
ages spanning the last 35,000 years (Supplementary Fig. 4 and
Supplementary Table 1). Site GeoB18530-1 is located at the
southern boundary of the North Atlantic Subpolar Gyre (Fig. 1a).
Today this location is under the influence of warm and saline
waters of the North Atlantic Current (NAC), which is an integral
part of the upper branch of the AMOC. Observational and
modelling data show that modern inter-annual to decadal
variability of temperature and salinity in the study area is con-
trolled by Subpolar Gyre dynamics15, suggesting that site
GeoB18530-1 is a sensitive recorder of changes in ocean tem-
perature and salinity. Sediment core GeoB18530-1 is ideally
located to investigate the relative timing of past ocean dynamics
in temperature and salinity against Heinrich Events associated
with LIS instabilities within Hudson Strait because of: (i) its
location close to the exit of the Labrador Sea within the IRD-
belt16, the North Atlantic gateway of the main iceberg trajectory
associated with Heinrich Events (Fig. 1b); (ii) the well-defined
IRD layers deposited during Heinrich Events (Fig. 2a); and (iii)
the fact that all proxy records were established from the same

Fig. 1 Modern surface-ocean conditions in the North Atlantic, the extension of the Laurentide Ice Sheet (LIS) and the IRD-belt in the North Atlantic
during the Last Glacial Maximum. (a) Annual mean sea surface temperature20 (colour shading) and surface circulation15 (arrows) in the study area.
Yellow dot: location of core site GeoB18530-1 (42° 50´ N, 49° 14´ W; 1,888m water depth; this study); white dots: location of reference core sites MD01-
2461 (51°45´ N, 12° 55´ W; 1153m water depth), SU8118 (37° 46´ N, 10°11´W; 3135m water depth), OCE326-GGC5/ODP Site 1063 (33° 42´ N, 57° 35´
W; 4550m water depth), and North Greenland Ice Core Project (NGRIP; 75° 5´ N, 42° 17´ W). EGC East Greenland Current, IC Irminger Current,
LC Labrador Current, NACNorth Atlantic Current. (b) Area shaded in white: LIS extent53; area shaded in green; IRD-belt in the North Atlantic16;
HS Hudson Strait. This map was generated with Ocean Data View54.
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sediment core allowing robust determination of past ocean–ice-
sheet interactions without temporal offsets and independent of
any age modelling issues.

Results
Subsurface ocean warming prior to Heinrich Events. The most
intriguing finding in our records is a recurring pattern of massive
rises of subSSTMg/Ca in the subpolar western North Atlantic
(Fig. 2b). Another salient feature is the presence of very well-
preserved IRD layers at site GeoB18530-117 (Fig. 2a). To further
characterize the IRD layers we used the elemental ratio of calcium
to strontium (Ca/Sr) from bulk sediments of core GeoB18530-1
as a proxy for detrital carbonate associated with Heinrich Event 1
and 2 2,18,19 (see “Methods”). The IRD layers are characterized by
elevated Ca/Sr ratios as expected from the high content of detrital
carbonate are originating from Paleozoic limestone and dolostone
from Hudson Bay and Hudson Strait2 (Fig. 2c). Remarkably, the
onset of subsurface ocean warmings clearly precedes the
deposition of Heinrich Layers by several centimetres with respect
to core depth (Fig. 2). It is important to note that the timing of
subSSTMg/Ca increases prior to Heinrich Events is systematic and
independent of any age model uncertainties. A closer look reveals
that warmest subsurface ocean temperatures appear synchronous
to the onset of IRD deposition during Heinrich Events (Fig. 2b).
The timing of the subSSTMg/Ca warming peaks is further con-
strained by radiocarbon ages, suggesting a calibrated median age
of ~17.1 ka BP at the beginning of Heinrich Event 1 and a

calibrated median age of ~25.4 ka BP close to the warming peak
prior to Heinrich Event 2 (Supplementary Table 1). Subsurface
temperatures rise to 8.4 °C and 12.5 °C at the onset of IRD layers
of Heinrich Events 2 and 1, respectively (Fig. 2b, c). Modern
hydrographic data close to site GeoB18530-120 exhibit a subsur-
face ocean temperature of ~7 °C for the inferred habitat depth
range of N. pachyderma sin. (see Supplementary Fig. 3).

After the onset of Heinrich Events, subsurface waters
experienced a phase of rapid cooling and freshening (Fig. 3). At
this point, the cooling and freshening signals describe the well-
known response to massive meltwater intrusions in the subpolar
North Atlantic during Heinrich Events2. A second rise in
temperature and salinity is evident at the later phase of Heinrich
Events, most pronounced during Heinrich Event 1 (Fig. 3). This
is consistent with findings derived from Heinrich layers of the
central North Atlantic showing that Heinrich Event 1 is
subdivided into an early phase (Heinrich Event 1.1;
17.1–15.5 ka BP) and a late phase (Heinrich Event 1.2;
15.9–14.3 ka BP) of IRD deposition, interpreted as two different
ice-stream advances21. In particular, the synchronous onset of
marked IRD deposition when subSSTMg/Ca appears to be warmest
provides strong evidence for a causal role of subsurface ocean
temperatures in triggering Heinrich Events of the last 27,000
years (Fig. 3).

Subsurface ocean warming linked to AMOC slowdowns. Fur-
ther comparison of proxy records of North Atlantic–North
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Fig. 2 Proxy records from sediment core GeoB18530-1 versus core depth in comparison to digital core image. a High-resolution digital core image17.
b Foraminiferal Mg/CaN. pachyderma sin. ratios and calculated subsurface temperatures (subSSTMg/Ca) with analytical uncertainty (2σ). c X-ray fluorescence
scanning-derived calcium to strontium ratios (Ca/Sr). yellow bars = phases of increases in subSSTMg/Ca into Heinrich Events and the Younger Dryas; grey
bars=Heinrich Layers (HE2=Heinrich Event 2, HE1=Heinrich Event 1) and the Younger Dryas. Dashed horizontal line in Fig. 1b indicates modern
temperature at ~150m water depth close to site GeoB18530-120.
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Greenland Ice Core Project (NGRIP) temperature variability and
AMOC strength yields three key observations (Fig. 4). First,
pronounced temperature increases prior to Heinrich Events are
neither visible in the NGRIP22,23 record of atmospheric tem-
peratures, nor in North Atlantic sea surface temperatures4 over
the last 27,000 years (Fig. 4a, e). Moreover, North Atlantic sea
surface temperatures cool (warm) when subSSTMg/Ca warm
(cool). The opposing temperature trends are particularly evident
prior to Heinrich Events as well as the Younger Dryas and we
conclude that subsurface water masses must be very well isolated
from the surface ocean of the subpolar Atlantic during these
intervals (Fig. 4b, e).

Second, early subsurface ocean warming is also evident from
site MD01-2461 located in the subpolar eastern North Atlantic,
being most pronounced prior to Heinrich Event 124 (Fig. 4d). The
correlation with elevated IRD flux at the same site is supposed to
reflect a situation, in which anomalously warm conditions in the
subpolar eastern North Atlantic caused ablation of the marine
ice-margin of the British Ice Sheet24. This is in line with
palaeoglaciological studies describing a significant ice-margin
retreat of the British-Irish Ice Sheet between ~19 and 17 ka BP
associated with catastrophic disintegration of the North Sea ice-
bridge and an enormous outburst from a meltwater lake into the
southern North Sea25. Based on the close correspondence of
subSSTMg/Ca increases at both margins of the subpolar North

Atlantic (Fig. 1), we hypothesize that a large volume of heat was
stored in the interior of the subpolar North Atlantic prior to
Heinrich Event 1. Our interpretation is in line with previous
findings from benthic Mg/Ca bottom water temperature
reconstructions of the mid-depth Northwest Atlantic proposing
significant warming of the interior-ocean prior to Heinrich
Events14.

Third, proxy data of AMOC variability6,26 show that deep-
ocean circulation weakened during Heinrich Stadial 2 and 1,
preceding Heinrich Events by 1–2 kyrs14 (Fig. 4f). The signal of
an early decline in AMOC preceding Heinrich Events by 1–2 kyrs
exceeding the typical range of age model uncertainties for paleo-
reconstructions of several hundreds of years and seems to be
quite robust. Our subSSTMg/Ca record indicates the build-up of
ocean heat in the subpolar western North Atlantic during
Heinrich Stadials and the Younger Dryas (Fig. 4b). Accordingly,
we found calibrated mean ages for the beginning of subsurface
ocean warming of ~25.9 ka BP during Heinrich Stadial 2, ~18.6 ka
BP at the transition to Heinrich Stadial 1 and ~12.5 ka BP at the
beginning of the Younger Dryas, during repeated slowdowns of
the AMOC. These results point to a close temporal relationship
between weaker overturning circulation and the increase in ocean
heat content in the subpolar western North Atlantic (Fig. 4b, f).
However, we found a delay in IRD deposition towards the end of
the Younger Dryas interval at site GeoB18530-1 (Fig. 4b, c). This
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difference may stem from the fact that the Younger Dryas is not a
typical Heinrich Event with only modest and non-linear fresh-
water forcing (and modest AMOC weakening), proposed to be
delivered to the ocean via, e.g., the St. Lawrence River27 or
Mackenzie River28.

The rapid North Atlantic subsurface ocean warming during
AMOC weakening is a feedback mechanism observed in several
numerical modelling simulations29–31. As soon as the AMOC is
weakened, due to freshwater hosing, immediate cooling and
isolation of the surface ocean from subsurface waters is observed
in the models29–31. Physically, reduced convection of North
Atlantic Deep Water leads to a redistribution of heat in the
Atlantic basin and the interior-ocean warms, in particular in the
equatorial- and South Atlantic29. Notably, some models exhibit
ocean warming in the Atlantic basin down to ~2500m water
depth within decades after AMOC slowdown30,31. At the same

time, subsurface advection of warm waters by the subtropical and
subpolar gyres are important for the poleward heat transport to
the North Atlantic. As long as deep-water convection weakens in
the North Atlantic, the surface ocean cools in the subpolar
Atlantic. The subsurface ocean further warms because of the
background energy transport of the gyre system together with
strong isolation from freshening of the surface ocean, thereby
creating a growing temperature inversion31. The magnitude of
interior-ocean warming strongly depends on the used model, as
well as on model configurations and varies between 4 and
6 °C30,31, consistent with our subSSTMg/Ca reconstructions. More-
over, as soon as the AMOC recovers from freshwater forcing with
active deep convection in the North Atlantic, the surface ocean
becomes warmer and interior-ocean temperatures become cooler
due to invigorated AMOC31. Our records verify and expand
results from theoretical modelling experiments29–31, and we
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propose subsurface ocean warming of the western subpolar North
Atlantic is a natural feedback mechanism to slowdowns of the
AMOC over the last 27,000 years.

Subsurface ocean warming as trigger for Heinrich Events.
Several ice-sheet modelling studies propose North Atlantic sub-
surface warming as a trigger for increased ice-rafting9,11–13,32.
Accordingly, the build-up of ocean heat near the grounding line
of ice-shelves is a critical value in some of these models to trigger
a rapid retreat of the ice-margin around the Labrador Sea9,13,32.
With continuous subsurface ocean warming the ice-shelf shrinks
and accelerates the ice flow at the grounded line, triggering the
rapid surge of the grounded ice and a massive iceberg discharge
in the modelling simulations13. A more recent ice-sheet model-
ling study showed that without an ice-shelf relatively small fluc-
tuations in subSSTMg/Ca near Hudson Strait are sufficient to
trigger Heinrich Events11. Our findings are in close agreement
with ice-sheet modelling studies, providing first solid evidence for
subsurface ocean warming in the western subpolar North Atlantic
as the trigger for ice-sheet instabilities during Heinrich
Events9,11–13,32.

Future AMOC slowdown and the build-up of ocean heat in the
subpolar Atlantic. Instrumental time-series show a long-term
increase in the North Atlantic heat content since the early 1950s
and a close relationship to the accelerated mass loss of the
Greenland Ice Sheet33–35. However, it is yet unclear how AMOC
variability contributes to the observed changes because of ana-
lytical limitations from relatively short instrumental time-series.
The most recent report of the Intergovernmental Panel on Cli-
mate Change projects a future decline of the AMOC due to
anthropogenic warming in the 21st century36. New empirical data
suggest the AMOC has been evolved to a point close to a critical
transition to its weak circulation mode37. Our findings suggest
that past critical transitions to a weak AMOC mode are accom-
panied by the massive build-up of ocean heat in the western
subpolar North Atlantic triggering ice-sheet instabilities during
Heinrich Events. The projected weakening of the AMOC in the
21st century36 may result in an amplified increase in the interior-
ocean heat content that could be critical for the stability of
modern, marine-terminating Arctic glaciers and the freshwater
budget of the North Atlantic.

Methods
Mg/Ca and δ18O measurements. For Mg/Ca analyses, ~100 individuals of the
foraminiferal species N. pachyderma sin. were picked from sieved sediment samples
of the size fraction >250 μm. Prior to geochemical analyses, the foraminiferal tests
were opened gently between glass plates and samples split into one third for stable
isotope analyses and two third for Mg/Ca measurements. Additional cleaning of
each sample was done according to ref. 38. Mg/Ca analyses were performed with an
axial-viewing ICP-OES Varian 720 ES (Inductively Coupled Plasma Optical
Emission Spectrometry) at GEOMAR, Helmholtz-Centre for Ocean Research in
Kiel. The levels of detection typically vary for each cation, ranging from 0.001 to
0.1 µg/ml. Mg/Ca was normalized to the ECRM 752–1 standard (3.761 mmol/mol
Mg/Ca; according to ref. 39) and drift-corrected. Regular analyses of the ECRM
752–1 standard yield an analytical error of ±0.01 mmol/mol for Mg/Ca.

Simultaneous measurements of Fe and Al were performed to monitor possible
silicate contamination38. Six out of 110 samples showed elevated Al/Ca values
(>0.2 mmol/mol), however, are inconspicuous in the Mg/Ca value compared to
neighbouring Mg/Ca values with no sign of potential contamination
(Supplementary Fig. 1a). We identified one sample with an extremely high Al/Ca
value of ~1.2 mmol/mol. A replicate measurement of this sample showed a very
low Al/Ca value of ~0.04 mmol/mol, no sign of contamination, and nearly identical
Mg/Ca values (1.93 mmol/mol with elevated Al/Ca value; 2.01 with low Al/Ca
value). Obviously, the elevated Al/Ca values do not largely afflict the Mg/Ca values
in the sample. A cross-plot of Mg/Ca values versus Al/Ca values further confirms
the generally weak correlation between Mg/Ca and Al/Ca (r2= ~0.14;
Supplementary Fig. 1b). Consequently, we decided to report all values. We note
that discarding the six values with elevated Al/Ca values would not change the
observed trends in the discussed time-series (Supplementary Fig. 1a).

Stable isotopes (δ18O) of N. pachyderma sin. were measured with Thermo
Scientific MAT 253 mass spectrometers equipped with an automated Kiel IV
Carbonate Preparation Device at MARUM, University of Bremen and at
GEOMAR, Helmholtz-Centre for Ocean Research in Kiel. The δ18O isotope values
were calibrated versus the NBS19 (National Bureau of standards) carbonate
standard and an in-house standard (“Standard Bremen”). The long-term analytical
precision is 0.06‰ for δ18O. Results were calibrated to the VPDB scale, given in
per mille (‰) relative to the VPDB.

Mg/Ca temperatures of N. pachyderma sin. The foraminiferal Mg/Ca ratios
were converted into water temperatures considering different species-specific
calibrations for N. pachyderma sin.:

Mg=Caðmmol=molÞ ¼ 0:474 expð0:107 � TÞ ð1Þ

Mg=Caðmmol=molÞ ¼ 0:13ð±0:037Þ � TðdegCÞ þ 0:35ð±0:17Þ ð2Þ

Mg=Caðmmol=molÞ ¼ 0:4 � expð0:1 � TÞ ð3Þ
Comparison of converted core-top Mg/Ca temperature to instrumental

temperatures20 allowed assessment of the most suitable calibration for our study
site (Supplementary Fig. 2). Assuming a mean habitat depth of 150 m for
subsurface dwelling species of N. pachyderma sin40 yields a difference of 1.2 °C
after calibration to Eq. 1 (ref. 41), 0.18 °C after calibration to Eq. 2 (ref. 42) and
4.32 °C after calibration to Eq. 3 (ref. 43). Consequently, we considered the
calibration after ref. 42 as appropriate to convert the Mg/Ca ratio to subsurface
temperatures.

Sensitivity of N. pachyderma sin. derived Mg/Ca signal to changes in habitat
depth. A range of habitat depths from ~50 to 200 m has been reported for N.
pachyderma sin.40,42. Consequently, we checked whether changes in the assumed
habitat depth may afflict the robustness of our results. To do so, we calculated the
temperature gradient between 50 and 200 m water depth (ΔT200-50) using modern
instrumental data20 from a water column profile near-site GeoB18530-1 (Supple-
mentary Fig. 3). The ΔT200-50 is 2.05 °C, assuming a maximum shift in the habitat
depth of N. pachyderma sin. in September. Given the large subsurface temperature
amplitudes of up to 6 °C observed in our time series we conclude that only a small
part of the total variability is explained by changes in the habitat depth.

Sensitivity of N. pachyderma sin. derived Mg/Ca to changes in the seasonal
cycle. We further investigated the effect of major shifts in the seasonal cycle of N.
pachyderma sin. on reconstructed subsurface temperatures. A study combining
sediment trap data and modelling results suggests that the seasonality in the
production of N. pachyderma sin. may have changed by up to 6 months between
the Last Glacial Maximum (LGM) and full Heinrich conditions in the western
subpolar North Atlantic44. However, we note that reconstructed subsurface ocean
warmings preceding Heinrich Events in our time series and thus, do not reflect full
Heinrich conditions. Nevertheless, we investigated the effect of a possible change in
seasonality assuming a maximum shift in seasonality from April to September,
considering modern hydrographic data20. The difference in subSST150m between
April (7.2 °C) and September (7.45 °C) is 0.25 °C at our core site (see Supple-
mentary Fig. 3). We conclude that the effect of a seasonal shift in production of N.
pachyderma sin. is minor on reconstructed subsurface temperatures.

Oxygen isotopic composition of seawater (δ18Oivc-sw). We calculated the
regional ice-volume-corrected δ18Osw record (δ18Oivc-sw) considering changes in
global δ18Osw due to continental ice-volume variability using the relative sea-level
curve of ref. 45. To remove the temperature effect from the δ18Oivc-sw record we
applied the temperature versus δ18Ocalcite equation of ref. 46:

δ18OcalciteðmV� PDBÞ ¼ ð21:9� 3:16 � ð31:061þ Tð °CÞÞ0:5Þ
þ δ18OswðmV� PDBÞ ð4Þ

The calculated δ18Oivc-sw were converted from V-PDB into Vienna Standard
Mean Ocean Water (V-SMOW) scale according to equation of ref. 47:

δ18OðmV� PDBÞ ¼ 0:9998 � δ18OswðmV� SMOWÞ � 0:27m ð5Þ
Low (high) values of δ18Oivc-sw pointing to fresh (saline) ocean conditions.
We performed an error propagation analysis to assess the error of the δ18Oivc-sw

calculations considering the uncertainty in performed Mg/Ca and δ18O
measurements, the uncertainty of applied Mg/Ca calibration as well as the error
involved in the relationship between salinity and δ18Osw. We obtained an error of
~0.38 for reconstructions of δ18Oivc-sw. A previous study reported similar error
propagations for δ18Osw of 0.36 (+/−0.02%) derived from δ18OCalcite and Mg/Ca-
temperature reconstructions of N. pachyderma sin. in the subpolar Pacific48.

X-ray fluorescence scanning. X-ray fluorescence core-scanning measurements of
GeoB18530-1 were performed with an Avaatech XRF Core Scanner at the
MARUM, University of Bremen. Elemental intensities were obtained at 1 cm
resolution over a 1.2 cm2 area from the split core surface of the archive halves. The
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split-core surface was scanned three times with different settings for light (e.g., Al,
Ca; 10 kV, 20 s, 150 mA), medium (e.g. Sr, 30 kV, 20 s, 150 mA) and heavy (e.g. Ba;
50 kV, 20 s, 800 mA) elements. To avoid contamination of the XRF measurement
unit the core surface was covered with a 4 µm thin SPEXCerti Prep Ultralene foil.
The core scanner unit includes a Canberra X-PIPS Silicon Drift Detector (SDD;
Model SXD 15C-150-500) with 150 eV X-ray resolution, a Canberra Digital
Spectrum Analyser DAS 1000 and an Oxford Instruments 100W Neptune X-ray
tube with rhodium (Rh) target material. Raw data spectra were processed by
Analysis of X-ray spectra by the Iterative Least square software (WIN AXIL)
package from Canberra Eurisys.

Age models. The age model for gravity core GeoB18530-1 is based on 20 accel-
erator mass spectrometry radiocarbon dates from samples of N. pachyderma sin.
(19 samples) and one mixed sample (Globigerina bulloides and N. pachyderma sin.)
from core GeoB18530-1 (Supplementary Table 1). Radiocarbon ages were mea-
sured at Poznań Radiocarbon Laboratory as well as Physics Institute, University of
Bern Climate and Environmental Physics Radiocarbon lab. The age model is based
on an ensemble of 2.000 age-depth realizations calculated with the age modelling
software BACON49. Radiocarbon ages were calibrated using the IntCal20 cali-
bration curve50 and modelled local reservoir ages51 provided through the toolbox
PaleoDataView52. To assess the uncertainty of Mg/Ca temperatures, we combined
2000 noisy proxy realisations with the 2000 BACON age models, interpolated the
resulting 2000 time series to the median ages of all sampling depths and calculated
the 95% confidence envelope for the Mg/Ca SSTs. We further re-calibrated the
reported radiocarbon ages from site MD01-246124 following the same procedure as
described for core GeoB18530-1.

Data availability
All relevant data in this paper are available at PANGAEA Data Publisher (https://doi.org/
10.1594/PANGAEA.943563).
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