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Abstract Ornithine transcarbamylase (OTC) (E.C.

2.1.3.3) is one of the enzymes in the urea cycle, which

involves in a sequence of reactions in the liver cells.

During protein assimilation in our body surplus nitrogen is

made, this open nitrogen is altered into urea and expelled

out of the body by kidneys, in this cycle OTC helps in the

conversion of free toxic nitrogen into urea. Ornithine

transcarbamylase deficiency (OTCD: OMIM#311250) is

triggered by mutation in this OTC gene. To date more than

200 mutations have been noted. Mutation in OTC gene

indicates alteration in enzyme production, which upsets the

ability to carry out the chemical reaction. The computa-

tional analysis was initiated to identify the deleterious

nsSNPs in OTC gene in causing OTCD using five different

computational tools such as SIFT, PolyPhen 2, I-Mutant 3,

SNPs&Go, and PhD-SNP. Studies on the molecular basis

of OTC gene and OTCD have been done partially till date.

Hence, in silico categorization of functional SNPs in OTC

gene can provide valuable insight in near future in the

diagnosis and treatment of OTCD.

Keywords OTC � OTCD � SIFT � PolyPhen 2 � I-Mutant 3 �
SNPs&Go � PhD-SNP

Introduction

Ornithine transcarbamylase (OTC) catalyzes the formation

of citrulline from carbamoyl phosphate and L-ornithine in

the urea cycle, deleterious mutations in the human OTC

gene disrupts the formation and produces clinical hyper-

ammonemia, which can also lead to encephalopathy with

subsequent neurological symptoms or even death. Ornithine

transcarbamylase deficiency (OTCD) is the most common

inborn error of urea cycle showing X-linked inheritance,

which occurs at a predictable frequency of 1 in 14,000

births. Affected individuals show elevated levels of ammo-

nia in their plasma and amplified urinary flow of orotic acid

(Lopes-Marques et al. 2012). Males with OTCD show

neonatal ammonia intoxication with severe or fatal neuro-

logical damage. Those with limited enzymatic OTCD may

perhaps have a normal life span, but are at the peak intended

for stress-induced hyperammonemic emergencies and

incremental neurological damage. Females are carriers who

might be asymptomatic, but often show some amount of

protein intolerance (Maddalena et al. 1988). The human

OTC gene is found on the short arm of the X chromosome

with its cytogenetic location being Xp21.1. The size of the

gene is 73 kb with an open reading frame of 1,062 nucle-

otides and holds 10 exons interjected by 9 introns of highly

variable size. The OTC gene is expressed entirely in the liver

and small intestinal mucosa. It translates a precursor OTC

protein containing 354 amino acids and the amino end

contains a spearhead sequence of 32 amino acids, which is

cleaved in two steps upon integration into the mitochondrial

matrix (Ogino et al. 2007). A polymorphism is a germline

variation in the nucleotide base of the DNA molecule. As a

rule of thumb inheritable variation is termed, a polymor-

phism if it is present at an allele frequency greater than 1 %

in the general population, otherwise, at lower frequencies, it
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is considered as germline mutation (Strachan and Read

1996). Genetic polymorphisms are present throughout the

genome of human. The most common type of polymorphism

is single nucleotide polymorphism (SNP) that can occur in

the frequency of about 1 out of every 300 nucleotide base

pairs, and there are probably more than 10 million SNPs in

the human population (The international HapMap and

Consortium 2006). Polymorphisms can occur in both coding

and non-coding region of the genes and may sometimes,

particularly those within exons, have an impact on the

structure and function of the protein coded by a particular

gene, especially in those cases when the polymorphism leads

to an amino acid substitution in evolutionarily conserved

functional region of the protein.

A polymorphism that takes to an amino acid substitution

and is present within an active site of an enzyme, at a

substrate-binding site, a DNA-binding site or in other areas

of the protein domains may affect the function of the

encoded protein. This is particularly correct if the substi-

tuted amino acid has a different 3D structure or electrical

charge than the wild-type amino acid, as this will alter the

conformation or affinity of the enzyme, and make it non-

functional, or more or less efficient than the wild-type

protein (AliOsman et al. 1997; Hadi et al. 2000; Matullo

et al. 2001; Pemble et al. 1994).

The loss of stability of proteins is one of the foremost

causes of disease. As the proteins are only marginally sta-

ble, even small effects on stability alter the thermodynamic

equilibrium to make the folded state unstable. Mutational

data show that mutations often, if not in the majority of

cases, cause significant changes to protein stability which

are often on the order of magnitude of the absolute stability

of the protein (Guerois et al. 2002). Lowered stability leads

to a reduction in a protein’s effective concentration, which

in turn causes deficiencies in its ability to perform its bio-

chemical function (Pakula et al. 1986).

Mutations in this OTC gene are the main reason for

OTCD. Deleterious non-synonymous single nucleotide

polymorphism (nsSNP) analysis for the OTC gene has not

been projected computationally until now, while they are

the center for new investigators. Therefore, in this work,

the computational methods namely SIFT, PolyPhen 2,

I-Mutant 3, SNPs&Go, and PhD-SNP were used to identify

the deleterious nsSNPs that are expected to be affecting the

function and structure of the OTC protein.

Materials and methods

Dataset used for SNP annotation

Human OTC gene information data were collected from

Online Mendelian Inheritance in Man (OMIM) (Amberger

et al. 2009) and Entrez Gene on National Centre for Bio-

logical Information (NCBI). The SNP information of CBS

was retrieved from the NCBI dbSNP (Sherry et al. 2001),

and SWISS-Prot databases (Amos and Rolf 1996). Protein

3D structure was obtained from protein data bank (PDB)

(Berman et al. 2000).

Sorting intolerant from tolerant (SIFT)

Sequence homology-based tool SIFT predicts the functional

importance of amino acid substitution based on the align-

ment of highly similar orthologous and/or paralogous pro-

tein sequences. SIFT scores were designated as intolerant

(0.00–0.05), potentially intolerant (0.051–0.10), borderline

(0.101–0.20), or tolerant (0.201–1.00) (Kumar et al. 2009).

PolyPhen 2

PolyPhen2 (Polymorphism Phenotyping) predicts the func-

tional effect of amino acid changes by considering evolu-

tionary conservation, the physico-chemical differences, and

the proximity of the substitution to predicted functional

domains and/or structural features. A mutation is classified

as ‘‘probably damaging’’ if the probabilistic score is above

0.85–1, mutation is classified as ‘‘possibly damaging’’ if the

probabilistic score is above 0.15–0.84, and the remaining

mutations are classified as benign (Adzhubei et al. 2010).

I-Mutant 3

SVM-based method I-Mutant 3 predicts the protein sta-

bility changes upon a single point mutation. It provides free

energy change (DDG), which is calculated from the

unfolding Gibbs free energy change of the mutated protein

minus the unfolding free energy value of the native protein

(Kcal/mol). It classifies the predictions in three classes: If

DDG is \-0.5 = large decrease of stability, If DDG is

between -0.5 and 0.5 = neutral stability and If DDG is

[0.5 = large increase of stability (Capriotti et al. 2005).

SNPs&GO

It is a method based on SVMs that predict disease-associated

mutations from protein sequence, evolutionary information

and functions as encoded in the gene ontology terms. More-

over, it is a server for the predicting single point mutations,

which cause disease in humans (Calabrese et al. 2009).

PhD-SNP

PhD-SNP uses SVM-Sequence method and SVM profile to

classify the mutation into disease related and neutral poly-

morphisms. It predicts if the given nsSNP has pathological
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effect based on the local sequence environment of the

mutation. It uses the most accurate mode that enables both

sequence and evolutionary profiles (Capriotti et al. 2006).

Structural analysis

To evaluate the structural stability of native and mutant,

protein structure analysis was performed. We used the web

resource dbSNP to identify the protein coded by OTC. We

also confirmed the mutation positions and the mutation res-

idues from this server. These mutation residues and their

corresponding positions were in complete agreement with

the results obtained from the in silico prediction methods

SIFT, PolyPhen 2, I-Mutant 3, SNPs&GO and PhD-SNP.

The mutation was performed using SWISS-PDB viewer

(Guex and Peitsch 1997), and energy minimization for 3D

structures was performed by NOMAD-Ref server (Lindahl

et al. 2006). This server uses Gromacs as default force field

for energy minimization based on the methods of steepest

descent, conjugate gradient and L-BFGS methods. Conju-

gate gradient method was used for optimizing the 3D

structures. Deviation between the two structures was eval-

uated by their Root Mean Square Deviation (RMSD) values.

Results

A total of about 195 SNPs were collected and their dele-

terious natures were analyzed by various computational

methods.

Analysis of deleterious SNPs using evolutionary-based

prediction methods

SIFT algorithm calculates whether an amino acid replace-

ment may have an impact on protein function by aligning

similar proteins and calculating a score which tells the evo-

lutionary conservation status of the amino acid of our

interest. SIFT scores were obtained for 195 SNPs. SIFT

scores were classified as intolerant (0.00–0.05), potentially

intolerant (0.051–0.10), borderline (0.101–0.20), and toler-

ant (0.201–1.00). Approximately 115 (58.97 %) of the SNPs

exhibit SIFT scores of 0.0. Another 45 (23 %) of the variants

have scores between 0.01 and 0.05. Thus, 82 % of the SNPs

are classified as ‘‘intolerant’’ by SIFT. The remaining SNPs

were found to be ‘‘tolerant’’. SIFT gave a prominent result

with an 82 % of predictions to be deleterious.

Analysis of deleterious SNPs using structure-based

prediction methods

The influences of nsSNPs in protein function were tested

using structure-based predictors by applying it to three

different methods. The structural levels of changes of 195

nsSNPs were determined by PolyPhen 2. To provide an

outline of the distribution of PolyPhen 2 scores, the scores

are distributed into three groups. PolyPhen 2 scores falling

between 0.85 and 1 are expected to be ‘‘probably damag-

ing’’ to protein structure and function. 157 (80 %) of the

nsSNPs were found to have scores in the above-mentioned

category. An additional 19 (9.7 %) of the variants exhib-

ited PolyPhen 2 scores of 0.2–0.84, indicative of variants

that are ‘‘possibly damaging’’ to protein function, and the

remaining 17 (8.7 %) nsSNPs that scored less than 0.02

were designated as ‘‘benign’’. SNPs&GO makes use of

sequence and evolutionary information to predict whether a

mutation is disease related or not by developing the protein

functional annotation. The protein sequences with corre-

sponding UniProt accession numbers were submitted along

with their corresponding mutational position, wild-type and

mutant-type residue as input to the server. 98 % of the

nsSNPs were designated as ‘‘disease’’. These mutants are

found to be disease causing. PhD-SNP predicts the given

nsSNPs have pathological effects based on the local

sequence environment of the mutation. It classifies the

SNPs into disease or neutral based on the most accurate

mode that uses both sequence and evolutionary profiles. It

showed 64 % of nsSNPs were likely to cause disease on

mutation.

Prediction of stability changes

Mutated proteins involved in diseases show a stability

change. Predicting the protein stability upon mutation is

necessary for understanding structure function relationship

of protein. Generally, the stability of a protein is represented

by the change in the Gibbs free energy upon folding (DG),

where an increasingly negative number represents greater

stability. Single amino acid substitution in a protein

sequence can result in a significant change in the protein’s

stability (DDG), where a positive DDG represents a desta-

bilizing mutation and a negative value represents a stabi-

lizing mutation. All the 195 nsSNPs submitted to pathogenic

prediction tools were also subjected to protein stability

analysis by I-Mutant 3.0. It gave an estimation of 107

nsSNPs (54 %) caused decreased stability, 48 SNPs (24 %)

were neutral to the mutation, and 39 SNPs (20 %) increased

the stability of protein after mutation. Out of 195 nsSNPs, 92

nsSNPs (47 %) were predicted to be positive by SIFT,

PolyPhen 2, I-Mutant 3, SNPs&Go, and PhD-SNP (Table 1).

Structural analysis

According to the computational prediction in OTC gene,

structural analysis was performed for the five highly del-

eterious variants by modeling mutant structures using
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Table 1 List of nsSNPs in OTC found to be deleterious/neutral by computational methods

S. no. rs IDs Variants SIFT PolyPhen 2 I-Mutant 3 SNPs&GO PhD-SNP

1 rs72552295 M1T 0.01 0.895 -0.28 Disease Neutral

2 rs72552296 M1I 0.03 0.465 0.69 Disease Neutral

3 rs67752076 M1V 0.14 0.064 0.61 Disease Neutral

4 rs137853257 R10P NA NA –1.12 NA Neutral

5 rs148660170 R23Q 0.15 0.139 –0.97 Disease Neutral

6 rs68031618 R26Q 0.59 0.002 –0.84 Disease Neutral

7 rs199858968 G28E 0.06 0.999 –0.82 Disease Neutral

8 rs72554306 G39C 0.01 1 –2.15 Disease Neutral

9 rs72554307 R40C 0 1 1.16 Disease Disease

10 rs72554308 R40H 0.03 0.54 –0.28 Disease Neutral

11 rs74518351 D41G 0.31 0.103 –2.91 Disease Neutral

12 rs72554309 L43F 0.01 1 –1.08 Disease Disease

13 rs72554310 T44I 0.01 1 –2.64 Disease Neutral

14 rs72554311 L45V 0.01 0.967 –0.7 Disease Neutral

15 rs72554312 L45P 0 1 –1.26 Disease Disease

16 rs1800321 K46R 0.49 0.187 –1.02 Disease Disease

17 rs67939655 N47T 0.01 0.07 –0.66 Disease Disease

18 rs72554315 F48S 0.01 1 –0.12 Disease Disease

19 rs72554316 T49P 0 0.922 –1.82 Disease Disease

20 rs201802621 G50A 1 0.02 –0.01 Disease Neutral

21 rs72554317 E52G 0 1 –2.37 Disease Disease

22 rs72554318 E52D 0.01 1 –1.61 Disease Disease

23 rs66521141 E52K 0 1 –1.69 Disease Disease

24 rs66677059 I53T 0 1 –2.68 Disease Disease

25 rs72554319 Y55D 0.23 0.919 –0.42 Disease Neutral

26 rs72554320 M56T 0 0.197 –0.34 Disease Neutral

27 rs72554321 L57Q 0 1 –0.42 Disease Disease

28 rs72554323 S60L 0 1 –1.77 Disease Disease

29 rs72554324 L63P 0.01 1 –0.99 Disease Disease

30 rs72554325 I67R 0.22 1 –1.61 Disease Neutral

31 rs72554328 L76S 0.41 0.994 –0.08 Disease Disease

32 rs72554329 L77F 0 0.998 0.05 Disease Disease

33 rs72554331 G79E 0 1 –1.51 Disease Disease

34 rs72554332 K80E 0.03 0.468 –1.6 Disease Disease

35 rs72554333 K80 N 0 0.997 –2.25 Disease Neutral

36 rs72554336 G83R 0 0.923 –1.04 Disease Disease

37 rs72554337 G83D 0 0.824 –1.85 Disease Disease

38 rs72554338 E87K 0 0.96 –1.56 Disease Disease

39 rs72554339 K88N 0 1 –2.09 Disease Neutral

40 rs72554340 S90G 0 1 –1.65 Disease Disease

41 rs72554341 S90N 0 1 –0.83 Disease Disease

42 rs72554342 S90R 0 1 –2.7 Disease Neutral

43 rs67418243 R92G 0 0.979 –0.37 Disease Neutral

44 rs66550389 R92Q 0 1 –0.55 Disease Disease

45 rs72554344 T93A 0 0.966 –1.39 Disease Disease

46 rs72554345 R94T 0 1 –0.6 Disease Neutral

47 rs72554346 L95S 0 0.283 –2.74 Disease Disease

48 rs184053962 S96R 0 1 –0.86 Disease Disease
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Table 1 continued

S. no. rs IDs Variants SIFT PolyPhen 2 I-Mutant 3 SNPs&GO PhD-SNP

49 rs72554347 E98K 0 1 0.85 Disease Neutral

50 rs72554349 G100D 0 1 0.19 Disease Disease

51 rs1133135 F101L 0.3 0.208 0.61 Disease Neutral

52 rs72554350 A102E 0.29 0.989 1.09 Disease Neutral

53 rs72554351 G105V 0 1 0.14 Disease Disease

54 rs72554352 G106R 0 1 –2.08 Disease Disease

55 rs67651903 G106E 0 1 –1.11 Disease Disease

56 rs1800324 L111P 0 1 –0.47 Disease Disease

57 rs66539573 H117R 0.02 0.993 –1.43 Disease Disease

58 rs72554356 T125M 0.21 0.688 –0.84 Disease Neutral

59 rs72554358 D126G 0 1 –0.68 Disease Disease

60 rs140046498 R129C 0 0.9999 –1.87 Disease Disease

61 rs66656800 R129H 0.02 1 –2.46 Disease Disease

62 rs72556252 L131S 0 1 –2.09 Disease Disease

63 rs72556253 S132P 0 1 0.95 Disease Disease

64 rs72556254 S132F 0 1 1.37 Disease Disease

65 rs72556256 A135E 0.09 0.122 0.53 Disease Disease

66 rs72556257 D136V 0 0.996 0.86 Disease Disease

67 rs72556258 A137T 0.04 0.761 0.19 Disease Neutral

68 rs72556259 L139S 0 1 –0.06 Disease Neutral

69 rs72556260 A140P 0.04 1 –0.46 Disease Disease

70 rs68026851 R141Q 0 1 –0.27 Disease Disease

71 rs67960011 R141G 0 1 –2.51 Disease Disease

72 rs72556261 V142E 0 1 0.55 Disease Disease

73 rs67016166 L148S 0 1 0.1 Disease Neutral

74 rs66741318 L148F 0 1 0.84 Disease Disease

75 rs72556265 L151R 0 1 –0.21 Disease Neutral

76 rs72556266 A152V 0.02 0.791 1.19 Disease Neutral

77 rs72556268 A155E 0 0.999 –0.24 Disease Neutral

78 rs67890094 A155P 0.01 0.999 –1.22 Disease Disease

79 rs72556269 I159T 0 0.99 –3.21 Disease Disease

80 rs67954347 I160N 0 0.996 –0.25 Disease Disease

81 rs72558497 N161K 0 1 –1.25 Disease Disease

82 rs72556270 N161D 0 1 0.44 Disease Disease

83 rs72556271 N161S 0.03 0.998 0.17 Disease Neutral

84 rs72556272 G162E 0 1 –1.58 Disease Neutral

85 rs66626662 G162R 0 1 –0.57 Disease Neutral

86 rs72556273 S164P 0 1 –0.34 Disease Disease

87 rs72556275 D165Y 0 1 –0.73 Disease Neutral

88 rs72556276 H168Q 0 1 –1.47 Disease Disease

89 rs72556277 P169A 0 1 –0.9 Disease Disease

90 rs72556278 P169L 0 1 –0.6 Disease Disease

91 rs72556279 I172F 0.01 1 –0.91 Disease Disease

92 rs72556280 I172M 0 0.964 –0.5 Disease Neutral

93 rs72556281 A174P 0 1 –1.52 Disease Disease

94 rs68033093 D175G 0.01 1 –3.78 Disease Disease

95 rs72556282 Y176H 0 0.999 –1.39 Disease Disease

96 rs72556283 Y176C 0 1 –1.39 Disease Disease
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Table 1 continued

S. no. rs IDs Variants SIFT PolyPhen 2 I-Mutant 3 SNPs&GO PhD-SNP

97 rs148961194 L177F 0.02 1 –0.13 Disease Neutral

98 rs72556284 T178M 0 1 –0.51 Disease Disease

99 rs72556286 L179P 0 1 –0.63 Disease Disease

100 rs72556290 E181G 0 0.793 –0.62 Disease Disease

101 rs143746493 H182Q 0.14 1 –1.93 Disease Neutral

102 rs72556291 H182L 0.27 1 –1.06 Disease Neutral

103 rs72556292 Y183D 0.04 1 –1.91 Disease Disease

104 rs72556294 G188R 0 1 –2.08 Disease Disease

105 rs72556295 G188V 0 1 –0.91 Disease Disease

106 rs72556296 L191F 0.13 0.202 –0.08 Disease Disease

107 rs72556297 L191R 0 0.998 –0.03 Disease Disease

108 rs72556298 S192R 0 0.999 –0.57 Disease Disease

109 rs67284661 W193R 0 1 –0.91 Disease Neutral

110 rs67294955 G195R 0 1 –1.97 Disease Disease

111 rs72556300 D196V 0 1 1.37 Disease Disease

112 rs66642398 D196N 0 1 –0.09 Disease Disease

113 rs72556301 G197R 0 1 –0.09 Disease Disease

114 rs72556302 G197E 0 1 0.26 Disease Disease

115 rs72558403 N198I 0 1 0.26 Disease Disease

116 rs72558404 N198K 0 1 –0.84 Disease Disease

117 rs72558405 N199D 0 1 –0.97 Disease Disease

118 rs72558406 N199S 0 1 –0.91 Disease Disease

119 rs72558407 L201P 0.01 1 –0.31 Disease Disease

120 rs72558408 H202Y 0.03 1 –2.74 Disease Neutral

121 rs72558409 H202P 0 0.998 –2.84 Disease Disease

122 rs72558410 S203C 0 1 –3.27 Disease Disease

123 rs72558411 M205V 0.03 0.904 –0.64 Disease Neutral

124 rs72558412 M206R 0.03 0.998 –2.5 Disease Neutral

125 rs72558413 M206I 0.13 0.069 –0.95 Disease Neutral

126 rs72558414 S207N 0.06 0.805 –0.31 Disease Disease

127 rs72558415 S207R 0.01 1 0.42 Disease Neutral

128 rs72558416 A208T 0.08 1 –0.05 Disease Neutral

129 rs72558417 A209V 0.04 1 1.21 Disease Neutral

130 rs72558418 K210Q 0.03 0.897 0.57 Disease Neutral

131 rs72558419 M213L 0.17 0.721 –0.67 Disease Neutral

132 rs72558420 H214Y 0.02 0.98 0.4 Disease Neutral

133 rs72558421 L215F 0.14 0.994 –0.41 Disease Disease

134 rs72558423 Q216E 0.97 0.663 –1.03 Disease Disease

135 rs72558424 A217E 0 0.994 –1.02 Disease Disease

136 rs72558425 P220A 0 1 –1.05 Disease Disease

137 rs72558426 P220L 0 1 –1.15 Disease Disease

138 rs72558428 P225T 0.27 0.954 –0.29 Disease Neutral

139 rs67120076 P225R 0.03 0.975 0.12 Disease Disease

140 rs72558429 A233V 0 0.998 –1.49 Disease Neutral

141 rs4385598 Q235Q 0.83 NA NA NA NA

142 rs67283833 E239G 0.16 0.85 –0.47 Disease Disease

143 rs72558435 T242I 0.05 1 –0.23 Disease Disease

144 rs72558436 L244Q 0 0.854 –0.11 Disease Disease
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Table 1 continued

S. no. rs IDs Variants SIFT PolyPhen 2 I-Mutant 3 SNPs&GO PhD-SNP

145 rs72558437 T247K 0.03 0.974 –0.55 Disease Disease

146 rs67330615 A253T 0 1 –2.18 Disease Disease

147 rs72558440 H255P 0.02 0.017 –0.9 Disease Disease

148 rs142592280 N258S 0 0.688 –1.72 Disease Disease

149 rs72558441 L260S 0 1 0.24 Disease Disease

150 rs67333670 T262K 0 1 –0.62 Disease Disease

151 rs72558442 D263N 0 1 0.33 Disease Neutral

152 rs72558443 D263G 0 1 –1.23 Disease Disease

153 rs72558444 T264A 0.01 0.998 –2.53 Disease Disease

154 rs67156896 T264N 0.03 0.902 –1.76 Disease Disease

155 rs72558445 W265R 0 0.996 –0.87 Disease Disease

156 rs72558446 W265L 0 1 –0.26 Disease Disease

157 rs72558448 S267R 0 1 –0.51 Disease Disease

158 rs72558449 M268T 0 1 –1.98 Disease Disease

159 rs72558450 G269E 0 1 –1.43 Disease Disease

160 rs72558451 Q270E 0.01 0.923 –1.13 Disease Disease

161 rs1800328 Q270P 0 0.284 –2.14 Disease Disease

162 VAR_004927 Q270R 0 0.977 –1.14 Disease Disease

163 rs72558454 R277W 0 1 –0.46 Disease Disease

164 rs66724222 R277Q 0 1 –0.35 Disease Disease

165 rs72558461 W298S 0.05 0.987 –0.96 Disease Neutral

166 rs72558462 L301F 0.01 0.997 0.16 Disease Disease

167 rs72558463 H302Y 0 1 1.2 Disease Disease

168 rs67993095 H302R 0 1 –0.1 Disease Neutral

169 rs67870244 H302K 0 1 0.21 Disease Neutral

170 rs72558464 C303Y 0 1 0.74 Disease Disease

171 rs67468335 C303R 0 1 0.28 Disease Disease

172 rs72558465 L304F 0 0.999 1.14 Disease Disease

173 rs67501347 P305H 0 1 –2.28 Disease Disease

174 rs72558467 E310G 0 1 –3.46 Disease Disease

175 rs72558468 V311M 0 1 –0.27 Disease Neutral

176 rs137899554 E314A 0.11 0.003 –1.44 Disease Neutral

177 rs72558470 V315F 0 0.999 –0.97 Disease Disease

178 rs67414444 V315D 0 1 –3.9 Disease Disease

179 rs72558471 F316S 0 0.999 –0.05 Disease Neutral

180 rs72558472 S318F 0.04 0.555 –0.51 Disease Disease

181 rs72558474 R320L 0.01 0.948 –1.64 Disease Disease

182 rs72558476 E326K 0 1 –0.52 Disease Disease

183 rs72558478 R330G 0 1 –2.29 Disease Neutral

184 rs72558480 W332R 0.03 1 –0.84 Disease Disease

185 rs72558486 A336S 0.16 0.791 0.41 Disease Disease

186 rs72558487 V337L 0.32 0.007 1.53 Disease Neutral

187 rs199568993 M338L 0.56 0.012 1.21 Disease Neutral

188 rs72558488 V339L 0.3 0.001 1.1 Disease Neutral

189 rs72558489 S340P 0.09 0.996 0.77 Disease Neutral

190 rs72558490 L341P 0 1 –0.85 Disease Disease

191 rs72558491 T343K 0.92 0.101 –0.48 Disease Neutral

192 rs72558492 Y345C 0.01 0.999 –1.92 Disease Neutral
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native X-ray crystallographic structure (PDB ID: 1OTH).

An energy minimization study gives the information about

the protein structure stability. We checked the total energy

for native- and mutant-type structures. In OTC gene,

mutation occurred for the native protein in ‘A’ chain of

protein structure at position D126G, R141Q, A174P,

T178M and G195R. It can be seen that the total energy

value and RMSD of native-type and mutant-modeled

structures (D126G, A174P, and G195R) were found to be

higher (Table 2).

The mutations for 1OTH at their corresponding positions

were performed by SWISS-PDB viewer independently to

achieve modeled structures. Then, energy minimizations

were performed by NOMAD-Ref server for the native-type

protein 1OTH and the mutant-type structures. The RMSD

values between the native type (1OTH) and the mutant

D126G is 2.01 Å, between the native type and the mutant

A174P is 2.82 Å, and between the native type and the mutant

G195R is 2.82 Å, respectively. The deviation between the

two structures is evaluated by their RMSD values, which

could affect the stability and functional activity. The RMSD

values of all the mutant structures were all alike. Higher the

RMSD value more will be the deviation between native- and

mutant-type structures and which in turn changes their

functional activity. Superimposition of native with the

mutant protein D126G, R141Q, A174P, T178M and G195R

of OTC gene is shown in (Fig. 1a–e). The total energy for the

native and mutant type structures were found to be

-25480.939, -24899.660, -25068.101, -24881.020,

-24969.936 and -24608.215 kcal/mol respectively

(Table 3).

Analysis of local environment changes

Within the range of 4 Å from the mutational point, sur-

rounding amino acid changes were analyzed for native and

mutant protein structures. It was observed through PyMOL

(DeLano 2002). Figure 2 shows the substitution of hydro-

philic residue aspartic acid to hydrophobic residue glycine

at position 126, which leads to hydrophobic change at the

core of the protein that could result in the destabilization of

the gamma turns. The drift in hydrophilic to hydrophobic

property can result in the gain of one amino acid LEU 131

in mutant structure.

Figure 3 illustrates the substitution of the hydrophilic

residue arginine with another hydrophilic residue gluta-

mine at position 141, which leads to structural modifi-

cation at the core region of the protein due to the size of

the substituted amino acid, and that could result in

affecting the strand portion. The changes in the amino

acid size results in loss of four amino acids ARG330,

HIS268, LEU139, and THR93 in mutant R141Q struc-

ture. Substitution of hydrophobic residue alanine with

another hydrophobic residue proline and changes in the

surrounding amino acids are shown in Fig. 4. Since the

size of the substituted amino acid has the same size of

the native residue, these changes were not affected the

surrounding amino acids in A174 P-mutant structure.

Figure 5 shows the substitution of non-polar hydrophobic

amino acid glycine with polar hydrophilic larger amino

acid arginine at position 195 of OTC protein. Substitution

of small amino acid glycine with large amino acid

arginine leads to gain of seven SER267, THR264,

ILE200, ASP263, TRP265, ASN198, and LEU252 amino

acids in the surrounding region of mutant structure. This

change may affect the gamma turn of the native protein.

Substitution of polar hydrophobic amino acid threonine at

position 178 with non-polar hydrophobic amino acid

methionine is shown in Fig. 6. This substitution leads to

gain of one amino acid in the mutant structure and this

change may affect the helix region of the native OTC

protein.

Table 1 continued

S. no. rs IDs Variants SIFT PolyPhen 2 I-Mutant 3 SNPs&GO PhD-SNP

193 rs66469337 Y345H 0.23 0.042 –2.64 Disease Neutral

194 rs72558493 P347T 0.02 0.997 –0.62 Disease Neutral

195 rs72558495 F354C 0 0.791 –0.22 Disease Neutral

rs IDs highlighted in bold were found to be deleterious by SIFT, PolyPhen 2, I-Mutant 3, SNPs&GO and PhD-SNP

Table 2 Summary of deleterious nsSNPs in the coding region of OTC gene

RS IDS Amino acid position SIFT PolyPhen 2 I-Mutant 3 SNPs&GO PHD-SNP

rs72554358 D126G 0 1 –0.68 Disease Disease

rs68026851 R141Q 0 1 –0.27 Disease Disease

rs72556281 A174P 0 1 –1.52 Disease Disease

rs72556284 T178M 0 1 –0.51 Disease Disease

rs67294955 G195R 0 1 –1.97 Disease Disease
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Secondary structural changes analysis

The number of secondary structure elements such as Beta

sheets, Beta–Alpha Beta, Strands, Helices, Helix–Helix

Interacs, Beta Turns, and Gamma Turns was calculated for

both the native and mutant models (Table 4). It has to note

that the observed numbers of secondary structural elements

are equal in both native and mutant models except the

Helix–Helix Interacs and Beta Turns. There was a slight

decrease in the number of beta turns in mutant models

D126G, R141Q, A174P, T178M, and G195R as 15, 12, 15,

12, and 15, respectively. The number of beta turn was

increased by one in three mutant models R141Q, A174P,

and T178M. These secondary structural element changes

lead to changes in the physiochemical properties of the

mutant structure (Table 5) and it may affect the protein

stability and conformation.

Discussion

Last decade has witnessed the accelerated expansion of

information regarding the genomic variants especially

SNPs in public databases as a result of improved second

generation sequencing technologies. After polymorphism

information has become abundant in public databases,

many groups started to develop in silico tools that would

computationally calculate the properties of these poly-

morphisms, particularly trying to extrapolate the effect of

Fig. 1 Superimposition of native and mutant modeled structures

(cartoon shape) of OTC protein. a Superimposed structure of native

amino acid aspartic acid (green) with mutant amino acid glycine (red)

at position 126. b Superimposed structure of native amino acid

arginine (green) with mutant amino acid glutamine (red) at position

141. c Superimposed structure of native amino acid alanine (green)

with mutant amino acid proline (red) at position 174. d Superimposed

structure of native amino acid threonine (green) with mutant amino

acid methionine (red) at position 178. e Superimposed structure of

native amino acid glycine (green) with mutant amino acid arginine

(red) at position 195

Table 3 RMSD and total energy of native and mutant model of OTC

gene

Native and mutant

structure

RMSD

(Å)

Total energy

(Kcal/mol)

Stabilizing

residue (Sride)

Native 0.00 –25,480.939 5

D126G 2.01 –24,899.660 3

R141Q 1.84 –25,068.101 4

A174P 2.82 –24,881.020 4

T178M 1.94 –24,969.936 3

G195R 2.82 –24,608.215 3
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polymorphism that has on the phenotype. If dataset on the

phenotypic impact is unknown (owing to the insufficiency

of clinical data or experimental) or not specified, most of

the tools set out to identify whether a polymorphism is

detrimental or not. Anyhow, in order for the identification,

to be accurate, information had to be accumulated on the

features distinguishing neutral from deleterious polymor-

phisms; many tools and algorithms that support large-scale

analyses of SNPs (In particular nsSNPs). Various

computational methods have been developed for predicting

the significant missense mutations based on sequence and

structural methods. With respect to the information utilized

by the prediction, existing methods can be roughly grouped

into three categories: ‘sequence-based’, ‘structure-based’

and ‘sequence and structure-based’, respectively.

Sequence-based methods can be subcategorized into

sequence homology-based and single sequence-based

methods. Sequence homology-based method methods in

Fig. 2 Surrounding amino acid changes in native OTC and mutant D126G structures

Fig. 3 Surrounding amino acid changes in native OTC and mutant R141Q structures
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this category calculate the probability of the substitutions

based on multiple sequence alignments (Ferrer-Costa et al.

2004; Shen and Vihinen 2004). Sequence homology-based

tools are derived based on the premise that essential amino

acids are conserved in the protein family. Hence, changes

at well-conserved positions tend to be predicted as dele-

terious. This probabilistic method provides information

about conserved sites in evolution that are often structur-

ally or functionally important and distinguishes between

missense mutations involved in disease and those that are

functionally neutral. For sequence homology-based meth-

ods, the prediction accuracy depends heavily on the

availability of enough homologs in protein databases.

Saunders and Baker (2002) showed that the prediction

accuracy decreased significantly when fewer than 5–10

homologous sequences are available. An ideal alignment

should be composed of a diverse set of orthologous

sequences rather than paralogs. Structure-based methods

make predictions based on structural information, espe-

cially that of amino acid side-chain conformation, over

Fig. 4 Surrounding amino acid changes in native OTC and mutant A174P structures

Fig. 5 Surrounding amino acid changes in native OTC and mutant G195R structures
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packing and residue–residue contacts (Gonzalez Diaz et al.

2005). The substitution of a wild-type residue may lead to

altered chemical and physical properties, thus causing

structural arrangements. The third method category com-

bines information on the sequence features, the structural

parameters and contacts to characterize the substitution.

The incorporation of structural data greatly improves the

quality of the multiple sequence alignment and the accu-

racy of prediction. This is well illustrated by PolyPhen

(Ramensky et al. 2002), a multiple sequence alignment

server that aligns sequences using structural information. It

may outperform the single sequence-based program SIFT

(Ng and Henikoff 2003) in predicting the effect of amino

acid mutations. In addition to PolyPhen, diverse Web-

based programs are used to predict mutation effects based

on homology and three-dimensional structural models, e.g.,

PROMALS3D (Pei et al. 2008), 3Dcoffee (O’Sullivan

et al. 2004), Expresso (Armougom et al. 2006), CLU-

STALW (Thompson et al. 1994), MUSCLE (Edgar 2004),

PRALINE (Simossis and Heringa 2005), SPEM (Zhou and

Zhou 2005). The user only needs to provide sequences, the

server runs BLAST to identify close homologues of the

sequences within the PDB database.

Study of the molecular basis of diseases using experi-

mental methods is often labor intensive, and time con-

suming, especially in cases where there are several

missense mutations causing the disease. These studies are

difficult to mount on a scale that may be required for

characterizing the genetic variants and at times these

results might not always reflect the in vivo genotype

function in humans. In contrast, precise and useful infor-

mation about the effects of mutations on protein structure

and function can be readily obtained by in silico methods.

Our study gains significance by predicting the possible

deleterious SNPs in OTC gene, so that the number of SNPs

screened for association with diseases can be reduced to

those that are most likely to alter gene function. All the

above methods defined here follow a similar technique in

which each SNP is first labeled with the properties related

to damage it may cause on protein structure and function.

Fig. 6 Surrounding amino acid changes in native OTC and mutant T178M structures

Table 4 Secondary structural elements in native and mutant structure of OTC gene

S. no. Variant Sheet Beta-alpha-beta units Strands Helices Helix–Helix interacs Beta turns Gamma turns

1 Native 2 5 9 15 16 23 3

2 D126G 2 5 9 15 15 23 3

3 R141Q 2 5 9 15 12 24 3

4 A174P 2 5 9 15 15 24 3

5 T178M 2 5 9 15 12 24 3

6 G195R 2 5 9 15 15 23 3

Change in the secondary structure elements are highlighted in bold
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The resulting feature vector is then used to determine

whether a single residue substitution has any effect on

protein function or not. Considering SNPs based on the

amino acid properties are generally reflected to be an

important phenomenon in defining the protein folding,

stability, and its function. The results from this paper sig-

nify the impact of mutations in OTC gene in causing

OTCD. Further, studies possibly will help in uncluttered

nature of OTCD. It is hoped that the results obtained from

this study would pave the way by providing useful infor-

mation to the researchers, and can play an important role in

bridging the gap between biologists and bioinformaticians.
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