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Abstract

Stroke, a major cause of disability and mortality in the elderly, occurs when a cerebral blood vessel is occluded or
ruptured, resulting in ischemic damage and death of brain cells. The injury mechanism involves metabolic and
oxidative stress, excitotoxicity, apoptosis and inflammatory processes, including activation of glial cells and
infiltration of leukocytes. In animal models, dietary energy restriction, by daily calorie reduction (CR) or intermittent
fasting (IF), extends lifespan and decreases the development of age-related diseases. Dietary energy restriction may
also benefit neurons, as suggested by experimental evidence showing that CR and IF protect neurons against
degeneration in animal models. Recent findings by our group and others suggest the possibility that dietary
energy restriction may protect against stroke induced brain injury, in part by inducing the expression of
neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF);
protein chaperones, including heat shock protein 70 (Hsp70) and glucose regulated protein 78 (GRP78); antioxidant
enzymes, such as superoxide dismutases (SOD) and heme oxygenase-1 (HO-1), silent information regulator T1
(SIRT1), uncoupling proteins and anti-inflammatory cytokines. This article discusses the protective mechanisms
activated by dietary energy restriction in ischemic stroke.
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Introduction
In the western world the average calorie intake has stea-
dily risen as have associated diseases. Calorie restriction
(CR) is defined as a decrease in energy intake without
lowering nutritional value. This simple intervention has
shown, in a wide range of laboratory animals, to extend
lifespan and decrease the incidence of several age-related
diseases [1]. In humans, CR can reduce markers of oxida-
tive stress and inflammation [2,3], and can lower cardio-
vascular disease risk [4]. Dietary energy restriction also
benefits neurons, as suggested by data showing that CR
protects neurons against dysfunction and degeneration in
animal models of epileptic seizure, stroke and neurode-
generative diseases [5,6].
The risk of ischemic stroke, the second major cause of

morbidity and mortality worldwide, can be reduced
through diet and lifestyle modification [7]. The mechan-
isms responsible for neuronal death caused by stroke are
believed to involve metabolic compromise, over activation
of glutamate receptors, cellular calcium overload, oxidative
stress and inflammation [8]. Studies using in vivo and in

vitro stroke models have identified several proteins and
signalling pathways that can protect neurons against
ischemic injury, including: neurotrophic factors, such as
brain-derived neurotrophic factor (BDNF) and glial cell
line-derived neurotrophic factor (GDNF); protein chaper-
ones, including heat shock protein 70 (Hsp70) and glucose
regulated protein 78 (GRP78); antioxidant enzymes, such
as heme oxygenase-1 (HO-1) and the regulator of mito-
chondrial biogenesis PGC-1a. Several studies suggest CR
may promote neuronal survival and plasticity in ischemic
stroke, by inducing neuroprotective factors and suppres-
sing inflammatory pathways. The present article reviews
findings supporting the neuroprotective effects of CR and
discusses the mechanisms activated by CR in ischemic
stroke.

Calorie Restriction
Experiments performed seven decades ago showed that
CR increases the lifespan of rodents [9,10], and this has
been widely replicated and extended, demonstrating an
increase in both the mean and maximum lifespan of rats
and mice maintained on CR [11-14]. More recently, it was
shown that CR also slows aging in monkeys [15]. A num-
ber of physiological effects of CR that may contribute to
its ability to increase lifespan have been documented in
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animal studies. Important among these are the preserva-
tion of metabolic functions despite aging [16], reduced
body temperature and levels of oxidative stress [17,18],
increased resistance to various types of stress [19], and
enhanced immune function [20,21].
Another form of dietary stress studied alongside CR is

intermittent fasting (IF). In rodents, it consists of alternat-
ing days of ad libitum feeding with days when only water
is made available to the animals [22]. Human IF has
involved alternating days eating less and more than the
recommended daily energy intake [23]. CR and IF can
improve risk factors for diabetes and cardiovascular dis-
ease in rodents [22-24], as well as delay, prevent or treat
conditions responsible for mortality in rodents such as
cancers and kidney disease [25-27]. When maintained on
a CR or an IF diet, organisms ranging from yeast to mon-
keys exhibit increased resistance to many different types of
stressors [19]. This is associated with increased resistance
of cells in many different tissues to injury induced by
oxidative, genotoxic and metabolic insults. The conserva-
tion of stress resistance responses to CR and IF across a
range of species provides strong evidence that this
mechanism contributes to the lifespan-extending action of
dietary restriction.

Cellular and molecular mechanisms underlying
effects of calorie restriction on the brain
Reduced oxidative damage
Mitochondrial ROS such as superoxide and peroxide
anions, and their products, are a result of mitochondrial
oxidative phosphorylation and cause oxidative damage to
proteins, lipids and DNA. Accordingly, ageing is believed
to be in large part due to cumulative damage caused by
mitochondrial ROS [28], and an inverse correlation has
been found between ROS production and longevity
across mammalian species [29]. The brain is particularly
susceptible to oxidative stress because of the high level of
mitochondrial activity and the presence of heavy metal
ions that can act as catalysts of oxidative reactions.
Besides, the abundance of lipids in the nervous system
makes them a prime target of oxidative damage. Hence,
lipid peroxidation plays an important role in many neu-
rodegenerative and psychiatric disorders [30]. Moreover,
damaged molecules tend to accumulate in long-lived,
post-mitotic neurons [31], making the situation worse
and providing a connection between age and oxidative
stress in the brain. In stroke, markers of oxidative
damage to lipids and proteins have been found in animal
models as well as in human patients, and levels of some
of them correlate to stroke severity [32,33].
There is evidence that both CR and IF prevent oxida-

tive damage by three major mechanisms: diminished
production of mitochondrial reactive oxygen species
(ROS), increased antioxidant defences and increased

repair mechanisms for molecules that have been
damaged as a result of oxidation [34]. Several studies
have shown low levels of mitochondrial ROS generation
in various tissues of CR rodents including the brain
[35,36]. There is evidence that this is due to a mild
enhancement of the mitochondrial respiratory rate,
resulting in lower ROS release. Recent studies provided
substantial evidence to confirm the link between respira-
tory rate, ROS release [37] and aging [38] by causing
mild uncoupling in the passage of protons through the
inner mitochondrial membrane from mitochondrial
phosphorylation. This uncoupling is partly mediated by
the so-called uncoupling proteins (UCP), whose levels
are increased by CR in various tissues, including the
neuron-specific UCP4 (Figure 1) [39]. There is evidence
for the neuroprotective effects of UCP2, UCP4 and
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Figure 1 Pathways of calorie restriction leading an increased
metabolic rate. Cells are sensitive to energy levels through
molecules that detect ATP/AMP and NAD+/NADH ratios. Energy
deficiency will activate the enzymes AMPK and SIRT1, which is also
activated by NO, and through their respective phosphorylation and
deacetylation, the activity of numerous substrates involved in
metabolic functions will be modified. One of these is PGC-1a,
which activates the transcription factors NRF-1 and -2 and mtTFA.
The former two activate nuclear transcription of genes for
mitochondrial biogenesis and the latter does the same in the
mitochondria. This accounts for an increase in the numbers and size
of mitochondria as well as an enhancement in the respiratory rate.
All of these changes elevate the oxidative buffer capacity of the cell,
augmenting its resistance to conditions of stress.
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UCP5; however, their effects seem to encompass more
than just mild uncoupling of the mitochondrial mem-
brane and in some cases they appear to mediate protec-
tion through totally different mechanisms [40-43].
ROS scavengers, such as superoxide dismutase, glu-

tathione peroxidase and catalase among others, are essen-
tial for antioxidant defence [44]. However, their levels or
activity do not seem to be greatly affected by CR [45,46].
As for repair mechanisms for ROS-damaged molecules, it
has been shown that CR reduces transcription levels of
protein and DNA repair genes in skeletal muscle, but this
seems to be partly a response to the lower damage caused
by a lower metabolic rate [45]. An exception to this is the
enzyme heme oxygenase-1 (HO-1), which is induced in
various cell types by many stressful stimuli, including IF
[47], and has anti-oxidant, anti-inflammatory and anti-
apoptotic activities, which have been shown to contribute
to mouse brain protection from focal ischemia [47]. Over-
all it seems, however, that the reduction of ROS produced
in the mitochondria might be the most relevant mediator
of CR-induced effects.

Increased mitochondrial biogenesis
How CR decreases the metabolic rate in order to lower
oxidative stress is not well understood. Moreover, this is
in apparent contradiction with another CR effect, which is
its proved ability to increase the number and promote the
activity of mitochondria. A key mediator of these effects is
the peroxisome proliferator-activated receptor g (PPAR g)
coactivator 1a (PGC-1a), a protein central to mitochon-
drial biogenesis, whose activity explains the coordination
of mitochondrial processes by environmental factors.
PGC-1a is regulated through many mechanisms, of which
AMP-activated protein kinase (AMPK) phosphorylation
and silent information regulator T1 (SIRT1) deacetylation
seem to be the most likely candidates to mediators of CR
[48]. AMPK is activated by changes in the ATP/AMP
ratio, whereas SIRT1 is activated by nicotinamide, which
shows its dependence on NAD+/NADH balance. Both of
these enzymes are, therefore, in tune with energy levels,
showing them as prime targets for CR. In fact, CR has
been shown to increase the activity of both AMPK and
SIRT1, resulting in increased levels and activity of PGC-
1a (Figure 1). SIRT1 is also activated by NO, another
putative target of CR [49]. PGC-1a mediates processes
relevant to mitochondrial biogenesis, including: i) up-regu-
lation of transcription factors that activate transcription of
mitochondrial genes in the nucleus, such as NRF-1 and
NRF-2; ii) induction of transcription and replication of the
mitochondrial genome, mediated by the mitochondrial
transcription factor mtTFA, which is in turn activated by
NRF-2. Besides, PGC-1a induces UCPs [50], which in
turn result in lower ROS release. Therefore, CR does not
seem to decrease the metabolic rate, as was formerly

thought, but it appears to actually increase it [51], and this
increase is responsible for its buffering effects on oxidative
stress (Figure 1).
Corresponding to its beneficial effects on cell metabo-

lism, PGC-1a deficiency is believed to mediate the neuro-
degenerative effects of AD, HD and PD, as decreased
levels of this molecule were found in post-mortem analysis
of patients [52-54]. Accordingly, PGC-1a and another
member of the family, PGC-1b, have been reported to
control mitochondrial density in neurons and reduce oxi-
dative stress [55]. Despite the accumulating evidence of
the effects of CR and PGC-1a on mitochondrial biogen-
esis, one study has claimed not to have found such
increase, with levels of PGC-1a and essential mitochon-
drial proteins unchanged after 14 weeks of CR in rats [56].
These results only highlight how complex the mechanisms
are that mediate CR effects and how far we are from eluci-
dating how the process works.

Increased cellular stress resistance
Another neuroprotective mechanism of CR is based on its
putative effects as a mild stressor, activating cellular stress
response pathways with upregulation of neurotrophic fac-
tors and heat-shock proteins, which in turn make the cells
more resistant to neurodegeneration and ischemic insults.
This is known as a preconditioning, or hormetic, effect, or
the ability of a sublethal stressor to protect an organ from
a subsequent lethal injury. The following molecules have
been found to be up-regulated and mediate some of the
effects of CR and IF in the mammalian brain.
Neurotrophic factors
Brain derived neurotrophic factor (BDNF) has been shown
to be up-regulated by CR and IF in rodent and primate
brain [47,57-59], whereas human evidence is still pending
[60]. In a model of seizure, injection of BDNF blocking
antibody reduced the positive effects of CR, demonstrating
this molecule’s essential role mediating the effects of CR
in protection from excitotoxicity [57,58]. BDNF is a versa-
tile neurotrophin with a central role in synaptic plasticity
and consequently learning and memory. Its levels are very
closely linked with diet, so that when food intake is high,
and particularly if it is high in saturated fat, energy meta-
bolism increases resulting in high production of ROS.
Oxidative stress down-regulates BDNF, and thus nega-
tively affects synaptic plasticity [61]. BDNF also has a func-
tion in turning down energy metabolism, so the effect is
amplified. Conversely, CR or IF decrease oxidative stress,
and this leads to the up-regulation of BDNF, resulting in
increased synaptic plasticity. BDNF signals through the
TrkB (tyrosine kinase) receptor, activating the Trk kinases
which trigger a number of signalling pathways, including
PLC (phospholipase C) g, PI3K (Phosphatidylinositol
3Kinase) and the MAPK (mitogen activated protein
kinase) pathway [62]. The resulting gene expression
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promotes synaptic plasticity, neurogenesis and cell survi-
val. It is not surprising that BDNF is important in the pro-
tection from neurodegenerative diseases, such as PD and
AD [63] and in the recovery from stroke (see below).
Glial cell line-derived neurotrophic factor (GDNF) has

an important role in PD because it promotes survival of
dopaminergic neurons whose malfunction accounts for
the symptoms of the disease, and it also has a general role
in the protection and development of many types of neu-
rons (reviewed in [64]). Just as BDNF, GDNF signals
through PLCg, PI3K and MAPK pathways, and in fact
these two neurotrophic factors seem to act in synergy,
although it has been shown that BDNF has more powerful
effects in the protection of dopaminergic neurons [65].
Neurotrophic factors and oxidative stress seem to be
mutually negative regulators, because neurotrophins lower
oxidative stress by up-regulating antioxidant proteins,
providing an indirect role of CR on antioxidant functions.
On the other side, oxidative stress down-regulates neuro-
trophins, providing a feedback loop that can be activated
by high food consumption and is detrimental for the cell
[66].
Heat-shock proteins
The main member of this family affected by CR is heat-
shock protein (Hsp) 70. Levels of this chaperone in the rat
brain have been shown to decrease with age up to 75%
[67], and CR and IF can increase them [47,68]. Besides its
role in protein folding, Hsp70 offers neuroprotection with
its anti-apoptotic role downstream of cytochrome c and
upstream of caspase-3 [69], and its role in the preservation
of energy transfer in case of impaired mitochondrial meta-
bolism [70]. Hsp70 is induced after a central nervous
system insult, including seizure [71] and excitotoxic, oxi-
dative and metabolic insults [68], which provides evidence
for the role of this protein in the recovery from brain
injury.
Glucose-regulated protein (GRP) 78 is a stress-induced

chaperone in the endoplasmic reticulum, and as such it
enhances the secretion rate and efficiency of specific
proteins [72]. Besides, GRP78 promoter is enhanced in
conditions of low glucose or oxygen, which are character-
istic of ischemia and tumours. As a consequence of its
function in the protection from protein misfolding, GRP78
has anti-apoptotic functions in neurons [73]. Like Hsp70,
levels of GRP78 in brain have been seen to decrease with
age [47], whereas they increase substantially under CR and
IF conditions [47,68].

Enhanced autophagy
Autophagy refers to the cellular process by which long-
lived proteins and whole organelles get sequestered and
degraded by lysosomes [74]. It is an essential process for
the health of long-lived cells such as neurons, and,
therefore, it is fundamental for the maintenance of the

nervous system. Autophagy is heavily involved in synap-
tic growth and plasticity in Drosophila [75] and its disre-
gulation has been linked to neurodegenerative diseases
such as AD, PD and HD [76]. Autophagy is induced by
oxidative stress via the activity of PI3K [77], and
strongly inhibited by the mammalian target of rapamy-
cin (mTOR, [78]). Even short term CR is known to
enhance autophagy in neurons [79], and this is primarily
mediated by inhibition of mTOR. Like PGC-1a, this
molecule forms a nexus between diet and cellular
changes, because of its ability to sense cellular ATP/
AMP ratios, through its inhibition by AMPK, insulin
and amino acid levels [80]. mTOR is down-regulated by
CR and its inhibition plays an essential role in CR-
mediated positive effects, including delayed aging,
synaptic plasticity and delayed neurodegeneration, and
most of these effects are mediated by its regulation of
autophagy.

Reduced inflammation
Inflammation, the complex, somehow nonspecific, process
by which the body combats infection, is currently proving
to have a dark side for it can have powerful negative
effects in many non-infection mediated medical condi-
tions. The presence of inflammation, even at low levels,
can worsen the outcome of obesity, stroke, neurodegen-
erative and other diseases. Moreover, some chronic condi-
tions arise as a result of unwanted inflammation, such as
type II diabetes. Levels of inflammatory markers, such as
C-reactive protein, tumor necrosis factor (TNF) and inter-
leukin 6 (IL-6), increase with age and obesity, and decrease
accordingly with CR [81], and the mediators of this decline
are various, including the already mentioned Hsp70, PGC-
1a and neurotrophic factors such as BDNF, but here we
will focus on two key proteins involved which are SIRT1
and mTOR.
SIRT1
One of the substrates of the deacetylase SIRT1 is the
nuclear factor �B (NF�B) subunit RelA which when dea-
cetylated shows decreased ability to enhance transcription
after TNF stimulation [82]. Because NF�B is the central
transcription factor responsible for expression of many
genes involved in inflammation, SIRT1 inhibits inflamma-
tion, and direct evidence of its activity has been shown in
neuronal death by microglia inflammatory response to
amyloid-b [83]. This immunoregulatory effect of SIRT1
adds to the list of advantageous effects of the enzyme
which is strongly up-regulated by CR.
mTOR
The inhibition of mTOR has a dramatic effect in the sup-
pression of inflammation, and in fact rapamycin, the
drug from which it gets its name, has a strong immuno-
suppressive effect and it is currently used to minimize
transplant rejection. This is due to the fact that mTOR,
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which is activated by the PI3K/Akt pathway, promotes
cell growth and proliferation, cytokine production and
signalling, all of which are essential for an efficient
immune response [84].

Molecular mechanisms of ischemic stroke induced
brain injury
Excitotoxicity
A significant proportion of ischemia-induced neuronal
damage is mediated by toxic accumulation of excitatory
amino acids. The lack of energy caused by the interruption
of cerebral blood flow leads to failure of ion pumps, which
results in inwards diffusion of calcium and sodium across
the membrane along their concentration gradients, caus-
ing cellular swelling and depolarization [85]. Elevations of
intracellular sodium become toxic and can contribute to
necrotic neuronal death at early time points (minutes to
hours) after ischemia. Elevations of calcium, however, acti-
vate ionotropic glutamate receptors. Glutamate, which is
the major excitatory neurotransmitter in the brain, accu-
mulates in the extracellular space and activates AMPA/
kainate and NMDA receptors. Calcium ions enter the cell
through these voltage-dependent and ligand-gated ion
channels, resulting in the activation of a number of pro-
teases, kinases, lipases and endonucleases, culminating in
apoptosis [86,87]. It has been suggested that many neu-
rons, particularly those in the ischemic penumbra, die by
this mechanism involving glutamate-induced calcium
influx [88].

Oxidative damage
Neurons are normally exposed to baseline levels of oxida-
tive stress, caused by free radicals from both exogenous
and endogenous sources. These are highly reactive mole-
cules with one or more unpaired electrons, which can
react with DNA, proteins and lipids causing varying
degrees of damage and dysfunction. Numerous experi-
mental and clinical studies have documented increased
levels of oxidative stress during all forms of stroke injury.
Free radicals involved in stroke-induced brain injury
include superoxide anion radical, hydroxyl radical and
nitrous oxide (NO). Mitochondria are the primary source
of ROS during ischemic or hemorrhagic stroke injury,
which produce superoxide anion radicals during the elec-
tron transport process. Another potentially important
source of superoxide in post-ischemic neurons is the
metabolism of arachidonic acid through the cyclooxygen-
ase and lipooxygenase pathways [89]. Following reperfu-
sion in ischemic injury, ROS is also generated by activated
microglia and infiltrating peripheral leukocytes via the
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase system [90]. NO is generated from L-arginine
through one of several nitric oxide synthase (NOS) iso-
forms. The neuronal form of NOS, which requires

calcium/calmodulin for activation, is produced by subpo-
pulations of neurons throughout the brain [85]. Inducible
NOS (iNOS) is produced by inflammatory cells, such as
microglia and monocytes. These two isoforms are, for the
most part, damaging to the brain under ischemic condi-
tions, however a third isoform of NOS found in endothe-
lial cells promotes vasodilation and may play a beneficial
role following a stroke by enhancing reperfusion. NO dif-
fuses freely across membranes and reacts with superoxide
to produce peroxynitrite, another highly reactive free radi-
cal [91]. Both ROS and reactive nitrogen species are
involved in activating several pathways involved in cell
death following stroke, including apoptosis and inflamma-
tion. Lipid peroxidation also appears to play a prominent
role in the pathogenesis of stroke. The mechanism
whereby membrane lipid peroxidation induces neuronal
apoptosis involves generation of an aldehyde called 4
hydroxynonenal, which covalently modifies membrane
transporters such as Na+ /K+ ATPase, glucose transporter
and glutamate transporter, thereby impairing their func-
tion [87,92].

Inflammation
Besides its neurotoxic activity, calcium and free radicals
can also activate inflammatory transcription factors,
including NF�B [93]. These induce the expression of
inflammatory cytokines (e.g. IL-1b, IL-6 and TNF),
chemokines (e.g. monocyte chemotactic protein-1, MCP-
1) and endothelial cell adhesion molecules (e.g. selectins
and inter-cellular adhesion molecule 1, ICAM-1) among
others [94]. There are several resident cell populations
within brain tissue able to secrete pro-inflammatory med-
iators after an ischemic insult, including endothelial cells,
astrocytes, microglia and neurons. Activated microglia
produce several pro-inflammatory cytokines, as well as
toxic metabolites and enzymes, and in addition, astrocytes
play an important role in stroke-induced brain inflamma-
tion [94]. Because of the mixed nature of microglial and
astrocyte products (both destructive and protective fac-
tors), the overall role of glial cells may differ at different
time points following a stroke, with damaging effects
occurring early (hours to days) and protective or regenera-
tive activities occurring later (several days to weeks) [94].

Calorie restriction and ischemic stroke
The first way in which CR protects from stroke is by pre-
serving a healthy cardiovascular system. In a study of peo-
ple who had been on a CR diet for an average of six years
versus others on a typical American diet, it was found that
CR reduced body fat, blood pressure and serum lipid and
lipoprotein levels [95], which are well-known risk factors
for ischemic stroke. The positive effects of CR and IF on
systemic blood pressure have been extensively studied in
animal models [reviewed in 4] and the mechanism seems
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to be mediated either by decreased activity of the sympa-
thetic nervous system [96,97] or by modifications in activ-
ity of the hypothalamic-pituitary neuroendocrine pathways
[98]. Age-related decrease in cerebral basal blood flow and
brain vascular density was shown to be attenuated by CR
in rats, and this appears to be mediated by alterations in
growth hormone and insulin growth factor 1 (IGF-1)
[99,100]. In addition, CR improves endothelial function
and decreases circulating levels of inflammatory markers,
both of which protect from atherosclerosis, a condition
which is intimately linked to stroke [101].
However, once an ischemic insult has occurred, the rates

of damage and recovery are affected significantly from CR
at many different levels. This is because protective
mechanisms are up-regulated by CR and those mechan-
isms that are down-regulated by CR are detrimental for
stroke outcome. In this sense CR has a hormetic or pre-
conditioning effect, which consists on subjecting the brain
to small, harmless insults in order to induce tolerance to
ischemia. CR restricts the number of nutrients that reach
the brain cells and as a consequence switches on the
defence machinery required to protect the cells from lack
of nutrients. As a result, cells are now prepared to receive
a more severe insult and as a consequence protected from
it when it happens. CR pleiotropic effects protect the brain
from ischemia by targeting excitotoxicity, oxidative
damage, apoptosis, inflammation and autophagy.

Excitotoxicity
CR has been shown to up-regulate mechanisms that pro-
tect the cells from glutamate excitotoxicity. At the tissue
level, it increases the efficiency of astrocytes at taking up
glutamate, reducing its availability and subsequent neuro-
nal damage [102], which could be beneficial in the case
of ischemia. Besides, once the neuron suffers from gluta-
mate toxicity, all the pathways previously up-regulated by
CR come to the rescue, improving the outcome by pro-
tecting neurons from cell death. In a mouse model of
focal ischemia, mice subjected to IF displayed a smaller
infarct volume, and this correlated with higher levels of
BDNF, Hsp70, GRP78, HO-1 and other protective factors
(Figure 2) [47]. The same is true for CR [103]. BDNF,
which is up-regulated after ischemic stroke [104], has
been shown to decrease the levels of extracellular gluta-
mate in rat brain if applied 2 hours before an ischemic
insult, and to counteract the tendency of inhibitory
GABA receptors to reduce in number after ischemia,
minimizing as a result the toxic effects of glutamate
[105]. The chaperone Hsp70, which is also induced by
ischemia [106], has a role in the protection of NMDA
receptors and as such contributes to their normal func-
tion in toxic conditions. It also protects the presynaptic
terminal by maintaining ion channel proteins in the pre-
sence of toxic levels of glutamate [107]. The endoplasmic

reticulum associated GRP78, in turn, is responsible for
maintaining the levels of intracellular calcium despite the
insult, as hippocampal neurons treated with siRNA
designed to inactivate GRP78 displayed higher levels of
intracellular calcium upon glutamate treatment than con-
trol neurons, which is consistent with a role of calcium
from the endoplasmic reticulum in excitotoxicity [108].
2-deoxy-D-glucose, a molecule with similar neuroprotec-
tive effects as CR, increased the levels of GRP78, mini-
mized the increase in intracellular calcium and protected
from excitotoxicity [109]. Therefore, some of the proteins
up-regulated by CR or IF can directly diminish the levels
of glutamate excitotoxicity on neurons.

Oxidative damage and apoptosis
As seen previously, the induction of protective mechan-
isms by CR accounts for lower basal levels of oxidative
stress. However, these mechanisms must also be able to
block the generation of ROS and minimize oxidative
stress in ischemia to be useful in the protection of the

Figure 2 Protective mechanisms of calorie restriction against
neuronal cell death in stroke. Stroke acts in detriment of
neuronal health by different mechanisms, including exicitotoxicity,
calcium overload, oxidative stress and inflammation, which can
culminate in neuronal apoptosis. CR prepares neurons to bear each
of these forms of stress by modifying the levels of key stress-
response proteins. Certain proteins are up-regulated, such as the
chaperones GRP78 and Hsp70, which protect from calcium overload
and inflammation; neurotrophic factors such as BDNF, whose role is
to protect the cells from excitotoxicity but are also key promoters of
neurogenesis after stroke; SIRT1, a central mediator of many CR
beneficial effects such as resistance to oxidative stress and
moderation of inflammation (through its down-regulation of NFB);
UCPs, which are thought to decrease the generation of ROS; and
HO-1, with anti-oxidant properties. Hence, CR prepares brain cells at
many levels to resist stroke-induced neuronal cell death and
promote recovery after stroke.

Manzanero et al. Experimental & Translational Stroke Medicine 2011, 3:8
http://www.etsmjournal.com/content/3/1/8

Page 6 of 13



brain from an ischemic insult. A central mediator of
the protection from ROS in the brain is HO-1, which
is induced by hypoxia, has direct antioxidant functions
in the ischemic brain [110] and is up-regulated by IF
(Figure 2) [47]. However, the lower oxidative damage
encountered in neurons after stroke in CR animals, is not
mainly caused by ROS scavenging but by a lower produc-
tion of ROS. In this regard there is emerging evidence of
the relevance of uncoupling proteins, as increased UCP2,
3, and brain-specific UCP4, gene transcription by CR
have been shown in human skeletal muscle and brain
respectively [39,111]. Overexpression of UCP2 in mice
diminished neuronal damage after stroke by inhibiting
generation of ROS and preventing apoptosis [40], while
overexpression of UCP4 had similar effects in neurons
subjected to toxins [39,112]. Besides, knock-down of
UCP4 in primary hippocampal neurons increased mito-
chondrial calcium accumulation and cell death [39].
These effects were partly mediated by their prevention of
ROS release, consequence of their uncoupling activity,
but also by a more direct anti-apoptotic activity.
Both oxidative damage and apoptosis are direct conse-

quences of the exicitotoxic stress imposed on neurons by
ischemia, and neurotrophins [113], heat shock proteins
[114], and other factors such as HO-1 [115] are known to
protect cells from apoptosis. However, most of the current
research interest is centred on SIRT1 as the central media-
tor of the defence against oxidative stress and apoptosis
caused by ischemia. SIRT1 has been proposed to mediate
neuron survival based on its broad deacetylase activity
and has been linked to a positive stroke outcome. SIRT1
function as a deacetylase directly inhibits p53-dependent
apoptosis in cortical neurons, and forkhead box (Fox)
O3-dependent apoptosis in cerebellar granule neurons,
when treated with DNA-damaging, apoptosis promoting
agents [116-118]. Affecting either of these transcription
factors has positive effects on stroke, as both p53 and
FoxO3 have been found to promote cell death upon
ischemic insult in vitro [119,120] and in vivo [121-123].
Another substrate of SIRT1 is the relA subunit of NF�B,
which as a result fails to activate transcription of pro-
apoptotic proteins in response to ischemia in vivo and in
vitro [124]. SIRT1 also prevents apoptosis by activating the
repair protein Ku70 following DNA damage. Under condi-
tions of oxidative stress, Ku70 acetylates, which prevents
its ability to sequester the proapoptotic factor Bax, but
SIRT1 deacetylates Ku70, which allows it to bind Bax, dis-
abling its apoptotic function [125,126]. This function of
Ku70, whose levels increase after an ischemic insult, has
been linked to a decrease in apoptosis after neonatal rat
ischemia [127], and a Bax-inhibiting peptide, based on the
Bax-Ku70 inhibiting domain, has proved to inhibit apopto-
sis and improve neurological outcome in rats subjected to
global cerebral ischemia [128].

Another protein that prevents apoptosis in stroke, whose
deacetylation is mediated by SIRT1, is PGC-1a. SIRT1 not
only strongly activates PGC-1a by deacetylation but it also
increases protein levels [129]. PGC-1a, which is also acti-
vated directly by oxidative stress, is responsible for pro-
tecting neurons from the excitotoxic effects of ischemia.
PGC-1a has been shown to be induced after transient glo-
bal ischemia, where it protects hippocampal neurons from
delayed cell death, and knocking down the gene results in
lower expression of UCP2 and the antioxidant enzyme
superoxide dismutase 2 (SOD2) leading to neuronal death
from oxidative stress [130]. Besides, there is in vitro evi-
dence that an increase in PGC-1a in neurons subjected to
oxygen and glucose deprivation results in the activation of
NMDA receptors and inhibits the expression of p38 and
ERK MAPK, protecting the neurons from death [131].
Surprisingly, despite its pleiotropic effects on the out-

come of stroke, the effect of SIRT1 on recovery from an
ischemic insult is not clear. There is evidence that SIRT1
+/- mice have a significantly worse outcome from focal
ischemia [132], and drugs such as icariin and resveratrol
that increase SIRT1 levels are protective [133,134]. How-
ever, another study reported the positive effects of nicoti-
namide, an inhibitor of SIRT1, on the outcome of brain
ischemia, and the explanation given is that SIRT1 is a
NAD+-dependent enzyme, and therefore in a moment of
extreme nutrient deficiency such as stroke, the detrimental
effects of its high energy consumption outweigh its afore-
mentioned beneficial effects [135]. On another note, it has
been reported that SIRT1’s effects on neuroprotection
might not be related to its deacetylase activity, as SIRT1’s
mutations lacking this activity continued to be protective
in a model of low potassium-induced neuronal apoptosis
[136]. Significant research effort is currently being applied
to the understanding of the complexities of SIRT1 in the
modulation of protection mechanisms following ischemia
and the therapeutic possibilities of the enhancement of its
activity.

Inflammation and autophagy
The positive effects of CR on inflammation and its
impact on stroke outcome are remarkable. On one side,
having low basal levels of inflammatory cytokines in the
circulation decreases susceptibility to stroke [137]. On
the other side, CR and IF suppress the overproduction of
inflammatory cytokines that is common after ischemic
stroke (Figure 2) [47] and which is known to some extent
to worsen stroke outcome [138]. SIRT1 and its inhibitory
role on NF�B could have a lot to do with the lower tran-
scription levels of inflammatory markers seen after stroke
in CR organisms. However, another mediator is mTOR, a
kinase which, as explained previously, has an important
role in inhibiting autophagy and inflammation [74].
mTOR plays a role in cell growth, but it also has a
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function in post-mitotic cells such as neurons, and
recently, evidence was shown for increased autophagy
after only 48 hours of CR in cortical and Purkinje neu-
rons [79], which correlated with decreased levels of
mTOR. The function of autophagy in neurons is to dis-
pose of toxins or damaged mitochondria and it is thought
to play an important part in cellular detoxification in
stroke. Supporting evidence for the role of autophagy in
stroke comes from an in vivo model of transient focal
ischemia, where autophagy was detected one day after
the insult and then decreased over a period of six days
[139]. However, evidence also suggests that autophagy
could lead to neuronal death, promoting the assumption
that autophagy is a tightly regulated balance that can go
one way or another [140,141]. Another consequence of
mTOR inhibition, as shown by treatment of cultured
brain slices with its inhibitor rapamycin, is the suppres-
sion of the detrimental post-ischemic long-term poten-
tial, but without affecting synaptic plasticity [142], which
would otherwise lead to apoptosis. mTOR inhibition also
contributes to a positive stroke outcome by decreasing
inflammation and immune system activation (Figure 2)
[143]. This is evident even in microglia, where mTOR
has an effect on activation by hypoxia which is down-
stream from iNOS and forms part of the PI3K/Akt path-
way. This effect, in the case of ischemia, could be
responsible for the release of inflammatory molecules by
microglia with neuronal death as a result of this inflam-
mation [144].

Other effects of CR in stroke
Neurogenesis and angiogenesis
These two processes are essential for the reconstruction of
brain tissue after stroke, which requires the generation of
new neurons and neuronal connections as well as the irri-
gation of these neurons. The primary mediators of
ischemic tissue recovery after stroke are BDNF and vascu-
lar endothelial growth factor (VEGF). It has been shown
that the rate of neuronal production is enhanced after
stroke and traumatic brain injury (reviewed in [145]), and
BDNF, the mediator of neurogenesis in rodent models of
stroke, is upregulated by CR [146]. Moreover, it has been
shown that 25% CR for three months accounts for
increased circulating levels of BDNF in obese humans.
VEGF, like other angiogenic factors, is also essential for
the recovery of brain tissue, as blood vessel formation has
important functions in revascularization of the tissue as
well as secretion of growth factors and chemokines which
support the survival of new neurons. VEGF expression,
enhanced by the hypoxia induced factor 1 alpha (HIF-1a)
increases with ischemia and contributes to neuroprotec-
tion, neurogenesis and angiogenesis [147], as well as blood
brain barrier protection. Besides, VEGF is upregulated by
CR mimetic resveratrol, which also upregulates other

important angiogenic protein, matrix metalloproteinase 2
(MMP-2) [148]. Together they contribute to blood vessel
formation in the post-ischemic tissue. Another mediator
of revascularization enhanced by CR is adiponectin, which
upon ischemic insult increases angiogenesis mediated by
activation of AMPK and eNOS, as has been observed in
hindlimb ischemia [149]. Adiponectin, a metabolic modu-
lator produced in adipose tissue whose circulating levels
are increased in CR and IF [150,151], has also been found
to have a positive effect in the recovery from brain ische-
mia [152].
Regulation of circulating stress hormones
One of the ways in which CR and IF have been shown to
improve the outcome of stroke is through endocrine reg-
ulation. Adrenocorticotropic hormone (ACTH) shows an
interesting pattern in rats: basal levels are higher under
IF, but under stress conditions the increase is smaller
than in control animals, suggesting an improved response
to stress [98]. Since levels of ACTH and the hormone it
induces, cortisol, increase dramatically after stroke and
have been correlated with lesion size and neurological
deficit in human patients [153,154], smaller increases of
these hormones after stroke would seem to be beneficial.
It has also been shown that CR down-regulates somato-
tropic signalling in mice [155], and that mice deficient in
growth hormone show an increase in life span, just like
those subjected to CR. Moreover, mice deficient in
growth hormone that undergo CR do not show any
further extension in life span, suggesting a partial depen-
dency between both mechanisms which is mediated by
insulin-like growth factor I and insulin [156].

Age modifies cell stress pathways and stroke
outcome
Because aging is a major risk factor for stroke, and stroke
outcome is poorer in the elderly, our group recently
tested the hypothesis that aging impairs the ability of
brain cells to respond adaptively to IF and so to survive a
stroke after this regimen. Our findings suggested that
aging compromises the ability of energy restriction to
protect the brain against ischemic injury and improve
functional outcome in stroke. The neuroprotective effect
of IF was robust in young mice, was diminished in mid-
dle-aged mice, and was lacking in old mice (Figure 3)
[47]. Our analysis of neurotrophic factors, stress resis-
tance proteins, and cytokines suggests mechanisms by
which aging impairs the ability of IF to protect brain cells
against a stroke. Levels of BDNF and basic fibroblast
growth factor (bFGF) were diminished in the cortex and
striatum of old mice compared with young mice. The
amounts of BDNF and bFGF were increased by IF to
much higher levels in young compared with middle-aged
and old mice [47]. Furthermore, levels of cellular stress
protection proteins examined (Hsp70, GRP78, and
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HO-1) were elevated in response to IF and stroke in
young mice, but with greatly diminished responses in
middle-aged and old mice [47]. In addition, proinflam-
matory cytokines TNF and IL-6 levels increased during
aging, and decreased in response to IF, particularly in
young and middle-aged mice [47]. These findings suggest
that reduction in dietary energy intake differentially mod-
ulates neurotrophic and inflammatory pathways to pro-
tect neurons against ischemic injury and these beneficial
effects of IF are compromised during aging (Figure 3).

Concluding Remarks
The results reported in this review provide evidence to
confirm CR as an easy, cost-effective and efficient mea-
sure not only for the prevention of stroke, but also for
the reduction of damage should stroke occur. On the
other side, there is little evidence on the efficacy of CR as

a treatment for stroke. One study reported the neuropro-
tective benefits of CR after traumatic brain injury in rats,
showing that, in this context, 24 hours of fasting after a
moderate injury resulted in lower oxidative stress and
calcium influx, and improved mitochondrial function
[157]. Experiments by another group on rat myocardial
ischemia followed by IF revealed improved heart function
and angiogenesis, and lower apoptotic rates in the IF rats
compared to the control group. These effects were
mediated, among others, by BDNF and VEGF [158]. A
similar, positive result was encountered in rats subjected
to spinal cord injury, where those that underwent IF after
the procedure showed improved plasticity and recovery
of neurons, accompanied by a 2 to 6-fold increase in
TrkB, the BDNF receptor [159]. These results contrast
with those obtained in a gerbil model of global ischemia
(5 minutes followed by reperfusion), in which no
improvement was found in animals subjected to CR after
the intervention [160]. These studies, however, are pro-
mising enough to warrant additional research to find out
how best, and to what extent, CR can help recover from
stroke after the injury has occurred.
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