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Multinational Federated Learning Approach 
to Train ECG and Echocardiogram Models for 
Hypertrophic Cardiomyopathy Detection
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Max Homilius , PhD; Genki Ichihara, MD; Yoshinori Katsumata, MD, PhD; Hanna K. Gaggin, MD, MPH;  
Yuji Itabashi , MD, PhD; Calum A. MacRae , MD, PhD; Rahul C. Deo , MD, PhD

BACKGROUND: Novel targeted treatments increase the need for prompt hypertrophic cardiomyopathy (HCM) detection. However, 
its low prevalence (0.5%) and resemblance to common diseases present challenges that may benefit from automated 
machine learning–based approaches. We aimed to develop machine learning models to detect HCM and to differentiate it 
from other cardiac conditions using ECGs and echocardiograms, with robust generalizability across multiple cohorts.

METHODS: Single-institution HCM ECG models were trained and validated on external data. Multi-institution models for 
ECG and echocardiogram were trained on data from 3 academic medical centers in the United States and Japan using a 
federated learning approach, which enables training on distributed data without data sharing. Models were validated on held-
out test sets for each institution and from a fourth academic medical center and were further evaluated for discrimination 
of HCM from aortic stenosis, hypertension, and cardiac amyloidosis. Last, automated detection was compared with manual 
interpretation by 3 cardiologists on a data set with a realistic HCM prevalence.

RESULTS: We identified 74 376 ECGs for 56 129 patients and 8392 echocardiograms for 6825 patients at the 4 academic 
medical centers. Although ECG models trained on data from each institution displayed excellent discrimination of HCM 
on internal test data (C statistics, 0.88–0.93), the generalizability was limited, most notably for a model trained in Japan 
and tested in the United States (C statistic, 0.79–0.82). When trained in a federated manner, discrimination of HCM was 
excellent across all institutions (C statistics, 0.90–0.96 and 0.90–0.96 for ECG and echocardiogram model, respectively), 
including for phenotypic subgroups. The models further discriminated HCM from hypertension, aortic stenosis, and cardiac 
amyloidosis (C statistics, 0.84, 0.83, and 0.88, respectively, for ECG and 0.93, 0.94, 0.85, respectively, for echocardiogram). 
Analysis of electrocardiography-echocardiography paired data from 11 823 patients from an external institution indicated 
a higher sensitivity of automated HCM detection at a given positive predictive value compared with cardiologists (0.98 
versus 0.81 at a positive predictive value of 0.01 for ECG and 0.78 versus 0.59 at a positive predictive value of 0.24 for 
echocardiogram).

CONCLUSIONS: Federated learning improved the generalizability of models that use ECGs and echocardiograms to detect and 
differentiate HCM from other causes of hypertrophy compared with training within a single institution.
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Hypertrophic cardiomyopathy (HCM) is a genetic 
disease of the myocardium arising from muta-
tions in genes encoding proteins that constitute 

the sarcomere apparatus.1,2 The heart in HCM is typically 
hypercontractile and hypertrophied and has reduced 
compliance. Although initially believed to be a rare dis-

ease, recent reports have suggested an HCM prevalence 
close to 0.5% in the general population.3

HCM manifests primarily as shortness of breath with 
reduced activity and carries a risk of adverse events such 
as atrial fibrillation, stroke, and sudden cardiac death. 
Once diagnosed, patients with HCM should be treated 
with comprehensive strategies, including screening of 
at-risk family members, pharmacological management 
of symptoms, and assessment and mitigation of risk of 
sudden death, including consideration of implantable 
cardioverter defibrillators.4 Although there is no approved 
medical therapy specific to HCM, a newly developed myo-
sin inhibitor, mavacamten, appears to ameliorate symp-
toms and biomarkers in defined subsets of patients with 
HCM.5,6 There is thus an increasing need for systematic 
detection of this disease. However, because the myocar-
dium also hypertrophies in response to more prevalent 
stresses such as hypertension and aortic valve stenosis 
(AS) or infiltrative diseases such as cardiac amyloidosis 
(CA) and Fabry disease, HCM remains underdiagnosed.7

Both echocardiogram and cardiac magnetic reso-
nance imaging (MRI) are used to make a definitive 
diagnosis of HCM. In addition to these imaging modali-
ties, interrogation of family history, physical examination, 
and genetic testing play important roles in identifying 
patients with HCM. Approximately 60% of patients 
have a clearly recognizable familial disease, and various 
causal mutations in genes such as MYH7 and MYBPC3 
have been identified.1 HCM is also characterized by a 
distinct histopathological pattern with disarray in the 
overall architecture of the hypertrophied myocytes.8 
Given the underdetection of HCM, typical workflows 
involving these diagnostic modalities are clearly not suf-
ficient because of cost, subtlety of findings in early dis-
ease, invasiveness of the approach, or availability of the 
modality, as well as the need for nonspecialist providers 
either to recall the diagnostic steps needed or to make 
a timely referral.

HCM can also be detected from characteristic 
changes in the ECG,9–13 a more widely available modal-
ity. We and others have developed machine learning 
(ML) strategies to detect HCM from both electrocar-
diography and echocardiography,12–17 but to date, these 
approaches have involved only a single modality and 
have been evaluated at single centers, which can limit 
the ability to generalize owing to biases in the distribu-
tion and ascertainment of patients. Improving general-
izability requires large quantities of data from various 
institutions. However, in the medical field, training data 
may include identifiable information, leading to a reluc-
tance to share. Federated learning is an ML technique 
that allows training of an ML model using data sets 
from multiple institutions without sharing raw data.18 
The approach was initially adopted to train models on 
small devices such as smartphones18 but has begun 
to be used in medical applications, including training 

Clinical Perspective

What Is New?
• Although the ECG is thought to be a well-standard-

ized modality, machine learning models to discrimi-
nate hypertrophic cardiomyopathy (HCM) using ECG 
did not generalize well to data from external sources.

• Federated learning across multiple institutions 
improved the generalizability of the model to dis-
criminate HCM using ECG without the need to 
transfer the raw data.

• Compared with detection by cardiologists, a machine 
learning pipeline combining electrocardiographic 
and echocardiographic data was able to detect 
HCM with higher sensitivity at a given specificity.

What Are the Clinical Implications?
• External validation is crucial to evaluate the general-

izability of machine learning models, and federated 
learning can be considered to improve generaliz-
ability by training models across multiple institu-
tions without data sharing.

• An ECG and echocardiogram HCM machine learn-
ing model may improve high-throughput detection 
of HCM by automatically analyzing data and indi-
cating the need for further clinical review.

Nonstandard Abbreviations and Acronyms

AS aortic valve stenosis
AUROC  area under the receiver-operating 

characteristics curve
BWH Brigham and Women’s Hospital
CA cardiac amyloidosis
GRAD-CAM  gradient-weighted class activation 

mapping
HCM hypertrophic cardiomyopathy
LVH left ventricular hypertrophy
MGH Massachusetts General Hospital
ML machine learning
MRI magnetic resonance imaging
PPV positive predictive value
2D 2-dimensional
UCSF University of California San Francisco
UMAP  Uniform Manifold Approximation and 

Projection
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models for brain tumor segmentation19 and prediction 
of COVID-19 outcomes.20

In the present study, we aimed to develop an auto-
mated workflow to detect HCM from ECGs and echo-
cardiograms using ML models that generalize across 
multiple clinical settings. To this end, we tested the 
hypothesis that federated learning would improve gen-
eralizability compared with training within a single insti-
tution and developed a stepwise approach integrating 
ECGs and echocardiograms (Figure 1).

METHODS
Data Availability
The data supporting the findings are available on approval of 
data-sharing committees at the respective institutions. The 
availability of code is detailed in the Supplemental Methods 
section.

Definition of HCM Cases and Controls
For all institutions, patients with HCM were first identified from 
diagnostic codes (International Classification of Diseases, 10th 
Revision codes I42.1 or I42.2) or echocardiography reports and 
then manually confirmed by chart review. Cases of HCM were 
defined as patients with maximum left ventricular wall thick-
ness exceeding 15 mm (except for Keio University Hospital, 
where 13 mm was used as a cutoff because the interventricu-
lar septum thickness was measured excluding the right ventric-
ular wall thickness) without any other explanation for ventricular 
hypertrophy. All patients were required to have been diagnosed 
with HCM at a specialized clinic within that institution. Controls 
were selected from those without diagnostic codes I42.1 or 
I42.2. No other exclusion criteria were applied; thus, no chart 
review was undertaken for the controls.

Data Collection for ECG Training and Testing 
Cohorts
To build ECG models for HCM detection, we collected elec-
trocardiographic data from 4 institutions (3 institutions from 
the United States and 1 from Japan). Although the diagno-
sis of HCM is made when cardiac hypertrophy is present, 
because HCM may have subtle manifestations before overt 
hypertrophy,21 we included all historic 12-lead electrocar-
diographic studies for identified cases. After exclusion of 
ECGs after myectomy or ablation of myocardium, with elec-
tronic pacing (both atrial and ventricular), with left bundle-
branch block patterns, or with recording <10 seconds, the 
ECGs from cases were matched on age and sex in a 1:5 
ratio (reason detailed in the Supplemental Methods) to ECGs 
from controls. All ECGs were preprocessed to match 250-
Hz sampling (described in Supplemental Methods). After the 
process, all electrocardiographic data were represented as 
time series of voltages recorded for 10 seconds at 250 Hz 
for each lead, which results in 12 sets of voltage vectors of 
length 250×10=2500 (Figure S1). We converted these data 
into a 2-dimensional (2D) matrix of shape 12×2500 saved in 
a binary format designed to hold multidimensional matrix (ie, 
NumPy array format).

Evaluation of Electrocardiographic Data 
Heterogeneity Across Institutions
Uniform Manifold Approximation and Projection (UMAP) is an 
unsupervised ML technique for dimension reduction.22 This 
approach can be used to project high-dimensional vector onto 
a 2D space to allow visual inspection. In UMAP, similar data 
are placed closer, and data with different features are placed 
farther apart, allowing identification of data clusters.

To visualize the heterogeneity of the electrocardiographic 
data across institutions, raw electrocardiographic voltage 
recordings were projected on a 2D map using UMAP. Because 
UMAP takes vectors rather than matrices as input, the 2D 
matrices of ECGs with a shape of 12×2500 were flattened 
into a vector of length 30 000 by first separating the 12-lead 
data into 12 sets of vectors with a length of 2500 and then 
concatenating it (Figure S2). ECGs from all 4 institutions were 
projected onto a single map. The UMAP projection was colored 
according to institution, HCM status, sampling rate, age, sex, 
race, and heart rate.

Training and Evaluation of ECG Model Trained 
With Single-Institution Data
To evaluate the generalizability of the ECG models trained at 
individual institutions, we trained a convolutional neural net-
work model (detailed in the Supplemental Methods) with 5-fold 
cross-validation for each institution resulting in 20 models (5 
models each for 4 institutions). To this end, data sets from each 
institution were randomly separated into 5 equal chunks (folds).

Data leakage is a common error in ML. It happens when 
cases (or controls) used in the testing phase are more simi-
lar to cases (or controls) in the training phase than expected 
by chance. This causes exaggerated performance. In our case, 
data leakage could happen if ECGs from a single patient were 
distributed among both training (derivation and validation data 
set) and test (including >1-fold in cross-validation) data. The 
model then learns and uses patient-specific rather than dis-
ease-specific features. To avoid this, splitting of training data 
was performed on the patient level. Models were trained for 
150 epochs (an epoch indicates 1 pass over the entire training 
data set completed by the ML algorithm). To avoid overfitting, 
the model with the highest area under the receiver-operating 
characteristics curve (AUROC) on the validation fold within the 
150 epochs was chosen for evaluation (150 was chosen as a 
long enough number to avoid underfitting). All 20 models were 
tested on held-out data for each institution, along with the com-
plete data set from each external institution, which resulted in 5 
predictions per institution for each model. The mean and 95% 
CI of the AUROC were calculated for each model on each insti-
tution from these predictions. Subgroup analyses on age, sex, 
heart rate, and race were performed using the external data set 
to understand the heterogeneity of the models.

Training and Evaluation of ECG Model With 
Federated Learning
To train a model generalizable across multiple institutions with-
out explicit comingling of data, we used a federated learning 
approach.18 The same architecture and data sets as the individual 
institution models were used to train the federated learning model. 
Data from each of the 3 institutions (Massachusetts General 



OR
IG

IN
AL

 R
ES

EA
RC

H 
AR

TI
CL

E

September 6, 2022 Circulation. 2022;146:755–769. DOI: 10.1161/CIRCULATIONAHA.121.058696758

Goto et al AI Model to Detect HCM From ECG and Echocardiogram

Hospital [MGH], University of California San Francisco [UCSF], 
and Keio University Hospital) were separated into derivation, vali-
dation, and test data sets with a 3:1:1 ratio. The split was done at 
a patient level to ensure that no data from a single patient were 

allocated to >1 data set. The model was trained by performing 
multiple steps of individual model training and central aggregation 
of the models across institutions. A single step consisted of the 
following sequence. (1) A separate model is trained on data from 

Figure 1. Study overview.
A, The ECG–hypertrophic cardiomyopathy (HCM) models trained on data from a single institution discriminated HCM excellently on a held-
out data set from that same institution, but some models generalized poorly on an external data set. B, Schematic of the process of federated 
learning. Multi-institutional models can be trained without data leaving any institution. In our case, ECG and echocardiogram models trained using 
federated learning not only discriminated HCM well on held-out test sets but also had excellent discrimination on external validation data sets 
from an independent institution. Schematic of deployment simulation. C, A cohort with an HCM prevalence of 0.5% was constructed to reflect 
prevalence in the general population. The stepwise approach with ECG followed by echocardiogram model achieved a sensitivity of 0.84 at a 
positive predictive value (PPV) of 0.25, whereas expert cardiologists could achieve a sensitivity of only 0.59 at a PPV of 0.24 even by performing 
echocardiograms on all patients in this cohort. AUROC indicates area under the receiver-operating characteristics curve; B, Brigham and Women’s 
Hospital; K, Keio University Hospital; M, Massachusetts General Hospital; and U, University of California San Francisco. 
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each institution for 1 epoch. (2) The models from all institutions 
are sent to the central server and are aggregated (Supplemental 
Methods). (3) The central server sends back the aggregated 
model to each institution. (4) The institution updates the model 
by training another epoch on their data. The final model (chosen 
as described previously) was evaluated on the test data set from 
each of the 3 institutions, along with an external validation data 
set from Brigham and Women’s Hospital (BWH). Analyses were 
performed comparing various subgroups: HCM with and with-
out outflow tract obstruction (defined as a pressure gradient > 
50 mm Hg), apical and nonapical HCM, HCM with and without 
pathological genetic mutations, and HCM with and without con-
firmation by MRI. Furthermore, we performed analyses limiting 
the data to outpatient ECGs and restricting controls to patients 
with non–left ventricular hypertrophy (LVH) confirmed by echo-
cardiogram. In addition, the discrimination for cases of nonapical 
HCM before developing LVH was tested. To help understand the 
features used by the model, activation patterns weighted by the 
gradient of classification (GRAD-CAM23) were visualized.

Hypertension and AS are 2 common reasons for LVH. 
Because these diseases are much more prevalent compared 
with HCM, they are a source of misclassification in real-world 
practice. Although rare, CA resembles HCM morphologically 
yet requires different treatment. The following comparisons 
were thus evaluated on BWH data:

1. HCM versus AS with LVH (aortic valve area <1 cm2 and 
left ventricular mass index to body surface area ≥95 for 
women and ≥115 for men on an echocardiogram within 
90 days of the ECG);

2 HCM versus hypertension (median systolic blood pres-
sure >140 mm Hg) with LVH; and

3. HCM versus CA (as described previously24).

Training and Evaluation of the Echocardiogram 
Model With Federated Learning
To train the echocardiogram model to detect HCM, we col-
lected echocardiogram data from the same 4 institutions as 
the ECGs and defined HCM case status as above. All echo-
cardiogram studies for identified cases were extracted. After 
exclusion of studies after myectomy/ablation of the myocar-
dium and those with pacemaker or implantable cardioverter 
defibrillator leads, cases were matched with a 1:3 ratio (reason 
detailed in Supplemental Methods) on the basis of age and sex 
to echocardiograms from control patients. Before training, the 
videos were standardized to 30 frames with 30 frames per sec-
ond and a squared size of 299×299 (Supplemental Methods). 
A 3-dimensional convolutional neural network–based model 
(Supplemental Methods) was trained using federated learn-
ing. Echocardiogram models were trained and tested using 
the same multi-institutional strategy as with the ECG model. A 
GRAD-CAM image was also used to explore model interpret-
ability. The same subgroups and discrimination between other 
causes of LVH were tested as the ECG model.

Comparing Sensitivity and Positive Predictive 
Value of ECG-Echocardiography Models With 
Cardiologist Interpretation
To reflect real-world prevalence, we assembled data to con-
struct a surveillance cohort with an HCM prevalence of 0.5%.1 

Patients with an ECG and echocardiogram taken within 30 
days were identified within our BWH cohort. A single ECG-
echocardiography study pair having the shortest time between 
electrocardiography and echocardiography studies was 
selected for each patient, and confirmed cases of HCM and 
controls were randomly extracted at a 1:200 ratio until the 
controls were exhausted. We deployed the ECG and echocar-
diogram HCM models on each study and assessed the dis-
crimination of the ECG and echocardiogram model for HCM 
using precision recall curve plots. The same data set (ECG and 
echocardiogram) was labeled by 3 cardiologists for compari-
son with the models (Supplemental Methods). Because diag-
noses by physician are binary rather than continuous values, 
a specific cutoff (a value at which all observations higher are 
defined positive and all lower are negative) for the model was 
required to enable comparison. Cutoffs were selected to match 
the positive predictive value (PPV) by the physicians’ reading, 
and sensitivity at that cutoff was compared. We additionally 
evaluated a stepwise approach of an ECG model followed by 
echocardiogram model.

Statistical Analysis
Continuous values are presented as mean±SD, and categorical 
values are presented as numbers and percentages if not other-
wise specified. The 95% CIs were calculated by the bootstrap 
method with 2000 bootstrap samples, except for the analyses 
of models trained at individual institutions, for which the 95% 
CIs were calculated from the SE of the 5 models generated 
with 5-fold cross-validation. A 2-tailed value of P<0.05 was 
considered significant.

Ethics Statement
This study complies with all ethics regulations and guide-
lines. The study protocol was approved by local institu-
tional review boards of Massachusetts General Brigham 
(2019P002651), UCSF (10-03386), and Keio University 
Hospital (20200030). Because the study collected data ret-
rospectively, a waiver of informed consent was approved by 
the institutional review board.

RESULTS
Limitation in Generalizability of HCM-ECG 
Models
From the 4 participating institutions, 3932, 3802, 1461, 
and 3201 eligible ECGs from 447, 324, 196, and 141 
patients with HCM were identified at BWH, MGH, UCSF, 
and Keio University Hospital, respectively (Figures S3–
S6). The ECGs from patients with HCM showed lower 
heart rates, longer PR intervals, longer QRS durations, 
longer corrected QT intervals, higher amplitudes of R 
wave in V5/V6 leads, and deeper S waves in V1/V2 leads 
compared with controls (Tables S1 and S2). In BWH, 
96 (21.5%) had apical HCM, 159 (61.9%) had left 
ventricular outflow tract obstruction, 92 (48.2%) had a 
pathological genetic mutation, and 275 (61.5%) were 
confirmed for HCM by MRI. The UMAP projection of 
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the ECGs revealed heterogeneity of the data, which was 
most pronounced in ECGs from Keio University Hospital, 
for which almost no data were present in the middle-left 
region (Figure 2A). This region could not be mapped un-
ambiguously to patient factors or electrocardiographic 
characteristics (Figure S7). Although the models trained 
at individual institutions discriminated HCM excellently 
with an AUROC of 0.88 to 0.93 on the internal held-
out data set (ie, from the same institution), some models 
did not generalize well to data from other institutions 
(Figure 2B). Specifically, the model from Keio University 
Hospital, despite having larger sample size than UCSF 
and an internal test set AUROC of 0.93, had an AUROC 
of 0.79, 0.79, and 0.82 on MGH, UCSF, and BWH, re-
spectively. The difference visible in the UMAP partially 
explained this result: The model trained on data from 
Keio University Hospital showed significantly degraded 
performance on external ECG samples that were pro-
jected into the cluster, where internal samples were 
lacking (cluster with versus without internal samples: 
AUROC, 0.86 versus 0.81, 0.82 versus 0.77, and 0.81 
versus 0.79 for BWH, MGH, and UCSF, respectively; 
Figure S8). No obvious patient subgroup was respon-
sible for the disparate performance (detailed in Supple-
mental Results and Figure S9).

Federated Learning Improves the 
Generalizability of the HCM-ECG Model
Federated learning on data from 3 institutions enhanced 
the overall discrimination of the ECG model and greatly 
improved generalizability to external cohorts (AUROC, 
0.90, 0.90, and 0.96 for MGH, UCSF, and Keio Univer-
sity Hospital, respectively, for the internal test; and AU-
ROC, 0.93 for BWH external validation; Figure 3A and 
3B). HCM discrimination varied across phenotypic sub-
groups, with AUROC values of 0.94, 0.97, 0.92, and 0.92 
for HCM with outflow tract obstruction, apical HCM, no 
outflow tract obstruction, and nonapical HCM, respec-
tively (Figure 3C). The discrimination was not affected by 
the limitation of cases to those with known pathological 
genetic mutations (AUROC, 0.94 and 0.93 for with and 
without mutation, respectively) or with MRI confirmation 
(AUROC, 0.92 and 0.93 for with and without confirma-
tion, respectively), nor was it affected by limiting the  
entire cohort to ECGs obtained in outpatient settings 
(AUROC, 0.93; 16 040 patients) or limiting the con-
trols to those without LVH confirmed by echocardiog-
raphy (AUROC, 0.93; Figure S10; Figure S11 shows 
selection of no-LVH controls). Furthermore, the model 
discriminated HCM from hypertension, severe AS, and 
CA, although with a slight performance drop (AUROC, 
0.84, 0.83, and 0.88, respectively; Figure 3D; Figures 
S12–S14 and Tables S3–S5 show patient selection). 
The model was also able to discriminate cases with non-

apical HCM before developing LVH with a slight drop 
in discrimination (AUROC, 0.88; Figure 3E; Figure S15 
shows patient selection). GRAD-CAM revealed that the 
model was focusing primarily on the QRS complex for 
those ECGs fulfilling voltage criteria for LVH. For those 
without high voltage, the model appeared to focus main-
ly on the QT interval of the ECG (Figure 3F).

Combining data from 3 institutions increases over-
all sample size and may explain the benefit of a feder-
ated learning approach. We thus performed a sensitivity 
analysis by training a federated learning model after sub-
sampling the training data set to match the sample size 
from Keio University Hospital. The results revealed much 
a higher AUROC (0.87, 0.88, 0.96, and 0.91 for MGH, 
UCSF, Keio University Hospital, and BWH, respectively) 
compared with the model trained at Keio University Hos-
pital alone (Figure S16).

To understand the additional value of raw electro-
cardiographic data over traditional electrocardiographic 
measurements and patient characteristics, 4 addi-
tional models were trained (Supplemental Methods). All 
showed only moderate discrimination for HCM (AUROC, 
0.81–0.82 on ECGs from BWH; Table S6).

Excellent Generalizability of an HCM-
Echocardiogram Model Trained by Federated 
Learning
From the 4 participating institutions, 760, 514, 296, and 
528 eligible echocardiogram studies from 327, 242, 167, 
and 172 patients with HCM were identified at BWH, 
MGH, UCSF, and Keio University Hospital, respectively 
(Figures S17–S20). Patients with HCM (at the time of 
the echocardiogram) had lower heart rates, higher ejec-
tion fraction, greater interventricular septum thickness, 
and greater posterior wall thickness compared with con-
trols (Tables S7 and S8). Of the cases with HCM in the 
BWH cohort, 64 (19.6%) had apical HCM, 125 (61.8%) 
had left ventricular outflow tract obstruction, 74 (50.0) 
had pathological genetic mutation, 218 (66.7%) were 
confirmed by MRI, and 137 (63.4%) had LVH. The echo-
cardiogram model trained with data from 3 institutions 
using a federated learning approach discriminated HCM 
excellently across the internal test data sets and exter-
nal validation data set (AUROC, 0.91, 0.92, and 0.90 
for MGH, UCSF, and Keio University Hospital, respec-
tively, for the internal test; and AUROC, 0.96 on BWH 
external validation; Figure 4A and 4B). There was mod-
est variation across phenotypic subgroups: AUROC of 
0.98 and 0.96 for detecting HCM with and without out-
flow tract obstruction, respectively (Figure 4C); AUROC 
of 0.94 versus 0.96 for apical versus nonapical HCM; 
AUROC of 0.96 for HCM with and without genetic mu-
tations; and AUROC of 0.96 versus 0.97 for patients 
with and without MRI confirmation, respectively. HCM 
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discrimination was comparable using only outpatient 
echocardiograms (AUROC, 0.96) or limiting the con-
trols to cases without LVH (AUROC, 0.97; Figure S21).  
Unlike the ECG model, the echocardiogram model could 
discriminate HCM from hypertension or AS without a 

significant drop in AUROC (0.93 and 0.94 for hyper-
tension and AS, respectively; Figure 4D; Figures S22–
S24 and Tables S9–S11 show patient selection). For 
cases with CA, the discrimination between HCM was 
slightly lower (AUROC, 0.85). As with ECG, the model  

Figure 2. Heterogeneity of ECG and AUROCs of models trained at individual institutions.
A, Uniform Manifold Approximation and Projection (UMAP) projection of raw electrocardiographic recording stratified by institution. B, Heat 
map showing the performance of models trained at individual institutions. Held-out test data sets were used to evaluate model performance. 
The models were trained using 5-fold cross-validation for each institution, and all models were tested on their own institution test set along with 
3 external data sets. The area under the receiver-operating characteristics curve (AUCROC) and 95% CI based on the SE for the 5 models 
are shown. BWH indicates Brigham and Women’s Hospital; Keio, Keio University Hospital; MGH, Massachusetts General Hospital; and UCSF, 
University of California San Francisco.
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Figure 3. Discrimination of HCM by the ECG model trained with federated learning.
A, Receiver-operating characteristics (ROC) plots for hypertrophic cardiomyopathy (HCM) discrimination of the ECG model trained in a federated 
manner on a held-out internal test data set for each institution (3569, 1375, and 2656 patients in test data set from Massachusetts General Hospital 
[MGH], University of California San Francisco [UCSF], and Keio University Hospital [Keio], respectively) and on an (B) external data set (18 118 
patients from Brigham and Women’s Hospital [BWH]). C, ROC curves for discriminating HCM with and without outflow tract obstruction (17 830 and 
17 769 patients, respectively) and apical and nonapical HCM (17 767 and 18 022 patients, respectively). D, ROC curves for discriminating HCM with 
hypertension, aortic valve stenosis (AS), or cardiac amyloidosis (1020, 746, and 811 patients, respectively). E, An ROC curve for discrimination of 
HCM before developing HCM (17 760 patients). The 95% CI of the true-positive fraction for a given false-positive fraction is shown as a blue ribbon 
(N is the number of studies). F, Gradient-weighted class activation mapping images for HCM samples with and without high voltage. Areas of primary 
focus of the model are indicated by black arrowheads. AUC indicates area under the curve; HTN, hypertension; and LVH, left ventricular hypertrophy.
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Figure 4. Discrimination of HCM by the echocardiogram model trained with federated learning. 
A, Receiver-operating characteristics (ROC) plots for detecting hypertrophic cardiomyopathy (HCM) using echocardiogram model trained in 
a federated manner tested on held-out internal data for each institution (1700, 1031, and 1639 patients in test data set from Massachusetts 
General Hospital [MGH], University of California San Francisco [UCSF], and Keio University Hospital [Keio], respectively) and on an (B) external 
data set (2455 patients from Brigham and Women’s Hospital [BWH]). C, ROC plots for detecting HCM with and without outflow tract obstruction 
(2253 and 2205 patients, respectively) and apical and nonapical HCM (2192 and 2391 patients, respectively). D, ROC curves for discriminating 
HCM with hypertension (HTN), aortic valve stenosis (AS), cardiac amyloidosis (1491, 611, and 640 patients, respectively). E, ROC curve for 
discrimination of HCM before developing HCM (2403 patients). The 95% CI of the true-positive fraction for a given false-positive fraction is 
shown as a blue ribbon (N is the number of studies). F, Gradient-weighted class activation mapping images for HCM sample. Areas of primary 
focus of the model are indicated by white arrowheads. AUC indicates area under the curve; and LVH, left ventricular hypertrophy. 
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discriminated HCM cases before overt LVH (AUROC, 0.95; 
Figure 4E; Figure S25 shows patient selection). GRAD-
CAM analysis revealed a focus on the left ventricular sep-
tum and a region located caudal and posterior to the left 
atrium and prioritization of end diastole (Figure 4F).

As with electrocardiographic data, the 4 baseline 
models using readily available echocardiogram measure-
ments and baseline patient characteristics showed only 
moderate discrimination of HCM (AUROC, 0.81–0.82 
on echocardiograms from BWH; Supplemental Methods 
and Table S12).

Screening Approaches Using the ECG and 
Echocardiogram Models Detect HCM at Higher 
Sensitivity Than Cardiologists
After exclusion of patients with invalid ECGs or echo-
cardiograms, 11 823 patients (59 cases with HCM) with 
ECG-echocardiogram pairs were included in the con-
structed surveillance cohort (Figure S26 and Table S13). 
Assuming that the models would be used in screening 
settings, cutoffs at high sensitivity ranges were analyzed, 
showing comparable sensitivities/specificities for the in-
ternal test sets, external validation set, and the surveil-
lance cohort at various cutoff points (Table 1).

Using ECGs alone, the model achieved much higher 
sensitivities (98%) compared with all 3 cardiologists 
(73%–81%) at the same PPV of 1% (Supplemental 
Results provides details; see also Table 2 and Fig-
ure 5A). A decision curve analysis revealed that the net 
benefit of the ECG ML model surpassed other heuristic 
strategies (Figure S27).

Although there was considerable variability in the 
ability of experts to detect HCM from echocardio-
gram, the sensitivity of the cardiologists for detecting 
patients with HCM from echocardiogram was low in 
this cohort (37%–59%). The PPV of the experts was 

19% to 24%, with lower sensitivity on MRI-confirmed 
cases and cases without LVH (sensitivities, 31%–50% 
and 25%–42% respectively; Table S14). When cutoffs 
were adjusted to achieve the same or higher PPV as 
the experts, the echocardiogram model consistently 
showed higher sensitivities (78% sensitivity at 24% 
PPV; Table 2). As with the ECG, the observation was 
evident across the entire PPV range (Figure 5A) and 
surpassed other approaches (Figure S27).

We further compared the use of the models in a set-
ting where ECGs were used as a screening tool to select 
patients for echocardiogram. First, we compared the 
stepwise approach using the ECG model to prescreen 
patients before the echocardiogram model (ECG-ECHO) 
versus using an echocardiogram model for all patients 
(ECHO). The results showed that by preselecting with 
ECG, a higher sensitivity could be achieved (sensitivity, 
75% and 66% for ECG-ECHO and ECHO, respectively, 
at a PPV of 30%) despite performing smaller numbers 
of echocardiograms (5277 of 11 823 patients undergo-
ing echocardiogram evaluation; Table 3). In comparison, 
the best expert would select 5350 patients to perform 
an echocardiogram based on ECG and would detect 
HCM with 49% sensitivity at a 28% PPV (Table 3 and 
Figure 5B). This resulted in improved negative likelihood 
(negative likelihood ratios, 0.26, 0.34, and 0.51 for ECG-
ECHO, ECHO, and stepwise approach by the best expert; 
for all comparisons with stepwise approach, P<0.01).

DISCUSSION
We describe here a multimodality approach to automate 
detection of HCM enabled by training on multi-institu-
tional data using federated learning with low-cost in-
puts that can be gathered in a primary care setting. The 
2-stage screening strategy using the models showed a 
much higher sensitivity compared with cardiologists.

Table 1. Sensitivities and Specificities for HCM Detection at Various Cutoffs Table 1. Continued

Model

  Combined internal test cohort BWH matched cohort Surveillance cohort

Target  
sensitivity Cutoff Sensitivity Specificity PPV NPV Sensitivity, % Specificity, % PPV NPV Sensitivity Specificity PPV NPV

ECG 0.90 5.0 0.92 (0.91–0.94) 0.67 (0.66–0.68) 0.30 (0.30–0.31) 0.98 (0.98–0.99) 0.95 (0.94–0.96) 0.63 (0.63–0.74) 0.34 (0.34–0.35) 0.99 (0.98–0.99) 0.98 (0.95–1.00) 0.56 (0.55–0.57) 0.01 (0.01–0.01) 1.00 (1.00–1.00)

0.85 10.0 0.86 (0.84–0.87) 0.80 (0.79–0.81) 0.41 (0.39–0.42) 0.97 (0.97–0.98) 0.90 (0.89–0.91) 0.78 (0.78–0.79) 0.45 (0.45–0.46) 0.98 (0.97–0.98) 0.97 (0.92–1.00) 0.72 (0.71–0.72) 0.02 (0.02–0.02) 1.00 (1.00–1.00)

0.80 17.5 0.81 (0.79–0.73) 0.87 (0.86–0.88) 0.50 (0.48–0.51) 0.97 (0.97–0.86) 0.85 (0.84–0.86) 0.86 (0.86–0.87) 0.55 (0.54–0.56) 0.97 (0.96–0.97) 0.97 (0.92–1.00) 0.82 (0.81–0.82) 0.03 (0.02–0.03) 1.00 (1.00–1.00)

0.75 25.0 0.76 (0.74–0.79) 0.90 (0.90–0.91) 0.55 (0.53–0.57) 0.96 (0.96–0.96) 0.81 (0.79–0.82) 0.90 (0.90–0.90) 0.62 (0.61–0.63) 0.96 (0.96–0.96) 0.97 (0.92–1.00) 0.87 (0.86–0.87) 0.03 (0.03–0.04) 1.00 (1.00–1.00)

0.70 40.0 0.70 (0.67–0.72) 0.94 (0.93–0.94) 0.63 (0.61–0.65) 0.95 (0.95–0.96) 0.74 (0.72–0.75) 0.94 (0.93–0.94) 0.69 (0.68–0.71) 0.95 (0.94–0.95) 0.90 (0.81–0.97) 0.91 (0.91–0.92) 0.05 (0.04–0.05) 1.00 (1.00–1.00)

Echocardiogram 0.90 2.0 0.91 (0.87–0.94) 0.72 (0.69–0.75) 0.53 (0.50–0.56) 0.96 (0.94–0.97) 0.93 (0.92–0.95) 0.83 (0.81–0.85) 0.93 (0.92–0.95) 0.98 (0.97–0.98) 0.98 (0.95–1.00) 0.80 (0.79–0.80) 0.02 (0.02–0.02) 1.00 (1.00–1.00)

0.85 6.0 0.86 (0.82–0.90) 0.83 (0.81–0.86) 0.64 (0.60–0.68) 0.95 (0.93–0.96) 0.89 (0.87–0.91) 0.90 (0.89–0.91) 0.75 (0.72–0.77) 0.96 (0.95–0.97) 0.97 (0.92–1.00) 0.88 (0.88–0.89) 0.04 (0.04–0.04) 1.00 (1.00–1.00)

0.80 9.0 0.81 (0.77–0.86) 0.86 (0.83–0.88) 0.66 (0.62–0.70) 0.93 (0.91–0.95) 0.88 (0.86–0.90) 0.92 (0.91–0.93) 0.79 (0.76–0.81) 0.96 (0.95–0.97) 0.97 (0.92–1.00) 0.90 (0.90–0.91) 0.05 (0.04–0.05) 1.00 (1.00–1.00)

0.75 18.0 0.75 (0.7–0.81) 0.90 (0.88–0.92) 0.73 (0.68–0.77) 0.92 (0.90–0.93) 0.84 (0.82–0.87) 0.95 (0.94–0.96) 0.85 (0.82–0.87) 0.95 (0.94–0.96) 0.97 (0.92–1.00) 0.94 (0.93–0.94) 0.07 (0.07–0.08) 1.00 (1.00–1.00)

0.70 32.0 0.70 (0.65–0.75) 0.93 (0.91–0.95) 0.77 (0.73–0.82) 0.90 (0.89–0.92) 0.80 (0.77–0.83) 0.96 (0.95–0.97) 0.88 (0.85–0.90) 0.94 (0.93–0.94) 0.93 (0.86–0.98) 0.96 (0.95–0.96) 0.10 (0.09–0.11) 1.00 (1.00–1.00)

(Continued ) Results are shown as value (95% CI). Cutoffs are selected to achieve the highest specificity for a sensitivity at or higher than the target sensitivity. Cutoff scores 
are presented as 10 for the electrocardiogram model and 10 for the echocardiogram model. Combined internal test cohort: combined test set of Massachusetts 
General Hospital, University of California San Francisco, and Keio University Hospital. Brigham and Women’s Hospital: matched cohort: external validation cohort 
constructed by age and sex matching for Brigham and Women’s Hospital. HCM indicates hypertrophic cardiomyopathy; NPV, negative predictive value; and PPV, 
positive predictive value.
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We previously developed a convolutional neural 
network–guided approach (combined with gradient 
boosting) to detect HCM by ECG,14 and others have 
subsequently published an end-to-end solution toward 
the same end.16 We and others have also published a 2D 
convolutional neural network model using a frame-by-
frame approach for echocardiographic data.17,25 These 
studies were all based on data from a single center and 
used a single modality. We show here that models trained 
on data from a single institution may not perform as 
expected on external data even when the performance 
on the held-out test data set is excellent. We have also 
demonstrated that the discrimination of HCM and gen-
eralizability of the model can be substantively improved 
by using a federated learning approach across multiple 
institutions without the need for data sharing. Although 
ECG is generally considered a well-standardized modal-
ity, our results suggest that there is still heterogeneity 
across institutions. The heterogeneity of the ECG could 
be attributable to (1) a difference in population factors or 
(2) a difference in technical factors such as vendor signal 
processing approaches. Our analysis visualizing patient 
characteristics on UMAP projections or subgroup analy-
sis of models from individual institutions did not find any 
patient factors that explain the heterogeneity.

Although federated learning eliminates the need for 
centralizing the data, the model still needs to be trans-
ferred during training, and aspects of the original data 
can be partially extracted from neural network models by 
reverse engineering.26,27 However, the federated learning 
approach still has significant merits. First, as described, 
reverse engineering is required to extract data from the 
model. In our scenario, the models are shared between 
trusted entities. Thus, if an agreement is made not to 
reverse engineer the model, the data are not visible to 

the recipient. Second, the amount of information trans-
ferred and stored in the central server is greatly differ-
ent. For example, the current analysis required 10 to 100 
terabytes of data from each institution, whereas the mod-
els are gigabytes in size. Last, encryption techniques can 
further protect the original data, albeit at the expense of 
model performance.28

Downstream workflows will inform how to implement 
the models in clinical practice. In the case of HCM, this 
would include gathering of family information and, if 
required, confirmatory cardiac MRI, genetic testing, or 
biopsy if the echocardiogram is not clearly diagnostic. A 
PPV for screening can be considered a pretest probabil-
ity of the next test or action; a more costly or invasive 
next action often requires a higher pretest probability. 
The strength of using ML model is that the choice of cut-
off point can be tuned to adapt to situation. Our models 
displayed consistently higher sensitivity compared with 
cardiologists across a wide range of PPVs, suggesting 
that a substantial number of HCM cases that would oth-
erwise be missed by cardiologists could be detected by 
the models at a given pretest probability requirement.

We have considered how to incorporate data from both 
ECG and echocardiogram to perform screening for HCM 
effectively. We believe the best way to apply such disease 
detection models in clinical settings is through a system-
atic screening with ECG followed by a more informative 
evaluation by echocardiography. Our data suggest that 
performing electrocardiographic screening with the ML 
model improves sensitivity at the same PPV compared 
with a strategy of performing an echocardiogram on all 
patients and reduces the number of echocardiograms 
performed. Because echocardiogram provides informa-
tion beyond an HCM diagnosis, the modality should cer-
tainly still be used if otherwise indicated. However, in a 

Table 1. Sensitivities and Specificities for HCM Detection at Various Cutoffs Table 1. Continued

Model

  Combined internal test cohort BWH matched cohort Surveillance cohort

Target  
sensitivity Cutoff Sensitivity Specificity PPV NPV Sensitivity, % Specificity, % PPV NPV Sensitivity Specificity PPV NPV

ECG 0.90 5.0 0.92 (0.91–0.94) 0.67 (0.66–0.68) 0.30 (0.30–0.31) 0.98 (0.98–0.99) 0.95 (0.94–0.96) 0.63 (0.63–0.74) 0.34 (0.34–0.35) 0.99 (0.98–0.99) 0.98 (0.95–1.00) 0.56 (0.55–0.57) 0.01 (0.01–0.01) 1.00 (1.00–1.00)

0.85 10.0 0.86 (0.84–0.87) 0.80 (0.79–0.81) 0.41 (0.39–0.42) 0.97 (0.97–0.98) 0.90 (0.89–0.91) 0.78 (0.78–0.79) 0.45 (0.45–0.46) 0.98 (0.97–0.98) 0.97 (0.92–1.00) 0.72 (0.71–0.72) 0.02 (0.02–0.02) 1.00 (1.00–1.00)

0.80 17.5 0.81 (0.79–0.73) 0.87 (0.86–0.88) 0.50 (0.48–0.51) 0.97 (0.97–0.86) 0.85 (0.84–0.86) 0.86 (0.86–0.87) 0.55 (0.54–0.56) 0.97 (0.96–0.97) 0.97 (0.92–1.00) 0.82 (0.81–0.82) 0.03 (0.02–0.03) 1.00 (1.00–1.00)

0.75 25.0 0.76 (0.74–0.79) 0.90 (0.90–0.91) 0.55 (0.53–0.57) 0.96 (0.96–0.96) 0.81 (0.79–0.82) 0.90 (0.90–0.90) 0.62 (0.61–0.63) 0.96 (0.96–0.96) 0.97 (0.92–1.00) 0.87 (0.86–0.87) 0.03 (0.03–0.04) 1.00 (1.00–1.00)

0.70 40.0 0.70 (0.67–0.72) 0.94 (0.93–0.94) 0.63 (0.61–0.65) 0.95 (0.95–0.96) 0.74 (0.72–0.75) 0.94 (0.93–0.94) 0.69 (0.68–0.71) 0.95 (0.94–0.95) 0.90 (0.81–0.97) 0.91 (0.91–0.92) 0.05 (0.04–0.05) 1.00 (1.00–1.00)

Echocardiogram 0.90 2.0 0.91 (0.87–0.94) 0.72 (0.69–0.75) 0.53 (0.50–0.56) 0.96 (0.94–0.97) 0.93 (0.92–0.95) 0.83 (0.81–0.85) 0.93 (0.92–0.95) 0.98 (0.97–0.98) 0.98 (0.95–1.00) 0.80 (0.79–0.80) 0.02 (0.02–0.02) 1.00 (1.00–1.00)

0.85 6.0 0.86 (0.82–0.90) 0.83 (0.81–0.86) 0.64 (0.60–0.68) 0.95 (0.93–0.96) 0.89 (0.87–0.91) 0.90 (0.89–0.91) 0.75 (0.72–0.77) 0.96 (0.95–0.97) 0.97 (0.92–1.00) 0.88 (0.88–0.89) 0.04 (0.04–0.04) 1.00 (1.00–1.00)

0.80 9.0 0.81 (0.77–0.86) 0.86 (0.83–0.88) 0.66 (0.62–0.70) 0.93 (0.91–0.95) 0.88 (0.86–0.90) 0.92 (0.91–0.93) 0.79 (0.76–0.81) 0.96 (0.95–0.97) 0.97 (0.92–1.00) 0.90 (0.90–0.91) 0.05 (0.04–0.05) 1.00 (1.00–1.00)

0.75 18.0 0.75 (0.7–0.81) 0.90 (0.88–0.92) 0.73 (0.68–0.77) 0.92 (0.90–0.93) 0.84 (0.82–0.87) 0.95 (0.94–0.96) 0.85 (0.82–0.87) 0.95 (0.94–0.96) 0.97 (0.92–1.00) 0.94 (0.93–0.94) 0.07 (0.07–0.08) 1.00 (1.00–1.00)

0.70 32.0 0.70 (0.65–0.75) 0.93 (0.91–0.95) 0.77 (0.73–0.82) 0.90 (0.89–0.92) 0.80 (0.77–0.83) 0.96 (0.95–0.97) 0.88 (0.85–0.90) 0.94 (0.93–0.94) 0.93 (0.86–0.98) 0.96 (0.95–0.96) 0.10 (0.09–0.11) 1.00 (1.00–1.00)

(Continued ) Results are shown as value (95% CI). Cutoffs are selected to achieve the highest specificity for a sensitivity at or higher than the target sensitivity. Cutoff scores 
are presented as 10 for the electrocardiogram model and 10 for the echocardiogram model. Combined internal test cohort: combined test set of Massachusetts 
General Hospital, University of California San Francisco, and Keio University Hospital. Brigham and Women’s Hospital: matched cohort: external validation cohort 
constructed by age and sex matching for Brigham and Women’s Hospital. HCM indicates hypertrophic cardiomyopathy; NPV, negative predictive value; and PPV, 
positive predictive value.
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resource-limited setting, an ECG-based screening strat-
egy may be of value. Furthermore, although the criteria 
for HCM diagnosis are based on imaging, there may also 
be electrocardiography features that help distinguish 
HCM from other forms of hypertrophy. For example, it 
appears that apical HCM is detected better by the ECG 
than by the echocardiogram model. In this way, one may 
consider ECG and echocardiography as complementary 
rather than elevating one modality over the other.

One interesting finding in our analysis on expert read-
ing of echocardiogram is the relatively low sensitivity for 
detecting HCM, which, unsurprisingly, was more apparent 
in patients with HCM without overt LVH or those confirmed 
by MRI, presumably because the latter included more 
challenging cases. In contrast, the ECG and echocardio-
gram model trained with the federated learning approach 
robustly discriminated HCM in these cases. The results, 
along with the good discrimination between other causes 
of LVH (hypertension, AS, and CA) and before overt LVH, 
suggest that the model could aid detection of cases that 
are hard to detect without cardiac MRI.

From a pragmatic standpoint, ML solutions are most 
helpful if they increase the number of patients likely to 
benefit from detection, a function of available clinical 
workflows for prevention and treatment. Models that are 
trained on highly exaggerated patient phenotypes such 
as those that may be found in national or international 
referral centers are likely to demonstrate the best sta-
tistical model performance (especially on internal data 
sets) but are unlikely to be of greatest utility for most 
cases found in the community because they may detect 
disease in patients at late stages such as those requiring 
complex procedures like myectomy. In the case of inher-
ited disorders such as HCM, including studies from more 
minimally affected relatives may help, although again 

there may be bias toward more penetrant mutations and 
the resulting phenotypic patterns. The fact that our mod-
els are effective at multiple institutions in different coun-
tries is encouraging, although all are tertiary academic 
centers, so they may be enriched in some more extreme 
phenotypic manifestations.

There are some limitations to the study. First, because 
our disease detection approach involved convolutional 
neural networks, the features used by the model remain 
obscure. We attempted to partly address this by using 
GRAD-CAM. However, GRAD-CAM provides only 
“where” the model is weighting and does not provide infor-
mation on “what” the feature is. Furthermore, the GRAD-
CAM outputs differ from sample to sample, resulting in 
some ambiguity. Second, although the AUROCs of the 
models trained at individual institutions were calculated 
with 5-fold cross-validation, it was calculated on the test 
data set in a federated learning model. Thus, the com-
parison is not direct. However, because the test data set 
was constructed by random split, it is not unreasonable 
to assume that the AUROC on the test data set is rep-
resentative. Third, because HCM is an underdiagnosed 
disease, there was a possibility that undiagnosed cases 
of HCM have been falsely included in the controls. How-
ever, given that HCM is relatively rare, we believe that the 
impact of this misclassification was small. Fourth, Keio 
University Hospital measured the interventricular sep-
tum thickness excluding the right ventricular wall; thus, 
the measurement could not be compared directly with 
other institutions. Fifth, although the surveillance cohort 
was constructed to mimic the prevalence of HCM in the 
general population, it was randomly constructed from a 
tertiary care center–based cohort and may differ from 
a truly unselected population. Sixth, because patients 
after myectomies or myocardial ablation or those after 

Table 2. HCM Discrimination by the Models Compared With Expert Cardiologists

Modality

Experts Model

By Criteria Sensitivity Specificity PPV Cutoff Sensitivity Specificity PPV

ECG R.Y. Any abnormality 0.73 0.55 0.01 5.0 0.98 (0.95–1.00) 0.56 (0.55–0.57) 0.01 (0.01–0.01)

  LVH (voltage criteria) 0.17 0.99 0.06 52.5 0.86 (0.78–0.95) 0.93 (0.93–0.94) 0.06 (0.05–0.07)

  Suspected HCM 0.08 1.00 0.13 155.0 0.63 (0.49–0.75) 0.98 (0.98–0.98) 0.13 (0.10–0.16)

 S.G. Any abnormality 0.73 0.55 0.01 5.0 0.98 (0.95–1.00) 0.56 (0.55–0.57) 0.01 (0.01–0.01)

  LVH (voltage criteria) 0.31 0.99 0.10 100.0 0.75 (0.63–0.96) 0.97 (0.96–0.97) 0.10 (0.09–0.12)

  Suspected HCM 0.15 1.00 0.20 242.5 0.54 (0.41–0.68) 0.99 (0.99–0.99) 0.20 (0.15–0.24)

 J.E.J. Any abnormality 0.81 0.55 0.01 5.0 0.98 (0.95–1.00) 0.98 (0.98–0.98) 0.01 (0.01–0.01)

  LVH (voltage criteria) 0.47 0.99 0.14 167.5 0.63 (0.49–0.75) 0.98 (0.98–0.98) 0.14 (0.11–0.17)

  Suspected HCM 0.17 1.00 0.22 297.5 0.51 (0.37–0.64) 0.99 (0.99–0.99) 0.22 (0.17–0.28)

Echocardiogram R.Y. Suspected HCM 0.37 0.99 0.19 63.0 0.85 (0.75–0.93) 0.98 (0.98–0.98) 0.19 (0.16–0.22)

 S.G. Suspected HCM 0.56 0.99 0.22 71.0 0.82 (0.71–0.90) 0.99 (0.98–0.99) 0.22 (0.19–0.26)

 J.E.J. Suspected HCM 0.59 0.99 0.24 75.0 0.78 (0.68–0.88) 0.99 (0.99–0.99) 0.25 (0.21–0.29)

Results are shown as value (95% CI). Cutoffs scores are presented as 10 for the electrocardiogram model and 10 for the echocardiogram model. Combined 
internal test cohort: combined test set of Massachusetts General Hospital, University of California San Francisco, and Keio University Hospital. HCM indicates hyper-
trophic cardiomyopathy; and PPV, positive predictive value.
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implantation of an implantable cardioverter defibrillator or 
a pacemaker were excluded from the analysis, the model 
may not discriminate HCM cases with these conditions. 

However, because these cases are usually already diag-
nosed and evaluated, the influence on the model utility 
is minimal.

Figure 5. Deployment simulation of the models on surveillance populations for detecting HCM.
A, Precision recall curve (PRC) and receiver-operating characteristics (ROC) plots for the ECG model and echocardiography model for 
discrimination of patients with hypertrophic cardiomyopathy (HCM) in the surveillance populations. The 95% CIs of precision and true-positive 
fraction are shown as blue ribbons in the PRC and ROC curves, respectively (N is the number of patients). The sensitivity, specificity, and positive 
predictive value (PPV) for detecting patients with HCM by human experts are plotted with the curves. B, PRC curves for the stepwise approach 
applying echocardiogram model after prescreening with ECG model using 2 cutoffs corresponding to the PPV of the any abnormal ECG findings 
by human experts. The overall sensitivity, specificity, and PPV for detecting patients with HCM by human experts are plotted. Overall recall is the 
number of HCMs detected after all the processes divided by the total number of HCM cases in the original cohort. AUC indicates area under the 
curve; and LVH, left ventricular hypertrophy. 
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Conclusions
We have developed models, using federated learning 
strategies, that detect HCM from ECGs and echo-
cardiograms across multiple institutions. In addition, 
we have shown that a screening strategy using both 
models could potentially improve screening of patients 
with HCM.
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