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Repetitive transcranial magnetic stimulation (rTMS) is implemented to treat many clinical
diagnoses. The most common clinical patients receiving rTMS are those suffering from treatment
resistant depression (TRD). As a treatment for TRD, rTMS is thought to modulate circuits
dysregulated by the disease (Fox et al., 2012). Considering many clinical populations have
overlapping dysregulated circuits (Goodkind et al., 2015; McTeague et al., 2017), rTMS holds
tremendous potential to treat myriad diseases. One such disease that is manifest by dysregulated
circuits is substance use disorder (SUD) (Volkow et al., 2016). The dysregulation spawns from
the mesocorticolimbic dopamine (MCL-DA) system and linked to initiation and maintenance of
addictive behaviors (Goldstein and Volkow, 2002). Drug use increases DA release in MCL-DA
system (Jay, 2003; Kelley, 2004; Nestler, 2005), which is thought to be an important element in
learning, goal-directed behavior, and reward processing (Everitt and Robbins, 2005; Kalivas and
O’Brien, 2008). The MCL-DA system was modulated with repeated drug exposures to increase
dysregulations in SUDs. Cortical rTMSmodulates dopamine release in theMCL-DA (Strafella et al.,
2001; Strafella, 2003) suggesting rTMS has therapeutic potential for clinical disorders related to DA,
such as SUDs.

OVERVIEW OF THE SPECIAL ISSUE

Recently, a large number of researchers are testing the potential of rTMS to treat SUDs (Diana
et al., 2017) and the field is beginning to coalesce toward specific methodological approaches in this
regard (Ekhtiari et al., 2019). As with any new field of study, there are many “known unknowns”
to uncover to optimize treatment application and increase positive outcomes (i.e., reduce relapse).
The topic of this special issue of Frontiers in Neuroscience is a timely and important one with a set
of papers gathered together that are provocative and wide-ranging. They advance our knowledge
by tackling a few known unknowns of how rTMS could be applied to address the negative impact
of SUDs on society. The 11 papers range from empirical studies with rTMS applied to treat cocaine,
methamphetamine, alcohol, and eating disorders; reviews on rTMS as a treatment for cocaine,
methamphetamine, amphetamine, and gambling disorder; and two commentaries discussing the
potential of motor cortex stimulation as a target site for intervention. Specifically, motor cortex
excitability, and the relationship to glutamate (Nardone et al., 2019), could be used to assess and
increase inhibitory control known to be dysregulated in SUDs (Volkow et al., 2016; Zilverstand
et al., 2018), as a treatment for alcohol use disorder (AUD) and SUDs in general (Zhou et al., 2019).

The systematic reviews include rTMS studies applied to treat SUD and gambling disorder.
Although there are few published studies using rTMS or transcranial direct current stimulation
(tDCS), the research topic is ripe for investigation (Zucchella et al., 2020). Gambling disorder has
similar behavioral and pathophysiological manifestations as SUDs, suggesting potential overlap in
dysregulation and interventional tools for treatment. In treating SUDs with rTMS, these reviews
highlight the importance of considering both dopamine and glutamate (Moretti et al., 2020) as
well as assessing individual differences in patients (Ma et al., 2019) to better uncover the known
unknown of the underlying mechanisms of rTMS interventions. Also, applying high frequency
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stimulation (∼5–20Hz) is more effective than low frequency
(∼1Hz) at reducing craving post-rTMS (Ma et al., 2019). This
reflects the shift toward implementing the high frequency, and
shorter to implement, continuous and intermittent theta-burst
stimulation (c/iTBS) protocols (Huang et al., 2005) than other
rTMS protocols.

To implement rTMS in a SUD sample, many target
dorsolateral prefrontal cortex (dlPFC) or the medial prefrontal
cortex (mPC). Preclinical models of optogenetic stimulation
helped motivate these stimulation sites (Chen et al., 2013). In
humans, these sites could also be selected to intervene and treat
impulsivity, inhibitory control, executive functioning deficits in
addiction (c.f., Zilverstand et al., 2018). Additional preclinical
models with recent focal coil developments (Meng et al., 2018;
Cermak et al., 2020) will continue to influence human rTMS
applications. Such models are extremely useful when targeting
known aberrant pathways with rTMS. Moretti et al. (2020)
outlined the glutamatergic pathway between PFC and nucleus
accumbens as one such pathway in need of rigorous study as it
is essential for compulsive drug-seeking behaviors.

A fundamental question when implementing rTMS as a
treatment is whether cognitive functions are modified. Schluter
et al. (2019) implemented an active/sham 10Hz rTMS treatment
protocol in AUD participants and measured cognitive functions
before and after the intervention. Although this first randomized
clinical trial using AUD and rTMS did not report significant
change in the targeted and measured cognitive functions, the
authors demonstrated feasibility of applying chronic rTMS to
an AUD sample safely. Also, the authors measured a proximal
and targeted cognitive function instead of a distal, and common
measure of craving as a metric of treatment success.

Known unknowns when applying rTMS to treat SUDs
also include which location, which hemisphere, and which
stimulation protocol should be selected. Empirically, Sanna et al.
(2019) tested whether bilateral 15Hz rTMS and iTBS applied to
the dlPFC differed in effectively reducing cocaine craving. Both
treatments reduced craving similarly suggesting the faster iTBS
would be easier and more cost effective to apply in a clinical
setting. In a methamphetamine treatment seeking sample, Zhao
et al. (2020) reported reduced craving in each group that received
one of three rTMS dlPFC protocols (left iTBS, left cTBS, or right
cTBS) suggesting any TBS intervention could be effective. This
adds to recent findings that the general historical understanding
that stimulation protocols have opposite effects (Pascual-Leone
et al., 1998; Huang et al., 2005) suggesting effects are not universal
(Liu et al., 2020; Steele, 2020). Steele et al. (2019) applied
accelerated iTBS treatment to the left-dlPFC in cocaine users
while they viewed cocaine cues to engage the targeted circuit.
Participants reported reduced use (both amount and frequency)
1-month post-treatment. The importance of measuring and
reporting off-target effects is demonstrated by the Zhao et al., and
Steele et al. articles. Mood, sleep, and anxiety scores improved
in the methamphetamine sample by Zhao et al., mood improved
and reduced use of other substances were found in the cocaine
sample by Steele et al. These measures should be collected and
reported as off-target effects related to all rTMS treatments of
clinical populations.

The final known unknown addressed in this special issue
relates to the state of the participant while receiving the rTMS
intervention. Could the state (e.g., physiological, cognitive) of
the participant facilitate the effectiveness of the treatment?
Stramba-Badiale et al. (2020) outlined how virtual reality
(VR) could be implemented in conjunction with rTMS during
treatment sessions for eating disorders. This is a very promising
development and an exciting area for study with the potential
of combining the two interventions to be more effective than
each applied serially. Pharmacological interventions could also
be considered (Spagnolo et al., 2020). Accounting for the state
of the patient will likely prove to be an important variable when
developing an effective treatment for SUDs.

CONCLUSION

The articles included in this special issue brought us closer
to developing an understanding of how to move forward
in using rTMS as a therapeutic intervention for addiction.
There are promising results and tantalizing effects to drive
thorough research into uncovering more known unknowns.
Generally, rTMS used to treat SUDs was tolerated by a wide
range of patients. Applying chronic rTMS as a treatment
also proved feasible and generally effective at modifying the
targeted behavior. Higher frequency stimulation produced
greater benefits to the patient. This is all good news and
is in line with a recent consensus paper outlining steps
toward developing an rTMS treatment for SUDs (Ekhtiari
et al., 2019). Some of the most interesting known unknowns
are likely soon to be uncovered. Specifically, researchers
are diligently working to understand the mechanisms
of change induced by rTMS and the effects related to
inherent individual differences in patient populations.
Also, there is growing evidence that an engaged circuit is
beneficial toward positive outcomes (e.g., VR in Stramba-
Badiale et al., 2020) and cocaine cues in Steele et al.
(2019).

Future directions are apparent from this special issue.
Foundational experiments are essential in three areas: (1) develop
and integrate preclinical models to clinical applications of
rTMS, (2) elucidate effective combinations of rTMS and other
treatments, (3) identify individual differences with respect to
inducing excitation and inhibition with rTMS. Recent coil
technology allows focal stimulation in rodents (Meng et al., 2018)
which should speed the parameter space search in optimizing
rTMS applications. Also, developing realistic preclinical models
could help uncover the true rTMSmechanism of action related to
neuroplastic change thus optimizing clinical rTMS applications.
Combining rTMS with other interventions (either behavioral
or pharmacological) is a promising area of research that
should be systematically explored as it could improve treatment
outcomes beyond any single intervention (c.f., Spagnolo et al.,
2020). Finally, it is essential to understand the universality,
or non-universality, of “excitatory” and “inhibitory” rTMS
sequences. These individual differences on how rTMS induces
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neuroplastic change is the largest factor in applying rTMSwithin-
participant as an effective treatment for SUDs and other clinical
population (Steele, 2020), Together, this special issue highlights
future directions for the field to explore to evaluate whether
rTMS is an effective treatment for SUDs. New findings are rapidly
immerging in this exciting area of research. It is only a matter
of time before the field uncovers enough known unknowns
to implement an optimized therapeutic rTMS intervention
for SUDs.
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