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Cancer diagnosis is one of the most important tasks of biomedical research and has become the main objective of medical
investigations. The present paper proposed an analytical strategy for distinguishing between normal and malignant colorectal
tissues by combining the use of near-infrared (NIR) spectroscopy with chemometrics. The successive projection algorithm-linear
discriminant analysis (SPA-LDA)was used to seek a reduced subset of variables/wavenumbers and build a diagnosticmodel of LDA.
For comparison, the partial least squares-discriminant analysis (PLS-DA) based on full-spectrum classification was also used as the
reference. Principal component analysis (PCA) was used for a preliminary analysis. A total of 186 spectra from 20 patients with
partial colorectal resection were collected and divided into three subsets for training, optimizing, and testing themodel.The results
showed that, compared to PLS-DA, SPA-LDA provided more parsimonious model using only three wavenumbers/variables (4065,
4173, and 5758 cm−1) to achieve the sensitivity of 84.6%, 92.3%, and 92.3% for the training, validation, and test sets, respectively,
and the specificity of 100% for each subset. It indicated that the combination of NIR spectroscopy and SPA-LDA algorithm can
serve as a potential tool for distinguishing between normal and malignant colorectal tissues.

1. Introduction

Nowadays, cancer has become one of the principal causes
to death of diseases [1, 2]. Great efforts have been paid
for various cancer-related researches. Cancer diagnosis has
become the central topic of research in cancer treatment.
The conventional methods for cancer diagnosis are mainly
based on the morphological appearance of the tumor tissue.
The limitations for this method are the strong bias in
discriminating the tumor by pathology expert and also the
difficulties of differentiating between cancer subtypes [3].

Colorectal cancer is a disease of genes that control the
proliferation, differentiation, and death of colon cells [4]. It
has become the fourth most common cancer and continues
to be the third leading cause of cancer-related deaths in both
men and women, accounting for about 10% of all cancer

deaths annually [5]. If colorectal cancer is found during its
early stages, the 5-year relative survival rate is 90%. However,
only about one-third of colorectal cancers are detected at
early stages [6]. Although there are some available methods
for diagnosing colorectal cancer [7], for example, serum
markers, flexible sigmoidoscopy, and colonoscopy, the final
result still relies on the gold standard of histopathologic
diagnosis, which is time-consuming and strongly dependent
on the pathologist’s subjective judgment and experience.
Hence, there is an urgent need to develop simple and fast
diagnostic methods.

Recent researches have demonstrated the applicability of
optical spectroscopic technique for fast, noninvasive, and in
situ diagnosis of various diseases including cancer. Infrared
(IR) and near-infrared (NIR) spectroscopy especially have
been proved to be useful tools for disease diagnosis because
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of their potential to probe the changes of tissues and cells
at the molecular level [8]. It is known that the generation
and progression of any cancers manifest themselves at the
molecular level before morphologic changes emerge, which
cannot be detected by traditionalmethods or even pathologic
examinations [9]. NIR spectroscopy, as a powerful tool with
practical advantages, can rapidly capture the information of
chemical bonds in function groups and is therefore sensitive
to changes in molecular composition and structures [10–
12]. Cancer tissues differ from the normal ones in the
compositions and any alterations in the compositions of the
tissues can be probed and used for diagnostic purposes. NIR
technique has been used in several cancer researches such as
lung [13], gastric [14], esophagus [15], endometrial [16], and
pancreatic [17].

However, the NIR spectrummainly corresponds to over-
tones and combinations of fundamental vibration transitions
that occur in the IR region and is therefore overlapping,
broad, and weak and without distinct signature of indi-
vidual components [18]. A NIR-based diagnostic applica-
tion requires a suitable diagnostic model that can best
discriminate the measured spectra from an unknown tissue.
Over the years, a variety of modeling algorithms have been
developed or used for optical diagnosis of cancer. Both
traditional algorithms such as soft independent modeling of
class analogy (SIMCA) [19] and novel algorithms such as
support vector machine (SVM) [20] have been used for this
purpose. The NIR spectrum comprises measurements over
a large number of channels for each sample. In many cases,
the responses of different instrument channels exhibit strong
correlation and there exist some channels without relevant
information. Thus, it is beneficial to use only a subset of
channels rather than the entire set of measurements [21].
Also, such a step facilitates the interpretation of the model
and is useful to guide the design of less costly instruments.
Recent efforts are directed towards using variable selection
to identify the best diagnostic features for obtaining a simple
and easily interpreted model. In this context, Araújo et al.
[22] developed the successive projection algorithm (SPA)
for selecting variables in multiple linear regressions (MLR).
In a subsequent work, Pontes et al. [23] extended the basic
SPA to handle classification problems by merging with
linear discriminate analysis (LDA), which results in the so-
called SPA-LDA method. SPA-LDA has been successfully
applied in various classification tasks such as coffee and soil
classification [24, 25].

The present paper proposed an analytical strategy for
distinguishing between normal and malignant colorectal
tissues by combining the use of NIR spectroscopy with
variable selection. For this purpose, the SPA-LDA was used
to seek a reduced subset of variables/wavenumbers and build
a diagnostic model of LDA. For comparison, the partial
least squares-discriminant analysis (PLS-DA) based on full-
spectrum classification was also used as the reference. Prin-
cipal component analysis (PCA) was used for a preliminary
analysis. A total of 186 spectra from 20 patients with partial
colorectal resection were collected and divided into three
subsets for training, optimizing, and testing the model.
The results showed that, compared to PLS-DA, SPA-LDA

provided a simpler and better model, which used only
three wavenumbers/variables (4065, 4173, and 5758 cm−1)
to achieve the sensitivity of 84.6%, 92.3%, and 92.3% for
the training, validation, and test set, respectively, and the
specificity of 100% for each subset. It indicated that the
combination of NIR spectroscopy and SPA-LDA algorithm
can serve as a potential tool for distinguishing between
normal and malignant colorectal tissues.

2. Theory and Methods

2.1. Partial Least Squares-Discriminant Analysis (PLS-DA).
Partial least squares (PLS) regression is a classic latent
variable-based multivariate calibration method. Partial least
squares-discriminant analysis (PLS-DA) is a classification
algorithm that combines the properties of PLS regression
with discriminant analysis [26].Theoutstanding advantage of
PLS-DA is that the main sources of variability in the dataset
are modeled by the so-called latent variables (LVs), therefore,
in the associated scores and loadings, making easy the visu-
alization and understanding of data structure and relations
in the dataset. Actually, PLS-DA is a special form of PLS
modeling and focuses on finding the variables and directions
in multivariate space, which discriminates the known classes
in the training set. If there are only two classes to separate, the
PLS model uses one dummy variable, which codes for class
membership as follows: 1 for samples belonging to a given
class of interest and 2 for samples belonging to a different
class. A discriminant model is developed by regression of the
independent matrix (spectral data) on the assigned dummy
variable.

The model constructed on the experimental dataset can
be used to assign unknown samples to a previously defined
class based on its measured features such as spectrum.
Classification of a new sample is derived from the output
value of the PLS model. The output value is a real number,
instead of an integer, which should ideally be close to the
values used to codify the class (either 1 or 2). A threshold
between 1 and 2 is set so that a sample is assigned to
class 1 if the predicted value is smaller than the threshold
or assigned to class 2 if the predicted value is above the
threshold. PLS-DA uses the appropriate number of LVs, that
is, linear combinations of the original variables, to maximize
the discrimination among the classes.The number of LVs can
be optimized by the criterion of lowest prediction error in
cross validation.

2.2. Successive Projection Algorithms-Linear Discriminant
Analysis (SPA-LDA). The successive projections algorithm
(SPA) is a forward variable selection method aimed at min-
imizing variable collinearity in modeling. It was originally
developed by Araújo et al. in the context of multivariate cal-
ibration [22]. In SPA, the selection of variables is formulated
as a combinatorial optimization problem with constraints.
The optimization is restricted to certain subsets of variables,
which are the results of a sequence of projection operations
related to the matrix of instrumental responses. Therefore,
the times of evaluating cost function are considerably reduced
compared to an exhaustive search. Inmultivariate calibration,
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Figure 1: The flowchart of the SPA-LDA algorithm.

SPA is aimed at screening variables for building multiple
linear regression (MLR) models. Subsequently, SPA has been
extended to improve the performance of classificationmodels
of linear discriminant analysis (LDA), which easily suffered
from multicollinearity among the input variables.

The combination of SPA and LDA is expressed as SPA-
LDA. Figure 1 gives the flowchart of the SPA-LDA algorithm.
SPA-LDA focuses at selecting a subset of variables with min-
imal collinearity and appropriate discriminating ability for
use in classification problems. For this purpose, it is assumed
that a training set consisting of 𝑁 samples with known class
labels is available for guiding the process of variable selection.
In the case of spectroscopic dataset, each sample consists of
a spectrum with 𝐾 points (wavenumbers/wavelengths). The
SPA-LDAscheme comprises twomain phases [27]. In Phase 1,
the𝑁 training samples/spectra are first centered on themean
of each class and stacked in the form of a matrix 𝑋 (𝑁 ×
𝐾). Each column of 𝑋 corresponds to a variable. Projection
operations related to the columns of𝑋 are then carried out to
create 𝐾 chains with 𝐿 variables. Due to the loss of freedom
degrees in the process of calculating class means, the chain
length is limited by𝑁 − 𝐶, where 𝐶 is the number of classes
involved in the problem. Each time, the chain is initialized
by one of the available 𝐾 variables. Subsequent variables are
selected to the chain in order to display the least collinearity
with the previous ones. The collinearity is evaluated by the
correlation between the respective column vectors of 𝑋. In
Phase 2, different variable subsets are extracted and evaluated.
For each of the𝐾 chains formed in Phase 1, a total of 𝐿 subsets
of variables can be extracted by using one up𝐿 variables in the
order in which they are selected.Thus, a total of𝐾×𝐿 subsets
of variables can be generated. These candidate subsets are

assessed in terms of a cost function involving the average risk
of misclassification over the validation set. The cost function
is defined as

𝐺cost =
1

𝑁val

𝑁val

∑

𝑛=1

𝑔
𝑛

, (1)

where

𝑔
𝑛

=
MD2 [xval,𝑛, x (𝐼𝑛)]

min
𝐼𝑗 ̸=𝐼𝑛

MD2 [xval,𝑛, x (𝐼𝑗)]
. (2)

In (2), the numerator MD2[xval,𝑛, x(𝐼𝑛)] is the squared Maha-
lanobis distance between the 𝑛th validation sample xval,𝑛 and
the center of its true class calculated over the training set by
the formula:

MD2 [xval,𝑛, x (𝐼𝑛)] = [xval,𝑛 − x (𝐼𝑛)] S
−1

[xval,𝑛 − x (𝐼𝑛)]
𝑇

,

(3)

where S is a pooled covariance matrix calculated on the
training set, instead of using a separate estimate for each
class. To have a well-posed problem, the number of training
samples should be larger than the number of variables
included in a LDA model; otherwise, the estimated S will be
singular, which makes it impossible to calculate the matrix
inverse. The denominator in (2) corresponds to the squared
Mahalanobis distance between xval,𝑛 and the mean of the
nearest wrong class. A small value of 𝑔

𝑛

indicates that xval,𝑛 is
close to the center of its true class and distant from the centers
of all other classes.The cost function is defined as the average
of 𝑔
𝑛

of all samples in the validation set. So, the minimization
of the cost function can lead to better separation of samples
of different classes.

Once the variables have been selected, a SPA-LDAmodel
can be obtained. For a new sample, its Mahalanobis distance
with respect to themean vector of each class can be calculated
and it can then be assigned to the class for which its
Mahalanobis distance is the smallest.

3. Experimental

3.1. Preparation of Colorectal Tissue Samples. Colonic tissue
samples were collected from 20 patients who underwent
partial colorectal resection at the Affiliated Hospital of North
Sichuan Medical College and the First People’s Hospital of
Yibin of China. All patients were histopathologically proven
malignancies of the colon. After surgical resections, the tissue
samples were immediately fixed in 10% formalin solution and
then stored in the laboratory for spectral measurements. To
ensure that the NIR spectra were representative of the pathol-
ogy, the peer tissues were processed as paraffin embedded
blocks for pathologic confirmation. The average age of the
patients was 54 years with the youngest being 31 years and
the oldest being 71 years.The study had been approved by the
local ethics committee and the consent for using the tissue
samples was obtained. It was believed that the positions with
5–10 cm distance from the tumor were healthy and each site
was also confirmed by experienced pathologist. A total of 186
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NIR spectra from different sites of colonic tissue specimens
were acquired, in which 78 spectra were from cancerous
positions and 108 spectra from normal positions. Different
spectra correspond to different positions. All spectra were
divided into three subsets: the training set, the validation set,
and the test set. Each subset consisted of 26 cancerous and
36 normal spectra from different patients. For classification
purposes, each spectrum was assigned a class label (1 for
cancer and 2 for normal). The training and validation sets
were used in the modeling procedures whereas the test set
was only used in the evaluation and comparison of the final
classification models.

3.2. Instrument and Spectrum Acquisition. The FT-NIR spec-
trometer of Antaris II (Thermo Fisher Scientific, USA)
equipped with an InGaAs detector and a fiber-optic probe
(SabIR) was used in this work for spectra collection. The
SabIR is a high-performance optical probe able to perform
remote nondestructive sampling.Themeasurementwas done
in diffuse reflectance mode. The outer and light spot diame-
ters of the probe were about 20mm and 3mm, respectively.
Thus, during each measurement, the measured area was
appropriately 7.0mm2. The spectrometer was controlled by
the accompanied Result 3.0 software. Each spectrum was
taken as an average of 32 successive scans from 4000 to
10000 cm−1 with spectral resolution of 4 cm−1. The record
format of spectrum was Log (1/𝑅), where 𝑅 was the sample
diffuse reflectance. To minimize the influence of tissue size
and thickness, each individual spectrumwas preprocessed by
the standard normal variate (SNV) and first derivative. The
SPA algorithmwas implemented by the software of SPA GUI
provided by Araújo. All preprocessing and other calculations
were performed by homemade codes in MATLAB 7.0 for
Windows.

4. Results and Discussion

4.1. Spectral Band Assignment. Figure 2 shows the popula-
tions mean spectra and the standard deviation of cancerous
and normal tissue specimens. Spectra from cancerous tis-
sues were different in some regions, which reflected certain
changes in the levels of various biochemical compositions due
to canceration. It is also clear in Figure 2 that the spectral
peaks of raw NIR signal are broad and overlapping and
thereforemake it impossible to carry out direct quantification
analysis. Even if NIR spectrum cannot provide significantly
different peaks like midinfrared (MIR) spectroscopy, it still
includes much information on chemical composition of
the tissue. Also provided in Figure 2 were the assignments
of bands to different chemical substructures. From left to
right in the region of 10000–4000 cm−1, four subregions
correspond to the CH, NH, OH, and CC combinations,
CH first overtones, first overtone of OH, NH, and CH
combinations, and CH second overtone of fundamental
vibration transitions, respectively. These NIR spectroscopic
bands coupled with unsupervised pattern recognition have
also been used for gastric cancer differentiation [14]. Each
NIR spectrum is actually a mixture of the spectral signatures
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Figure 2: Populations mean spectra and the standard deviation of
cancerous and normal tissue specimens.

of various tissue components, especially proteins, lipids,
and carbohydrates. The differences in composition between
cancerous and normal tissues have been extensively inves-
tigated by chemical, histochemical, and biochemical means.
For example, carbohydrate level was reduced in cancer
tissues compared to normal tissues. The phosphate content
of normal tissues was higher than cancerous ones. Overall,
the NIR spectrum can provide information on tissue blood
flow, oxygen saturation and consumption, and compositions.
Thus, any alterations in the composition of the tissues can be
captured in NIR spectrum and used for diagnostic purpose.
It is also noteworthy that the spectral profile variation in
some regions is higher for the cancerous tissues. It is maybe
due to different stages of carcinogenesis of the tissues and
differences in the thickness of the tissues, which influence
spectral reflectance caused by photon penetrating depths.

4.2. Principal Component Analysis. Principal component
analysis (PCA) was used to examine the possible clustering in
samples and investigate the extent to which NIR features can
differentiate cancerous and normal tissues. Figure 3 provided
the three-dimensional scatter plot of the first three principal
components (PCs) and its 2-dimensional projection.The first
three PCs accounted for about 80% of the total variation in
the NIR spectra. As can be seen in Figure 3, the separation
was not clear and there existed some overlaps between can-
cerous and normal samples, implying that the data structure
or relationship was maybe complex and nonlinear.Therefore,
to determinewhether a tissue is cancerous or not from itsNIR
spectrum, amathematical model needs to be trained by using
some known samples.

4.3. Model Construction and Optimization. Both the PLS-
DA and SPA-LDA algorithms were used for constructing the
diagnostic models.

When the PLS-DA model was constructed, one major
issue was the choice of the optimal number of latent variables
(LVs), which was carried out by a 5-fold cross validation
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procedure. When performing cross validation, the samples
in the training set were first divided into five cross validation
groups, that is, cancellation groups. Each cancellation group
was first assigned 5 cancerous spectra and 7 normal spectra
and the remaining spectra entered into the fifth group. Each
cross validation groupwas removed from the training set, one
at a time. Each time, the model was trained on the remaining
samples and then used to predict the samples in the cross
validation group. Figure 4 illustrated the influence of the
number of LVs in the PLS-DA model on the classification
error (Err.). It seemed that the minimum misclassification
ratio corresponded to 2 LVs, meaning that a relatively simple
classification model was obtained, that is, a model based
on few latent variables, which was preferable in terms of
both model interpretation and stability. Considering that the
loading can offer the possibility of observing the impor-
tance of features, the loading vectors of the selected LVs
were also provided in Figure 4. Clearly, the LV1 and LV2
focused on the CH first overtones and CH, NH, CH, and
CC combinations regions, respectively. Figure 5 showed the
prediction performance of the final PLS-DA model on the
training, validation, and test sets. For either the training
or test set, seven spectra were misclassified. The sensitivity
and specificity were 84.6%, 84.6%, and 91.7% and 92.3%,
88.9%, and 86.1% for the training, validation, and test sets,
respectively.

The SPA-LDA modeling resulted in only three vari-
ables/wavenumbers, which correspond to the minimum
point of the validation cost curve, as the arrow indicated
in Figure 6. Figure 7 gave the preprocessed mean spectra of
cancerous and normal tissues by 1st derivative in the range of
8000–4000 cm−1, where the solid circlemarkers indicated the
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Figure 5: The prediction performance of the final PLS-DA model
on different subsets.

wavenumber positions selected by SPA-LDA. As can be seen
in Figure 7, the selected three wavenumbers (4065, 4173, and
5758 cm−1) are indeed related to these characteristic points
such as spectral peaks and shoulders. Similarly, Figure 8
showed the prediction performance of the final SPA-LDA
model on the training, validation, and test sets. There existed
4, 1, and 2misclassified spectra for the three sets, respectively.
The sensitivity was 84.6%, 92.3%, and 92.3% for the training,
validation, and test set, respectively. The specificity for each
subset was the same, that is, 100%. It was clear that SPA-LDA
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Figure 7: Preprocessed mean spectra of cancerous and normal
tissues by 1st derivative in the range of 8000–4000 cm−1. The
solid circle markers indicate the positions in the spectra of the
wavenumbers selected by SPA-LDA algorithm.

used only three variables to achieve superior performance
to PLS-DA. Why only three variables lead to better model
is maybe ascribed to the fact that the NIR signal strength
between different channels is considerably correlated. Often,
only a variable can represent the information distributed
in its adjacent variables. Such a phenomenon is also in
accordance with the purpose of SPA, which is to minimize
collinearity among the selected variables. Moreover, SPA-
LDA proves to be less sensitive to instrumental noise and
more parsimonious than the other strategies.
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Figure 8: The prediction performance of the final SPA-LDA model
on different subsets.

5. Conclusions

The combination of NIR spectroscopy and two classification
algorithms was evaluated in a study for distinguishing can-
cerous colon tissue from normal ones. The results showed
that the SPA-LDA was preferable since it used only three
single wavenumbers to achieve better performance than
PLS-DA. The NIR technique has several advantages: it is
inexpensive and less time-consuming and does not require
special sample preparation. It can be applied in oncology, not
only to diagnose cancerous tissue from normal tissue but also
to understand basic process such as changes in metabolite
concentration at the molecular level before histological man-
ifestation. Based on more representative sample set, NIR is
also expected to be used in grading of malignancies, which
maybe remains our future work.
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