
RESEARCH PAPER

Ligand-based discovery of coronavirus main protease inhibitors using MACAW
molecular embeddings

Jie Donga , Mihayl Varbanovb,c, St�ephanie Philippotb, Fanny Vrekenb, Wen-bin Zenga and Vincent Blayd

aXiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China; bUniversit�e de Lorraine, CNRS, Nancy, France;
cLaboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-l�es-Nancy, France; dDepartment of Microbiology and Environmental Toxicology,
University of California at Santa Cruz, Santa Cruz, CA, USA

ABSTRACT
Ligand-based drug design methods are thought to require large experimental datasets to become useful
for virtual screening. In this work, we propose a computational strategy to design novel inhibitors of cor-
onavirus main protease, Mpro. The pipeline integrates publicly available screening and binding affinity
data in a two-stage machine-learning model using the recent MACAW embeddings. Once trained, the
model can be deployed to rapidly screen large libraries of molecules in silico. Several hundred thousand
compounds were virtually screened and 10 of them were selected for experimental testing. From these 10
compounds, 8 showed a clear inhibitory effect on recombinant Mpro, with half-maximal inhibitory concen-
tration values (IC50) in the range 0.18–18.82lM. Cellular assays were also conducted to evaluate cytotoxic,
haemolytic, and antiviral properties. A promising lead compound against coronavirus Mpro was identified
with dose-dependent inhibition of virus infectivity and minimal toxicity on human MRC-5 cells.
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Introduction

With over 610 million reported human infections and 6.5 million
deaths1, SARS-CoV-2, also denoted 2019-nCoV, is a positive-sense
single-stranded RNA enveloped virus responsible for the ongoing
COVID-19 pandemic. The virus mainly infects the respiratory sys-
tem, where it can cause acute respiratory distress syndrome
(ARDS) and fatal respiratory failure in some patients2, and it can
also have long-lasting effects on other organs and systems, includ-
ing long-term comorbidities (neurological disorders, memory loss,
gastrointestinal distress, fatigue, insomnia, dyspnea) and post-
acute sequelae of COVID-19 (PASC)3–5. Given the spread and
severity of the disease, it is crucial to develop efficient treatments
and rapidly available solutions that can supplement active immun-
isation efforts, which are still challenged by high viral transmissi-
bility, re-infection, and immune escape variants6,7.

A variety of medicinal targets to fight infection by SARS-CoV-2
are being investigated8,9, and the main viral protease Mpro is par-
ticularly promising. After the virus infects and enters a human
host cell, the two main ORF1a/b of its RNA genome first translate
and express two polyprotein precursors (pp1a and pp1ab) with
the help of the host cell machinery10–14. The polyprotein precursor
undergoes intramolecular cleavage under the action of the main
protease of SARS-CoV-2, Mpro (also known as 3C-like protease or
3CLpro), and the papain-like protease, PLpro, to produce multiple
non-structural proteins (Nsps), Nsp1 to Nsp16. Some of the non-
structural proteins produced participate in the production of viral
subgenomic RNA encoding the four major structural proteins
(Envelope/E protein, Membrane/M protein, Spike/S protein, and

Nucleocapsid/N protein), which are needed to complete the repro-
duction and release of progeny viruses10–14.

At present, few antiviral drugs against SARS-CoV-2 are in or
close to clinical use15–17. These include molnupiravir (Merck)18,19,
Paxlovid (Pfizer)20, and PF-07304814 (Novartis)21. Paxlovid is a
combination of the Mpro inhibitor nirmatrelvir (PF-07321332) and
ritonavir (a CYP3A4 inhibitor that slows down clearance of nirma-
trelvir)20. The potential of drug–drug interactions from ritonavir,
however, may limit its use by many patients22. PF-07304814 is a
prodrug under clinical trials that improves the pharmacokinetics
of PF-00835231, another Mpro inhibitor21. Notwithstanding the
advances, the possibility of resistance, the potential of combin-
ation therapies for treatment and prophylaxis, and the complex-
ities of global logistics of the pandemic demand the development
of additional antiviral therapies23–25. Mpro plays a vital role in
mediating virus replication and transcription, and there is no hom-
ologous protein in humans. Besides, Mpro is highly conserved
across different coronaviruses (alpha-, beta-, and gamma-coronavi-
ruses)26,27 that might cause epidemics in the future. Thus, Mpro is
an excellent target for the development of novel antiviral drugs
against SARS-CoV-2, its variants, and other coronaviruses16,28–31.

Computational tools have played a prominent role in propos-
ing potential Mpro inhibitors recently32–40. Most of these have
leveraged structure-based drug design (SBDD) approaches, such
as molecular docking, which rely on a structural model of Mpro to
propose new ligands. However, few of these proposals have been
experimentally validated. Besides, the protease is a complex target
and computational and experimental efforts so far have faced low
success rates40–43. On the other hand, the potential of
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ligand-based drug design (LBDD) has been little explored due to
the scarcity of experimental data available early on during the
pandemic. In the past months, some initiatives, such as NCATS’
COVID-19 OpenData Portal (https://opendata.ncats.nih.gov/
covid19/) or PostEra’s Moonshot (https://covid.postera.ai/covid/
activity_data), have been facilitating larger datasets that can
enable this type of ligand-based approaches.

In this study, we explore a two-stage ligand-based drug design
strategy for the discovery of novel Mpro inhibitors. We use
MACAW embeddings, a recently proposed method to describe
molecules computationally44, and build two predictive models on
a curated compilation of experimental data. The models are
applied in series to computationally assess hundreds of thousands
of drug-like compounds. The most promising compounds are then
sourced and evaluated experimentally for their ability to inhibit
the viral protease and to arrest infection of human cells. The
experimental results confirm the effectiveness of the virtual
screening strategy, which can lead to rapid discovery of hit com-
pounds with clinical potential against coronaviruses.

Materials and methods

Datasets

To model binding to SARS-CoV-2 Mpro, we compiled two datasets
from a variety of sources: a “regression dataset” and a
“classification dataset”. For the regression dataset, we retrieved
IC50 values from different studies45–49. IC50 values were converted
to pKi values using the Cheng-Prusoff equation, taking into
account the substrate concentration and corresponding KM values
for each study (Equation (2)). The dataset was complemented with
molecules from BindingDB (https://www.bindingdb.org/) with Ki
values against Mpro. As a result, we compiled 1716 molecules with
their corresponding pKi values (regression dataset).

pKi ¼ � log10
IC50

1þ ½S�
KM

 !
(1)

To generate the classification dataset, we combined fluores-
cence primary HTS data from the Kuzikov and Zhu studies46,47.
For the Zhu study, we considered as hits those molecules with pKi
>5.0 (labelled as 1). Molecules with lower pKi values or with class
4 curves were considered non-binders (labelled as 0). For the
Kuzikov study, we considered hits those molecules from the pri-
mary screening that were selected for subsequent hit confirm-
ation, and non-hits otherwise. This corresponds roughly to the top
3% of the molecules tested. In addition, to complete the binary
screening data, we looked at the pKi data from the regression
dataset compiled above (excluding the molecules from the
Kuzikov and Zhu studies). We labelled the molecules as hits if
they showed pKi >5.0 and non-binders otherwise. Finally, we
added molecules from BindingDB. Those molecules with pKi >5.0
or pIC50 �5.0 were labelled as hits, whereas those with pKi �5.0
or pIC50 <4.0 were labelled as non-binders. Note that,
fromEquation (2), pIC50� pKi. This way, the classification dataset
comprised 22 376 molecules labelled as hits (1) or non-binders (0).

Lastly, to discover new potential inhibitors of Mpro, we com-
piled a virtual library composed of the Enamine Premium
Collection (45 664 compounds), the Asinex Gold and Platinum
Collections (261 120 compounds), and the DrugBank database of
compounds (11 834 compounds)50. These are all lead- and drug-
like molecules with favourable physicochemical properties (high
Fsp3, low LogP, and MW, most of them satisfying Lipinski’s rule
of 5).

Hit classification

4261 molecules were downsampled from the screening dataset to
attain a better balance between classes (1261 hits and 3000 non-
hits). 20-D MACAW predictors were computed for each molecule.
MACAW is a small-molecule embedding method that allows pro-
jecting molecules into a continuous, low-dimensional numerical
space while extracting relevant molecular characteristics from the
training dataset44. The distance between molecules in the embed-
ding was defined by the combination of MACCS fingerprints and
the Sokal similarity metric. 10% of the molecules were randomly
held out as a test set. The MACAW predictors were then used to
train a distance-weighted k-Nearest Neighbour classifier from sci-
kit-learn 0.24.151, with k¼ 10 and using a Euclidean distance met-
ric (p¼ 2). Details are provided in the accompanying Jupyter
Notebook 1.

Affinity prediction

All molecules in the affinity dataset were projected into a 20-D
embedding space using MACAW 1.044. The distance between mol-
ecules in this case was specified by the combination of featurised
Morgan fingerprints of radius 2 (featMorgan2) and the Tanimoto
similarity metric. 10% of the molecules were randomly held out as
the test set. The MACAW embeddings were used as inputs to a
support vector regressor (SVR) from scikit-learn 0.24.1, with hyper-
parameters C¼ 3 and e¼ 0.2. Details are provided in the accompa-
nying Jupyter Notebook 1.

ADMET property prediction

Poor pharmacokinetics is a key cause of drug candidate attrition.
We used ADMETlab 2.052 (https://admetmesh.scbdd.com) and
SwissADME53 (http://www.swissadme.ch) to predict ADMET prop-
erties and help prioritise the compounds after the two-stage tar-
get binding predictions. We devised a custom scoring rule
(ADMET_score) using KNIME (https://www.knime.com), which
assigns specific weights to different ADMET properties based on
the desirable range for each property. Higher ADMET_score values
indicate a better predicted pharmacokinetic profile (see
file SI01.xlsx).

Molecular docking

Molecular docking was used to predict the binding mode of
selected molecules against SARS-CoV-2 Mpro using the software
MOE (Molecular Operating Environment) version 2019 (https://
www.chemcomp.com). The crystal structure of SARS-CoV-2 Mpro in
complex with N3 (PDB: 7BQY)54 was used as the template. The
protein structure was first prepared by correcting amino acid resi-
dues, assigning ionisation states, and positioning hydrogens. Then
the binding site of N3 was used as the pocket and each selected
compound was docked against the pocket. Docking settings were
chosen to reproduce the crystal pose of N3. In particular, the
“Triangle Matcher” method with “London dG” score was used for
placement, and the “Rigid Receptor” with “GBVI/WSA dG” score
was used for replacement. 100 and 30 were set for the retained
pose for the two stages. The best-scoring poses was considered
the most likely binding mode. Further, to explore the potential of
selected compounds binding to the II and III domains of the pro-
tein, we used the “site finder” to find a proper binding pocket
there, and then the same pipeline was applied as above.
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Compound prioritisation

Compounds from the virtual screening libraries were prioritised
for experimental testing based on their predicted classification
probability of being a hit, their predicted binding affinity to Mpro,
and their predicted ADMET profile. In particular, compounds were
considered of interest if they had a predicted hit probability �
65% and a predicted pKi� 6.1. This led to 105 compounds
(Supporting Information file SI01.xlsx). The compounds were then
grouped in 15 clusters based on the pairwise similarity of their
FragFp fingerprints using the software OSIRIS Datawarrior 5.2.1. At
this stage, compounds were deemed most desirable if they exhib-
ited predicted pKi� 6.5, hit probability � 70%, ADMET_Score �25
(or coming from the DrugBank collection), and belonged to differ-
ent clusters. The results were inspected, and 10 compounds were
manually selected for experimental testing. The compounds were
sourced from Topscience and Cayman and dissolved in DMSO as
10mM stocks. All compounds were at least 90% as analysed by
the supplier.

Enzymatic assays

A FRET-based enzymatic cleavage test (Beyotime P0315M) was
used to assess the inhibitory capacity of 10 compounds that had
been prioritised computationally (Table 1). Each well of a 96-well
fluorescence plate was dispensed with 92lL of buffer, 1 lL Mpro,
and 5 lL of test compound in DMSO at a suitable concentration,
such that the DMSO concentration was low and constant. Each
test compound was tested at 10 different concentrations (0.01,
0.02, 0.05, 0.1, 0.5, 1, 5, 10, 15, and 20lM final concentrations in
the reaction mix). Lastly, 2 lL of the fluorogenic peptide substrate
(MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2) was introduced to each well
to initiate the experiment. After adding the substrate as the final
component, the reaction mix was incubated in the dark at 37 �C
for 5min. Fluorescence of each well was then measured at an
excitation wavelength of 325 nm and an emission wavelength of
393 nm using a Thermo Varioskan LUX spectrophotometer.
Ebselen was used as a positive control, which is known to bind
covalently to the active site of Mpro55. Cleavage of the fluorogenic
substrate by Mpro leads to a separation of the FRET donor (Dnp)
and acceptor (MCA) labels, leading to an increase in fluorescence
from the acceptor label. Inhibitory compounds reduce the rate at
which the fluorogenic substrate is cleaved and the fluorescence
signal produced. The average fluorescence value of different wells
can be recorded as RFUblank, RFU100% enzyme, RFUpositive, and
RFUsample, respectively, where RFU stands for Relative Fluorescence
Units. The percentage of inhibition for each compound i was cal-
culated as follows:

Inhibitioni %ð Þ ¼ RFU100%enzyme�RFUi

RFU100%enzyme � RFUblank
� 100 (2)

To exclude inhibitors possibly acting as aggregators, a detergent-
based control was performed on selected compounds by adding
0.1% of freshly prepared Triton X-100 to the reaction mixture54.
All experiments were performed in triplicate, and the experimental
data was analysed using GraphPad Prism (https://www.graph-
pad.com).

Cell model and culture

For virus propagation, MRC-5 pulmonary fibroblasts (ECACC, ref.
05090501) were grown in antibiotic-free Minimum Essential Media

(MEM) with nonessential amino acids (Thermo Fisher Scientific),
complemented with 10% foetal bovine serum (FBS, Eurobio),
2mM glutamine (Sigma Aldrich), 1% nonessential amino acids
(Gibco), and 1% sodium pyruvate (GE Healthcare). For the antiviral
assays, the same medium was used, containing only 2% FBS.

Virus

Human coronavirus hCoV-229 (PHE/NCPV 0310051v) was propa-
gated and quantified in MRC-5 cells. Initial virus was titrated at
104 IP/mL according to the Reed and Muench method56. All virus
stocks were stored at �70 �C until used.

Cytotoxicity

First, cellular toxicity was evaluated on MRC-5 in culture for 72 h
in the presence of the selected compounds. Cells seeded the day
before at 10 000 cells/well in a 96-well plate were treated with
decreasing compound concentrations, from 100 to 3.12lg/mL, in
a culture medium containing only 2% FCS. Control wells of
untreated or solvent-treated cells (DMSO), as well as blank cell-
free wells, were added. After 72 h of incubation, cell viability was
evaluated by the MTT test57.

Cytopathogenic effect

The cells were seeded in 5 plates with 96 wells at 10 000 cells/
well. After 24 h incubation, three dilutions of virus were carried
out in cascade at 1/10, in culture medium (2% serum) with or
without the test compound (at the highest concentration not
inducing toxicity). The cell plates were emptied then the mats
were treated with 100 lL of these dilutions (a column per condi-
tion, i.e. n¼ 8). An untreated control and a DMSO solvent control
were included in each plate. The plates were incubated at 33 �C
for 72 h. The cytopathic effect of the virus was observed under
the microscope and the viral titres were determined according to
the Reed and Muench method56. The plates were then stained
with crystal violet and the cytopathic effect in each well was
quantified thanks to the optical density at 540 nm. The percentage
of cytopathic effect (% CPE) was calculated for treated and non-
treated infected wells according to the formula:

CPEi %ð Þ ¼ ODsample, i�meanðODblankÞ
meanðODcontrolÞ � 100 (3)

where the control was the non-treated and non-infected cells.

Viral titres

The infectivity of HCoV 229E was determined by titration in tripli-
cate on 96-well microtiter plates containing 100 lL of confluent
MRC-5 cells. MRC-5 cells were added 100mL from serial 10-fold
dilutions of the virus from 101 to 10�8 in MEM medium with 2%
FCS. The infected cells were incubated at 37 �C in 5% CO2 for
72 h. The appearance of cytopathic effect (CPE) was recorded
daily. The tissue culture infectious dose (50%) (TCID50), defined as
the dilution of the virus required to infect 50% of the cell culture,
was determined using the Reed and Muench method56 and
expressed as TCID50/mL.
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Table 1. Information about the 10 compounds selected from the virtual screening of 408 935 lead-like molecules.

Id. Structure Catalog id. / CAS Virtual screening ADMET

1 316789 p(hit) ¼1 MW ¼ 331.96 HBD ¼ 0

120-78-5 pKi ¼6.453 logP¼ 5.298 HBA ¼ 2
TPSA ¼ 25.78 QED ¼ 0.449

2 134210 p(hit) ¼ 0.673 MW ¼ 252.08 HBD ¼ 1

19275-68-4 pKi¼ 6.186 logP¼ 3.967 HBA ¼ 3
TPSA ¼ 50.44 QED ¼ 0.721

3 103542 p(hit) ¼ 0.791 MW ¼ 383.13 HBD ¼ 0

433262-70-5 pKi¼ 6.134 logP¼ 4.105 HBA ¼ 6
TPSA ¼ 78.03 QED ¼ 0.375

4 244527 p(hit) ¼ 0.868 MW ¼ 254.99 HBD ¼ 2

79134-17-1 pKi¼ 7.079 logP¼ 1.616 HBA ¼ 7
TPSA ¼ 108.56 QED ¼ 0.636

5 126615 p(hit) ¼ 0.798 MW ¼ 240.12 HBD ¼ 2

5439-22-5 pKi¼ 6.143 logP¼ 3.873 HBA ¼ 2
TPSA ¼ 40.46 QED ¼ 0.681

6 155928 p(hit) ¼ 0.706 MW ¼ 278.05 HBD ¼ 0

65023-97-4 pKi¼ 6.313 logP¼ 4.511 HBA ¼ 3
TPSA ¼ 38.92 QED ¼ 0.505

7 230318 p(hit) ¼ 0.705 MW ¼ 241.06 HBD ¼ 0

22291-74-3 pKi¼ 6.661 logP¼ 3.514 HBA ¼ 2
TPSA ¼ 22 QED ¼ 0.675

8 314478 p(hit) ¼ 0.961 MW ¼ 252 HBD ¼ 0

3696-28-4 pKi¼ 6.508 logP¼ 0.382 HBA ¼ 4
TPSA ¼ 53.88 QED ¼ 0.474

9 317502 40045-50-9 p(hit) ¼ 1 MW ¼ 260.94 HBD ¼ 2

pKi¼ 7.266 logP¼ 1.886 HBA ¼ 7
TPSA ¼ 108.56 QED ¼ 0.642

10 316703 p(hit) ¼ 0.904 MW ¼ 641.33 HBD ¼ 3

174630-04-7 pKi¼ 6.143 logP¼ 4.649 HBA ¼ 12
TPSA ¼ 158.36 QED ¼ 0.139

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 27



Haemolysis

A haemolysis assay of the compounds was performed using
human red blood cells (RBCs) to assess potential effects on the
integrity of red blood cells. Selected compounds were diluted in
PBS to relevant concentrations. RBCs were for 60min at 37 �C.
Two controls were used: a negative control containing RBCs and
PBS, and a positive control in which RBCs were mixed with a
product inducing haemolysis (Triton X-100 at 10%). After RBCs
treatment, cells were centrifuged at 800 g for 5min. The super-
natant was recovered and measured with a spectrophotometer at
540 nm (Multiskan GO, Thermo Scientific, Saint Herblain, France).

Results and discussion

Virtual screens

MACAW is a recent computational tool that allows the featurisa-
tion of molecules for use in predictive machine-learning models,
as well as the generation of molecules based on a predefined
property specification44. In this work, we used the featurisation
capabilities of MACAW. Low-dimensional MACAW embeddings can
be directly used as inputs to machine-learning models, without
the need of variable cleaning or feature selection steps that are
often needed with conventional molecular descriptors.

A two-stage virtual screening of compounds was used. Firstly,
a classifier trained on HTS data mainly rejected molecules unlikely
to make promising hits. Given the large class imbalance in the
classification dataset, we used a random downsampling strategy.
As a classifier, we used a simple k-nearest neighbour classifier,
which attained a notable AUPRC of 84% on the test set (Figure
1(a)). This case illustrates the usefulness of MACAW embeddings
to rapidly deploy powerful classifiers.

Secondly, a regressor trained on affinity binding constants
sought to prioritise potent molecules amongst those that may
show some binding to the target. For this, a SVR model was
trained on the respective MACAW embeddings for the regression
dataset. In this case, the challenge is that the number of mole-
cules for which quantitative affinity binding data is currently avail-
able is limited. Moreover, data is generally obtained in the form of
IC50, which complicates comparison across different studies, as
they often used different experimental conditions. The Cheng-
Prusoff correction applied to the data can partially account for the
difference (see “Methods” section), although it does not correct
for other possible artefacts, like the potential dimerisation of Mpro

in vitro58. Still, the regressor trained was able to achieve an Rtrain
of almost 0.8 and an Rtest above 0.7 (Figure 1(b)), which may con-
tribute to increasing the enrichment provided by the virtual
screening pipeline, which is the goal in this case.

With the two models (classifier and regressor) in place, we
then interrogated a custom virtual library containing over 400 000
lead-like molecules. MACAW embeddings can be computed on a
modest laptop in a few minutes and interesting molecules can be
identified for further study (Figure 1(c)). The pipeline is elaborated
in detail in the accompanying Jupyter Notebook 1.

From this library, 105 compounds were first extracted based on
their predicted scores by the first and second models (see
Supporting Information file SI01.xlsx). Some of the drugs high-
lighted in this list were identified as promising by early repurpos-
ing efforts. Notably, one of the highest ranked drugs in this list is
ebselen, which has been reported as a potent inhibitor of Mpro55.
Another highly ranked compound is tideglusib, which has also
been reported to inhibit the viral protease59. Thiram has also been
shown to have antiviral activity against the virus, although

possibly through another mechanism60. Taken together, these
observations suggest that the two-stage screening pipeline may
have potential in identifying novel small-molecule inhibitors
of Mpro.

Compounds were further shortlisted based on their predicted
ADMET properties and chemical diversity. In particular, we kept

Figure 1. MACAW embeddings can help identify molecules able to bind to
SARS-CoV-2 Mpro. (a) Precision-recall curve of a kNN hit classifier trained on
MACAW embeddings applied to a test set of molecules. (b) A SVR regressor was
also trained to predict pKi values for promising molecules. (c) We computationally
screened a custom library of 408 935 lead-like molecules and prioritised 105 that
both the classifier and the regressor considered promising (orange region). See
Jupyter Notebook 1 for details.
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compounds with pKi �6.5, hit probability �70%, and ADMET
Score �25, which were further selected to increase diversity (see
“Methods” section). The 10 compounds finally selected, along with
some of their predicted properties, like the number of hydrogen
bond donors (HBD) and acceptors (HBA) or the quantitative esti-
mate of druglikeness (QED)61, are shown inTable 1.

Enzymatic assays

We evaluated the ability of the compounds shortlisted to inhibit
the viral protease in an in vitro FRET-based assay using recombin-
ant Mpro. Active Mpro can cleave the labelled peptide substrate,
leading to a fluorescent signal. If a compound that inhibits the
proteolytic activity is present, the fluorescence signal will be
diminished. Out of the 10 selected compounds, 8 have a clear
inhibitory effect on Mpro, with half-maximal inhibitory concentra-
tion values (IC50) in the range 0.18–18.82 lM (Figure 2). Among
them, compounds 2 and 7 showed atypical inhibition results.
Compound 8 (dipyrithione) displayed the strongest inhibitory
effect in this assay, with an IC50 value of 0.18 lM. Notably, this
value is even lower than that for the positive control with ebselen.
Compounds 1 and 9 also displayed relatively low IC50 values of
0.71 and 0.42lM, respectively. Interestingly, compound 7 seemed
to be highly potent at low concentrations, although the fluores-
cent signal increased at high compound concentrations. Thus, we
decided to not discard it and keep it in our pipeline instead.

To analyse the potential effect of autofluorescence, UV-vis
absorption spectra and fluorescent spectra of compounds 2 and 7
were measured (Figure 3). FromFigure 3(a,c), we can see that com-
pound 2 had some absorption at 325 nm (the excitation

wavelength used in the inhibition assay) and a significant fluores-
cence emission at 393 nm (the emission wavelength correspond-
ing to the labelled substrate). Thus, autofluorescence may
contribute to the atypical inhibition curve observed for compound
2 (Figure 2(c)). From Figure 4(b), we see that compound 7 has
very weak absorption at 325 nm and it showed no fluorescence.
This indicates that the inhibition curve for compound 7 is not
affected by autofluorescence and other phenomena must explain
its unusual trend.

On the other hand, upon addition of 0.1% Triton X-100 deter-
gent, the results for compounds 1, 7, 8, and 9 did not change sig-
nificantly, confirming that they do not inhibit the viral protease by
inducing aggregation (Figure 4). Compounds 1, 7, 8, and 9 were
thus selected for further study.

Cellular assays

The cellular toxicity of compounds 1, 7, 8, and 9 was evaluated
on MRC-5 cells in culture for 72 h at varying concentrations, using
cellular viability as a proxy (see “Methods” section). The results,
shown in Figure 5, revealed that compound 9 is toxic. Compound
8 had limited toxicity, whereas compounds 1 and 7 showed min-
imal toxicity. The ADMET predictions in this work failed to flag
compound 9 as toxic, indicating that it might be beneficial to
conduct additional toxicity predictions in silico before prioritising
compounds. In particular, nitroaromatic groups often display tox-
icity62. Interestingly, compound 9 was recently given the name
“halicin” and found to have antibiotic properties through an
unusual membrane associated-mechanism of action63. It is pos-
sible that this mechanism is toxic to some human cells as well.

Figure 2. Selected compounds inhibit the activity of SARS-CoV-2 Mpro. The hydrolytic activity of SARS-CoV-2 Mpro was measured in the presence of increasing concen-
trations of different test compounds. (a) Ebselen. (b) Compound 1. (c) Compound 2. (d) Compound 3. (e) Compound 4. (f) Compound 5. (g) Compound 6. (h)
Compound 7. (i) Compound 8. (j) Compound 9. (k) Compound 10. (l) IC50 values for Ebselen, Compound 1, Compound 7, Compound 8, and Compound 9. The dose-
response curves and IC50 values were determined by nonlinear regression. All data are shown as mean± SEM, n¼ 3 biological replicates.
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Our results thus clearly show that halicin can be highly toxic to
human cells. Furthermore, pyrithione zinc complexes, related to
compound 8, have been very recently reported to be inhibitors of
another viral protease, PLpro64.

Compounds 1 and 7 were also evaluated for their ability to
inhibit the cytopathogenic effect of the virus (see Methods). The
concentrations for this assay were selected based on the cytotox-
icity results inFigure 5. The results for compound 1 (Figure 6(a))

show that it has no inhibitory effect on the cytopathogenic effect
(CPE) of the virus at high multiplicity of infection (i.e. high viral
load). Nonetheless, it may elicit some reduction in CPE at a low
multiplicity of infection (MOI) of 0.003. Notably, compound 7
shows a very significant reduction in CPE across all the viral doses
tested (Figure 6(b)). We evaluated the effect of compound 7 on
viral titres (Figure 6(c)), confirming that the reduction in the cyto-
pathic effect is associated with a substantial reduction in the viral

Figure 3. Spectra of compounds 2 and 7. UV-vis absorption spectra of compound 2 (a) and compound 7 (b). Fluorescence emission spectra of compound 2 (c) and
compound 7 (d) at an excitation wavelength of 325 nm.

Figure 4. Addition of detergent does not affect the inhibition of SARS-CoV-2 Mpro by selected compounds. (a) The hydrolytic activity of SARS-CoV-2 Mpro was meas-
ured in the presence of increasing concentrations of ebselen. (b–e) IC50 values were determined in the presence and absence of 0.1% Triton X-100. (b) Compound 1.
(c) Compound 7. (d) Compound 8. (e) Compound 9. (f) Autofluorescence of selected compounds at different concentrations. All data are shown as mean± SEM, n¼ 3
biological replicates.
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load. This would be consistent with the main mechanism of action
of compound 7 being the inhibition of Mpro. Compound 7 thus
appears as a promising antiviral hit compound against SARS-CoV-
2, warranting further studies and optimisation efforts. Of note,
2(3H)-benzoxazolone and bioisosteres like 2(3H)-benzothiazolone
in compound 7 are considered a “privileged scaffold”, which has
been used in commercial drugs such as Benzolone, Paraflex,
Vinizene, and Tiaramide65.

Molecular docking results

We attempted to predict the potential binding pose of compound
7 on Mpro using molecular docking. Previous studies highlighted
that the catalytic site of SARS-CoV-2 Mpro includes the regions S10,
S1, S2, S4, and the surface depression S354,66, depicted in Figure
7. Since the complex structure of inhibitor N3 and Mpro has been
resolved54, we first optimised the docking parameters to recapitu-
late the native pose of the inhibitor N3 (RMSD ¼ 2.15 Å,Figure
7(a, d)). After optimising the docking parameters, we docked the
positive control drug ebselen and compound 7. The resulting
docking poses and ligand interaction maps are shown
inFigure 7(b–f).

From the docking results, we can see that ebselen and com-
pound 7 may have similar binding poses. They both would
occupy the S2 and S4 sites. Ebselen would form a pi–H interaction
with residue Gln189, while compound 7 would form a pi–H inter-
action with Glu166. Actually, the second ranked pose of com-
pound 7 also showed a pi–H interaction with Gln189, albeit with a

poor docking score. This suggests that compound 7 may adopt a
similar binding conformation to ebselen.

Given its small size, ebselen cannot form extensive interactions
like N3, which occupies the entire S1 to S4 sites and obtains a
high docking score, and yet ebselen still has high inhibitory activ-
ity. This is possible because ebselen can donate a selenium atom
after a ring-opening reaction, forming a covalent bond and block-
ing the histidine-Cys catalytic dyad, thus acting as a covalent
inhibitor. Although the docking of compound 7 suggests that it
may have similar interactions as ebselen and its five-membered
ring might also open, further studies are necessary to evaluate
this possibility.

Recently, another study has shown that ebselen can bind not
just to the catalytic site of SARS-CoV-2 Mpro, but also to between
the domains II and III of the protein, where it can act as an allo-
steric regulator67. In fact, allosteric inhibition of Mpro is increas-
ingly recognised as a promising treatment modality68. This led us
to reconsider the in vitro binding results above (Figure 2(h)).
Compound 7 showed high inhibitory activity at low concentration,
but its inhibition activity changed significantly at higher concen-
tration. A possible explanation could be that compound 7 also

Figure 5. (a) Evaluation of cytotoxicity of compounds 1, 7, 8, and 9 on MRC-5
cells at 72 h post-treatment by MTT test, n¼ 3. (b) Effects of compounds 1 and 7
on the haemolysis of red blood cells compared to a positive control (Tþ, 10%
Triton X-100) and a negative control (Untreated), n¼ 3.

Figure 6. Evaluation of antiviral activity of compounds 1 and 7. Effect of (a) com-
pound 1 and (b) compound 7 on the cytopathogenic effect by coronavirus hCoV-
229 at different viral loads, n¼ 3. (c) Tissue culture infectious dose (50%)
(TCID50), defined as the dilution of the virus required to infect 50% of the cell
culture, in the presence of different concentrations of compound 7, n¼ 3.
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acted as an allosteric modulator of the enzyme. Thus, we con-
ducted a second docking study of ebselen and compound 7
against the site between domains II and III. The results are shown
in Figure 8. Ebselen would form a hydrogen bond between its sel-
enium atom and Glu240. It would also establish hydrophobic con-
tacts with Gln107, Pro108, Gln110, Ile200, Val202, His246, Ile249,
Thr292, and Phe294. These interactions are in good agreement
with the findings of Men�endez et al.67. The molecular dynamics
simulations by the researchers point to highly dynamic hydrogen
bonds between ebselen and the side chains of Gln107, Gln110,
and His246 side. FromFigure 8(b) we can see the oxygen atom
approaching Gln107 and Gln110, likely forming hydrogen bonds
under dynamic conditions. Compared to ebselen, compound 7
obtained a better docking score (0.4 kcal mol�1 lower) and a very
similar interaction profile (Figure 8), supporting a possible effect
in this allosteric site. Inspection of the electrostatic surface poten-
tial of the two pockets using the APBS formalism69 reveals some

ressemblances between the sites (Supporting Information Figures
S1 and S2), suggesting that both might participate in binding.

In summary, compound 7 showed a better binding potential
than ebselen in both two sites of the viral protein given its dock-
ing scores and interaction profiles. Our results thus warrant further
studies on the inhibitory mechanism of compound 7.

Conclusion

Viruses leverage biochemical machinery of host cells, which makes
the design of viral inhibitors a challenging problem. Viral inhibi-
tors would be greatly beneficial to complement vaccination
approaches, particularly in the context of the current SARS-CoV-2
pandemic. The resolution of SARS-CoV-2 protein structures
enabled the structure-based design of potential inhibitors of the
main protease, Mpro, as well as other viral targets. However, these

Figure 7. Docking results of N3, ebselen, and compound 7 against the catalytic site of Mpro. (a) Highest scoring pose (yellow) and the crystallographic N3 pose (green).
(b) Highest scoring pose of ebselen. (c) Highest scoring pose of compound 7. (d–f) 2D interaction maps for the highest scoring poses of N3, ebselen and compound 7
with Mpro, respectively.

Figure 8. Docking results of ebselen and compound 7 in the region between domains II and III of Mpro. The best pose of ebselen (a) and compound 7 (d) in that site.
3D visualisation of the key residues involved in the interaction between Mpro and ebselen (b) or compound 7 (e). 2D interaction maps for the best poses of ebselen
(c) and compound 7(f) on Mpro.
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approaches had limited success. The application of machine-learn-
ing ligand-based approaches is potentially more accurate, but it is
thought to require large training datasets, which may not be avail-
able in a new epidemic. In this work, we show that a machine-
learning ligand-based strategy to design small-molecule inhibitors
of the coronavirus main protease can be useful even with limited
data. We demonstrate a two-stage computational strategy based
on the recent MACAW embeddings, which leverages both screen-
ing and affinity binding measurements publicly available to
increase the probability of success. The pipeline can be used to
make predictions for large libraries of compounds in silico. Out of
10 compounds selected with this pipeline, as many as 8 showed a
clear inhibitory effect on Mpro when tested in vitro, with half-max-
imal inhibitory concentration values (IC50) in the range
0.18–18.82 lM. Additional assays were conducted to evaluate the
cytotoxicity, haemolysis potential, and antiviral activity of selected
compounds on MRC-5 cells. The results highlight the importance
of considering ADMET properties early on in drug discovery. Most
importantly, we identify compound 7, 3-benzyl-1,3-benzothiazol-2-
one, as a promising novel candidate against coronaviruses, dem-
onstrating the utility of MACAW embeddings for molecu-
lar design.
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