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Space-efficient optical computing with an
integrated chip diffractive neural network
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Large-scale, highly integrated and low-power-consuming hardware is becoming progressively

more important for realizing optical neural networks (ONNs) capable of advanced optical

computing. Traditional experimental implementations need N2 units such as Mach-Zehnder

interferometers (MZIs) for an input dimension N to realize typical computing operations

(convolutions and matrix multiplication), resulting in limited scalability and consuming

excessive power. Here, we propose the integrated diffractive optical network for imple-

menting parallel Fourier transforms, convolution operations and application-specific optical

computing using two ultracompact diffractive cells (Fourier transform operation) and only N

MZIs. The footprint and energy consumption scales linearly with the input data dimension,

instead of the quadratic scaling in the traditional ONN framework. A ~10-fold reduction in

both footprint and energy consumption, as well as equal high accuracy with previous MZI-

based ONNs was experimentally achieved for computations performed on the MNIST and

Fashion-MNIST datasets. The integrated diffractive optical network (IDNN) chip demonstrates

a promising avenue towards scalable and low-power-consumption optical computational

chips for optical-artificial-intelligence.

https://doi.org/10.1038/s41467-022-28702-0 OPEN

1 Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore 639798, Singapore. 2 National Key Laboratory of Science
and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China. 3 Institute of
Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore. 4 Centre for Quantum Technologies, National
University of Singapore, Singapore 117543, Singapore. 5 Advanced Micro Foundry, 11 Science Park Road, 117685 Singapore, Singapore. 6 State Key Joint
Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China. 7 Shanghai
Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433,
China. 8 Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China. 9Quantum Hub, School of
Physical and Mathematical Science, Nanyang Technological University, 50 Nanyang Ave, 639798 Singapore, Singapore. ✉email: exdjiang@ntu.edu.sg;
xhzhou@mail.tsinghua.edu.cn; liminxiao@fudan.edu.cn; gumile@ntu.edu.sg; cqtklc@nus.edu.sg; eaqliu@ntu.edu.sg

NATURE COMMUNICATIONS |         (2022) 13:1044 | https://doi.org/10.1038/s41467-022-28702-0 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28702-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28702-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28702-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28702-0&domain=pdf
http://orcid.org/0000-0002-9104-2315
http://orcid.org/0000-0002-9104-2315
http://orcid.org/0000-0002-9104-2315
http://orcid.org/0000-0002-9104-2315
http://orcid.org/0000-0002-9104-2315
http://orcid.org/0000-0002-3746-244X
http://orcid.org/0000-0002-3746-244X
http://orcid.org/0000-0002-3746-244X
http://orcid.org/0000-0002-3746-244X
http://orcid.org/0000-0002-3746-244X
http://orcid.org/0000-0002-5531-5689
http://orcid.org/0000-0002-5531-5689
http://orcid.org/0000-0002-5531-5689
http://orcid.org/0000-0002-5531-5689
http://orcid.org/0000-0002-5531-5689
http://orcid.org/0000-0002-5307-6709
http://orcid.org/0000-0002-5307-6709
http://orcid.org/0000-0002-5307-6709
http://orcid.org/0000-0002-5307-6709
http://orcid.org/0000-0002-5307-6709
http://orcid.org/0000-0002-8791-3456
http://orcid.org/0000-0002-8791-3456
http://orcid.org/0000-0002-8791-3456
http://orcid.org/0000-0002-8791-3456
http://orcid.org/0000-0002-8791-3456
http://orcid.org/0000-0002-5459-4313
http://orcid.org/0000-0002-5459-4313
http://orcid.org/0000-0002-5459-4313
http://orcid.org/0000-0002-5459-4313
http://orcid.org/0000-0002-5459-4313
http://orcid.org/0000-0002-0879-0591
http://orcid.org/0000-0002-0879-0591
http://orcid.org/0000-0002-0879-0591
http://orcid.org/0000-0002-0879-0591
http://orcid.org/0000-0002-0879-0591
http://orcid.org/0000-0002-0126-5778
http://orcid.org/0000-0002-0126-5778
http://orcid.org/0000-0002-0126-5778
http://orcid.org/0000-0002-0126-5778
http://orcid.org/0000-0002-0126-5778
mailto:exdjiang@ntu.edu.sg
mailto:xhzhou@mail.tsinghua.edu.cn
mailto:liminxiao@fudan.edu.cn
mailto:gumile@ntu.edu.sg
mailto:cqtklc@nus.edu.sg
mailto:eaqliu@ntu.edu.sg
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Optical neural networks (ONNs) that exploit photonic
hardware acceleration to compute complex matrix-vector
multiplication, have the advantages of ultra-high band-

width, high calculation speed, and high parallelism over electronic
counterparts1,2. With the rapidly increasing complexity in data
manipulation techniques and dataset size, highly integrated and
scalable ONN hardware with ultracompact size and the reduced
energy consumption is strongly desired to conquer the resource
bottleneck in artificial neural networks. Due to the advantages of
ultracompact size, high-density integration, and power-efficiency
silicon photonic integrated circuits (PICs) are emerging as a
promising candidate for establishing large and compact com-
puting units predominantly required in optical-artificial-
intelligence computers3–5. Moreover, the fabrication of silicon
PICs is compatible with CMOS technology, thus current infra-
structure can support mass production at a low cost6. Typical
silicon PIC architectures to realize chip-scale ONNs7–15 use
cascades of multiple Mach–Zehnder interferometers (MZIs)7–13

and microring resonator-based wavelength division multiplexing
technology14,15. Though PICs have shown great potential in
integrated optics, the space utilization (directional couplers and
phase modulators)16, energy consumption (heaters to control
phase), and the complex control circuits for reducing fluctuation
of the resonance wavelength17,18 restrict the development of a
large-scale programmable photonic neural network. Additionally,
phase-change materials such as Ge2Sb2Te55, inverse-designed
metastructures19, and nanoscale neural medium20 combined with
CMOS-compatible integrated photonic platform, can further
minimize the size of integrated photonic circuits. However, the
number of units for these ONN architectures scales quadratically
with the input data dimension5,7,14 for both convolution opera-
tions and matrix multiplication, leading to quadratic scaling in
the footprint and energy consumption.

Meanwhile, Fourier transforms and convolutions, which are the
fundamental building blocks of ONN architectures, have been
realized using various approaches including the spatial light
modulators21–24, micro-lens array25–28, and holographic
elements29–33. Fourier transforms and convolutions as well as
applications in classification tasks have been proposed utilizing the
optical diffraction masks in free space26,31. However, these free-
space approaches require heavy auxiliary or modulation equip-
ment which is space-consuming34,35 and exceedingly challenging
to program in real-time31,36,37, hindering their feasibilities towards
the large-scale implementation and commercialization of photonic
neural networks.

Here, we demonstrate the first scalable integrated diffractive
neural network (IDNN) chip using silicon PICs, which is capable
of performing the parallel Fourier transform and convolution
operations. Due to the utilization of on-chip compact diffractive
cells (slab waveguides), both the footprint and power consump-
tion of the proposed architecture is reduced from quadratic
scaling in the input data dimensions required for MZI-based
ONN architectures7,10,13 to linear scaling for the IDNN. This
reduction in the resource scaling from quadratic to linear will
have a profound impact on the realization of large-scale silicon-
photonics computing circuits with current fabrication
technologies38–40.

The parallel Fourier transform and convolution operations in
our IDNN chip can be applied to classification tasks with Iris
flower, Handwriting digit, and Fashion product datasets. The
cases of 1D sequence and 2D digit image recognition demonstrate
the enhanced performance of the convolution operations. Two
typical cases of Iris flower classification with a one-layer neural
network, and Handwriting digit and Fashion product classifica-
tion with a two-layer neural network as well as the comparison
with the fully connected neural network, are conducted to further

characterize the classification performance of our IDNN chip. For
the Iris dataset classification, we obtain a chip testing accuracy of
98.3% in the one-layer IDNN using a complex modulation. For
Handwriting and Fashion recognition tasks using 500 different
sample inputs, the testing accuracies of 89.3 and 81.3% are
obtained, respectively, which are equivalent to those obtained in a
fully connected neural network. Compared to the previous design
with an area of 5 mm2 and power of 3–7W7,10,13, our IDNN chip
achieves the reduced hardware footprint (0.53 mm2) and low
power consumption (17.5 mW), manifesting the advantage of the
Fourier-based design as a scalable and power-efficient solution for
data-heavy artificial intelligence applications.

Results
Design and fabrication. A typical electronic one-layer neural
network consists of an input layer, an output layer, connections
between them (weight matrix), and elementwise nonlinearity
(activation function). In a departure from the electronic neural
network, our introduced IDNN framework implements a con-
volution transformation physically in the optical field using PICs.
The convolution transformation is special matrix multiplication,
and the complex-valued matrix elements are circulant41. The
theoretical framework of the IDNN with multi-layers is shown in
Fig. 1a. The preprocessed signals are encoded via modulating the
amplitude and phase (two degrees of freedom) of coherent light
and then input to the multi-layer IDNNs. In each layer as
depicted in Fig. 1b, the information propagates through matrix
multiplications followed by a nonlinear activation function. The
linear part of each layer is composed of two ultracompact dif-
fractive cells to implement optical discrete Fourier transform
(ODFT) operation (Wl

ODFT ) and optical inverse discrete Fourier
transform (OIDFT) operation (Wl

OIDFT), and a complex-valued
transmission modulation region in the Fourier domain behind
the ODFT operation to achieve the Hadamard product. The
nonlinear activation function f originates from the intensity
detection of the complex outputs. We can hereby achieve a single-
layer neural network. This IDNN can also be multi-layered by
cascading multiple chips or recycling one single chip. The recy-
cling process can be realized by configuring the phase shifters
through a computer-controlled digital-to-analog converter.

Figure 1c shows the holistic diagram of the proposed silicon
PICs-based IDNN chip, which consists of four major sections,
e.g., input preparation, ODFT operation, complex modulation,
and OIDFT operation. A continuous-wave laser (wavelength
1550 nm) is incoupled into the device through a grating coupler
to realize the input source. The basic computing unit of a
modulated MZI cell comprises multimode interferometers
(MMI)-based beam splitters and two thermo-optic phase shifters
in the “input preparation” section. The internal phase shifters
between two beam splitters (indicated as θ) and external beam
splitters (indicated as ϕ) are used to control the amplitude and
phase of the input signals, respectively. All phase shifters are
thermally tuned by the TiN heaters that are packaged to a printed
circuit board (Fig. S5a). Then, they can be manipulated by an
external electric circuit controller.

Subsequently, the ten input signals are fed into the diffractive
cell, which is composed of a slab waveguide to implement the
Fourier transform in the “ODFT operation” section (details will
be shown in Fig. 2). After the operation, an array of MZIs is
utilized to modulate the amplitude and phase of the ten signals
after the ODFT operation. The modulated signals are then
introduced to another diffractive cell to implement the OIDFT.
After that, the ten output intensity signals are detected by an
array of photodetectors. In addition, a thermoelectric controller is
implemented as the substrate beneath the chip to control and
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stabilize the temperature (details in Supplementary Note 2). The
holistic 3.2 mm × 2mm chip monolithically integrates 10 modes,
20 MZIs, 2 slab waveguides, and 40 thermo-optic phase shifters.

Figure 2a, b shows the optical micrographs of the whole chip
and the diffractive cell, respectively. The Fourier transform, as a
core operation of our network, can be achieved using a slab
waveguide-based ultracompact diffraction cell, whose input
waveguides are coded by different phase shifters incorporated
in the “input preparation” section. The normalized electric field
after the ODFT operation [Ei (k)] (Supplementary Note 3) can be
expressed as

EiðkÞ ¼
1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ0R=ns
p

Z

E0ðxÞ expð�j2πf kxÞdx ð1Þ

where E0 is the input electric field, f k ¼ kns=ðλ0RÞ is the angle
spectrum of the incident light field, λ0 is the wavelength of light in
vacuum, R is the arc radius of the diffraction cell as shown in
Fig. 2c, ns is the effective refractive index of the waveguide, and k
is the axis of output coordinate plane.

The simulated electric field distribution in the diffraction
region and the output intensity distribution is shown in Fig. 2c, d,
respectively. The input light is centered into two central
waveguides along the propagation direction and the outputs are
the electric field profile after the ODFT operation. The detailed
analysis for light propagating in the entire chip is shown in
Supplementary Note 3. The measured normalized intensities of
ODFT operation in the diffractive cell and the retrieved signal

from all output channels after OIDFT operation are shown in
Fig. 2e, f, respectively. The input signal can be well retrieved after
ODFT and OIDFT operations are applied with no intervening
phase modulation as seen from Fig. 2f (more experimental results
can be found in Fig. S7).

Image recognition with correlation algorithm. To demonstrate
the performance of our IDNN chip and validate the design for
realizing the convolution matrix, we first use the chip as a con-
volution operator to implement image recognition using the
correlation algorithm. The calibration for the initial amplitude
and phase of the signal, the realization of ODFT and OIDFT
operations, and the implementation of weight matrices are shown
in Supplementary Note 4. The detailed mathematical elucidation
of correlation algorithms can be found in Supplementary Note 5.

The 1D and 2D convolution operations have various applica-
tions in machine learning, such as convolution layers in
convolutional neural networks41–43 and correlation recognition
of human faces from still images or video frames44,45. Here, we
demonstrate the cases of 1D sequence and 2D image recognitions
using a classical correlation algorithm44, which demonstrates the
capability of the convolution operation realized by our IDNN
chip. The image recognition process is shown in Fig. 3a. The
correlation calculation of the input test image (n × n) and target
image (m×m) is conducted using the Hadamard product
between the Fourier transform of the input test image and the
Fourier transform of a target image. Then the height of that peak
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Fig. 1 Optical integrated diffractive neural networks (IDNNs). a The multi-layer neural networks. One layer contains three main parts: optical discrete
Fourier transform (ODFT) operation, amplitude/phase modulation, and optical inverse discrete Fourier transform (OIDFT) operation. A nonlinear
activation function is added between two layers. b IDNN operates on complex-valued inputs using coherent light. There are two matrices based on
diffractive cells and a Hadamard product operation raised by phase and amplitude modulation behind the ODFT operation. c Schematics of the
experimental device. The device includes four functional parts: (1) input signal preparation; (2) implementing ODFT operation; (3) modulating amplitude/
phase in the Fourier domain; (4) implementing OIDFT operation.
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(relative to the background) of the output result is used to
determine whether the test image matches the target image.

The experimental recognized sequence ([10101]) is the same as
the target sequence as shown in Fig. 3b (More results in Fig. S8).
Furthermore, we extend the 1D sequence to 2D image recognition
of digits (5 × 5 matrices) with the same correlation algorithm. The
correlation signals for nine different digit-image combinations are
shown in Fig. 3c (details in Supplemental Note 6). Strong
correlation peaks are observed along the diagonal line of the
measured cross-correlation matrix, reflecting the intuition that two
images have maximum correlation and similarity when they are
the same. Our approach to convolutional processing provides an
effective method for accelerating computation via reducing
computational complexity, as compared with traditional
methods43,41. The traditional electronic single convolution opera-
tion involves (n−m+ 1)2 matrix-vector multiplication (MVM)
operations with n × n and m ×m dimension matrices43,41.
Similarly, the state-of-the-art research works for photonic
convolutional accelerators5,35 also perform convolution operation
by MVM operations, but in combination with parallel operations
using WDM technology to accelerate the computing. Here, we
realize an optical Fourier transform-based convolution. Each 2D
convolution with n × n and m ×m dimension matrices needs
(n−m+ 1) ×m 1D convolution operations46. Since a 1D
convolution is converted into an MVM operation in our design,
our approach only needs (n−m+ 1) ×m MVM operations to
compute a 2D convolution. This design can thus accelerate the
convolution operations to achieve improved scaling over tradi-
tional electronic counterparts43,41. More discussions on the
computational convolution approach can be found in Supplemen-
tary Note 6. It can further be extended to circulant convolution
operation45 and employed in typical classification tasks47–49.

Iris flower classifier. We demonstrate the performance of our
network in classifying the Iris flower dataset. Here we have four
input parameters (the lengths and widths of the sepals and petals
of a candidate flower). The task is to determine which of the three
possible subspecies the flower belongs to (setosa, versicolor, and
virginica). We implement this classification task using a one-layer
neural network with eight neurons as shown in Fig. 4a. The input
and output are connected by a complex, circulant weight matrix
(W) with eight trained complex-valued parameters. Input signals
are encoded by modulating the amplitude of the input field of the
IDNN. Amplitude and phase modulators in the Fourier domain
are trained to map inputs into three output waveguides, which are
detected by external power sensors. The highest intensity mea-
surement outcome is used to indicate the subspecies.

The entire dataset with 150 instances is split into the training
set and testing set according to a ratio of 8:2. The weights are
trained only on the training set. In the training process, the
amplitude and phase of each channel in the Fourier domain are
learnable parameters, representing a complex-valued modulation
on the neural network. Trained with the error back-propagation
algorithm16, the numerical convergence of the accuracy and loss
versus epoch number are depicted in Fig. S10. The training
accuracy of 98.0% is achieved in the complex modulation, while
the training accuracy is 97.3% in the conventional one-layer fully
connected neural network (Fig. S10).

After training, the performance of the IDNN chip with
complex modulation is evaluated on the Iris flower classification
testing dataset, see Fig. 4. The experimentally obtained energy
distribution from the eight output waveguides is shown in Fig. 4b
for one testing data point as an example. The channel “0” has the
highest output intensity, indicating that this flower is classified as
“Setosa”. More experimental results can be found in Fig. S10. The

intensity distribution from the output detectors reveals that the
IDNN can achieve a maximum signal at the corresponding
detector channel identified with candidate flower species. About
150 samples, including the training set and testing set, are
extracted into two features and visualized as a scatter plot in
Fig. 4c. A total of 30 testing samples are experimentally evaluated
using the IDNN chip with only one wrong classification as
marked by the red circle in Fig. 4c. The one-layer IDNN chip can
achieve a high classification accuracy of 96.7% over 30 testing
images in the experiment (Fig. 4d), which is the same as the
testing result (96.7%) of the conventional one-layer fully
connected neural network, manifesting that our IDNN has
comparable accuracy with a fully connected network. However,
our design has fewer components (i.e., the number of MZIs is
reduced from 16 to 8) and more efficient space overhead
compared with the fully connected architectures.

Handwritten digit and Fashion product classifier. More com-
plicated datasets, MNIST (handwrite digits images), and Fashion-
MNIST (clothing images) datasets are used to further validate the
functionality of our IDNN chip. The two datasets are both split
into the training (60,000 images) and testing sets (10,000 images).
Our model is trained on the entire training set, and 500 instances
are uniformly and randomly drawn from the testing set to vali-
date the trained model on-chip35. Figure 5a shows that the net-
work is composed of two layers, a hidden layer W with 16 × 10
trained complex parameters and an output layer Wout with ten
trained complex parameters. The outputs of the output layer are
the recognition results (The computing details are shown in
Supplementary Note 8). The numerical testing accuracy and loss
vary with the epoch number as shown in Fig. 5b with a classifi-
cation accuracy of 92.5% (see Fig. S11). Besides, the simulated
energy distribution from the intensity detection results of ten
outputs is shown in Fig. S11f to display the classification per-
formance, indicating that our numerical simulations predict the
channel with the highest energy will generally correspond to the
correct handwritten digit. We experimentally tested 500 images
and the confusion matrix (Fig. 5c) shows an accuracy of 91.4% in
the generated predictions, in contrast to 92.6% in the numerical
simulation. The output energy distributions from 10 waveguides
for the classification of the digit “2” are depicted in Fig. 5d (More
experimental results are shown in Fig. S12). These results show
that we have successfully implemented the classification task on
the integrated diffractive optical computing platform. Our
experimental testing accuracy is slightly lower (91.4%) than the
numerically predicted value obtained from simulations (92.6%),
which is attributed to the errors from the diffractive region, heater
calibration, and other experimental factors (Supplementary
Note 10). Although our method does not achieve as high accuracy
as previous reservoir computing demonstrations50,51, their
internal dynamics of reservoirs are uncontrollable with fixed
nodes, which leads to the stringent requirement of obtaining
many parameters with high accuracy. Consequently, they are
difficult to be implemented on chip. In contrast, our approach
requires fewer parameters in controllable weight matrices that
significantly reduce the footprint and energy consumption.
Meanwhile, the input data compression process in our method
also loses some information and lowers the numerical classifica-
tion accuracy. The numerical blind testing accuracy (92.5%) with
10,000 samples can be further improved after enlarging the size of
the network with more input information. It is worth noting that
the classification accuracy obtained with our approach is com-
parable to the fully connected network (Fig. 5b), but our method
consumes less energy and occupies less footprint, representing the
major advantages of the design.
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We further use the IDNN to perform the classification of the
Fashion-MNIST dataset. In general, we can encode the preprocessed
signals by using the amplitude and phase channels of coherent light.
In the case of the MNIST dataset classifier, the output of the first
hidden layer is encoded to the amplitude channels of the output
layer. To verify that the network also performs well when input
signals are encoded into the phase channel, the signal from the
input layer of the fashion product images is encoded in the
phase channel in our experiment. The numerical testing results for
the classification of fashion products are depicted in Fig. S13. The
corresponding accuracy for 500 testing images with one hidden
layer is 82.0% in simulation versus 80.2% in an experiment (Fig. 5f).
The experimental energy distributions from ten waveguide outputs
using one image of a “pullover”, is shown in Fig. 5g and the
experimental results from other images are depicted in Fig. S14. We
implement additional experiments using the phase channel
encoding input signal on the MNIST dataset and using the
amplitude channel encoding input signal on the Fashion-MNIST
dataset. The confusion matrix for 500 images (Fig. S15a) shows an
experimental accuracy of 89.4%, in contrast to 92.6% for the
numerical simulation results on the MNIST dataset. The results for
the Fashion-MNIST dataset are 81.4% according to the numerical
simulations versus 80.4% for the experiment (Fig. S15b). We note
that the accuracy error between the experimental and numerical
results has no distinct difference between using the amplitude
channel and the phase channel. However, for phase encoding, the
intensity of the input signal would not be attenuated, which leads to
a higher output intensity in our experiment.

We compare our IDNN architecture with a fully connected
neural network with the training results of theMNIST dataset and
Fashion-MNIST dataset as shown in Fig. 5b, e, respectively. The

simulation model is built in Pytorch with a learning rate of
0.0001, a training period of 500 iterations, and a batch size of 100.
Our complex circulant matrix-based neural network with one
hidden layer achieves a numerical testing accuracy of 92.5%,
which is comparable to that obtained in both a fully connected
neural network with one hidden layer (93.4%) and a circulant
matrix-based neural network with three-layers (93.5%) for the
MNIST dataset. For the Fashion-MNIST dataset, both the
simulated testing accuracies of the complex circulant matrix-
based neural network with one hidden layer and three layers are
higher than 81% (81.7 and 83.2%, respectively), which is
comparable with 83.0% for fully connected based algorithm.
For the MNIST and Fashion-MNIST datasets, the classification
accuracy of our IDNN chip with less trainable parameters can be
comparable with the traditional fully connected network.

Our IDNN chip can achieve comparable testing accuracy with
classical fully connected neural networks in datasets MNIST and
Fashion-MNIST. Some key metrics evaluating the physical
network are listed by the comparison with the traditional fully
connected MZI-based7,10,13 architectures for the optical realiza-
tion, as shown in Table 1. For the MNIST and Fashion-MNIST
datasets, a 10 × 10 matrix on-chip is achieved with only 0.53 mm2

area and 17.5 mW power consumption to maintain the phase of
heaters, while the traditional MZI-based ONN architectures need
an area around 5 mm2 and requisite energy consumption of
3–7W. (More details are in Supplementary Notes 1).

Discussion
We propose and experimentally demonstrate the reconfigurable
IDNN chip, leveraging diffractive optics to realize an efficient
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matrix-vector multiplication. Previous MZI-based integrated pho-
tonic approaches for computing have been predominantly
restricted by large footprints (around 0.5 mm2 per MZI unit23,26,29)
and the excessive energy consumption to tune the phase, e.g., one
needs ~50mW to tune each thermo-optic heater (2π phase shift).
Our approach can effectively decrease footprints and energy

consumption (see Table 1) by reducing the numbers of MZI from
quadratic scaling with input data size to linear. The key strategy of
the scaling reduction is using integrated ultracompact diffractive
cells (slab waveguides) to replace MZI units and realize Fourier
transform operations. The slab waveguide is a passive device with a
small size (0.15mm2) and does not require electric tuning.
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Fig. 5 Handwriting and fashion recognition using the IDNN. a The network consists of a hidden layer W and an output layer Wout. The outputs of the
output layer are recognition results. The input layer is calculated by the traditional computer and the complex output results of the input layer are
converted into amplitude and phase information as the input of the chip. b The numerical testing results of accuracy and loss versus epoch number for the
MNIST dataset. c The confusion matrix for our experimental results, using 500 different handwritten digits. d The output intensity distribution of the IDNN
for a handwritten input of “2” is demonstrated. e The numerical testing results of accuracy and loss versus epoch number for the MNIST-Fashion dataset.
f The confusion matrix in the experiment. g As an example, the output intensity distribution of the IDNN for a fashion product input of “pullover” is
demonstrated.

Table 1 The performance of our proposed IDNN framework.

Type The no. modulators Matrix dimension Area (10 × 10 neurons) Power consumption (10 × 10 neurons)

MZI-VMM10 16 4 × 4 5.2 mm2 ------
MZI-VMM7 9 4 × 4 6mm2 3W
MZI-VMM13 15 4 × 4 4.8 mm2 7W
Our work 10 10 × 10 0.53mm2 17.5 mW
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Our IDNN chip shows an equivalent classification capability
while cutting down the number of optical basic components (i.e.,
MZI modulators) to 10% of original on MNIST and Fashion-
MNIST classification tasks and a half of original on the Iris
datasets, compared with the previous MZI-based ONN archi-
tectures. We achieved a 10 × 10 matrix on-chip with 10 MZIs and
two diffractive cells, which has an area of 0.53 mm2, while 100
MZIs are required with an area around 5 mm2 for a fully con-
nected network. Meanwhile, the power consumption used to
maintain the phase of modulators, which is also the dominant
source of energy consumption, decreases from 3–7W (previous
techniques) to 17.5 mW (see Fig. S1). Using the compact design
method, the matrix size can easily be scaled up to 64 × 64 with
acceptable loss (see Supplementary Note 1). Considering the
current fabrication level of the integrated photonic chip, reduc-
tion in resource scaling from quadratic to linear and the relevant
footprint and energy consumption reduction are profoundly
meaningful towards the goal of a large-scale programmable
photonic neural network and the achievement of photonic AI
computing. It is worth mentioning that the IDNN focuses on
implementing the convolution matrix with the advantages of
scalability and low power consumption, instead of an arbitrary
matrix-vector multiplication modulation. Since a convolution
matrix contains fewer free parameters than those in an arbitrary
matrix, the current demonstrated one-layer network may not be
an optimal solution for complicated classification tasks. This issue
can be mitigated by implementing multi-layers or multiple con-
volutions in each layer to obtain a stronger expression capability.
The speed of IDNN is also limited by the electrical equipment
and can be accelerated when the modulators and detectors are
high-speed programmed.

Our integrated chip is adaptable to the Fourier-based convolu-
tion acceleration algorithm and multiple tasks, which has great
potentials for many applications in compact and scalable
application-specific optical computing, future optical-artificial-
intelligence computers, and quantum information processing,
such as image analysis, object classification, and live video pro-
cessing in autonomous driving5,42. The footprint and energy con-
sumption scale linearly with the input data dimension, which will
hugely reduce the resources used for future sophisticated and data-
heavy computing, and facilitate the prospects of a power-efficient,
ultracompact, and large-scale integrated optical computing chip.

Methods
Fabrication. The whole optical diffractive neural network is fabricated on the
silicon-on-insulator (SOI) platform with a 220-nm thick silicon top layer and a
2-μm thick buried oxide. Subsequently, a thin layer of titanium nitride (TiN) is
deposited as the resistive layer for heaters. A thin aluminum film is patterned as the
electrical connection to the heaters and photodetectors. Isolation trenches are
created by etching the SiO2 top cladding and Si substrate.

ODFT operation. The critical part of the IDNN chip is the ODFT/OIDFT
operations composed of the diffractive regions with a suitable phase difference
from different waveguides before the diffractive components. The phase shift, ϕn�k ,
between input k and output n can be designed to satisfy the relation ϕn�k ¼
2π
N ðk� N�1

2 Þðn� N�1
2 Þ by setting positions of input and output waveguides. In

addition, the phase offset φk ¼ π
N ðN � 1Þk is additionally added to the input k

using length adjustment or a phase shift. Then the phase difference Δϕn between
two paths to the output n originating from the inputs, k+ 1 and k is derived as
Δϕn ¼ ðϕn�ðkþ1Þ þ φkþ1Þ � ðϕn�k þ φkÞ ¼ 2πn

N . This allows the ODFT computation
to be realized.

Circulant matrix. For the linear part of the IDNN, a complex circulant matrix
multiplication is achieved utilizing ODFT and OIDFT operations. Assuming each
circulant matrix B is defined by a vector b, which is the first-row vector of B. Based
on the theories of circulant convolution52–54 and diffractive optics, the matrix-
vector multiply can be efficiently performed using Fourier transform, which is

expressed as ylþ1 ¼ Wl
OIDFT ½ðWl

ODFT � ylÞ � ~bl� ¼ F�1½FðylÞ � FðblÞ�. Wl
ODFT is the

matrix for ODFT, Wl
OIDFT is the matrix for OIDFT, bl is a vector of the circulant

matrix B of the l-layer neural network, yl is the input vector of the l-layer neural
network. F(∘) represents an n-point ODFT operation, F�1ð�Þ is the inverse of

F(∘) (OIDFT operation), ∘ represents the Hadamard product and ~bl is the Fourier
transform of bl.

Numerical simulation. The training process of Iris flower, Handwritten digit,
and Fashion product datasets was conducted in Pytorch (Google Inc.), a
package for Python. The training process of Iris flower, Handwritten digit, and
Fashion product datasets was conducted in Pytorch (Google Inc.), a package of
Python. The learned complex parameter (w) is expressed as w ¼ aþ ib ¼ Aeiα

where A is encoded into the internal phase shifters (θ) with θ ¼ arcsinðA2Þ
and α is encoded into the external phase shifters (ϕ) with ϕ ¼ α� θ=2. The
ODFT and OIDFT operations are implemented using the angular spectrum
method. A three-dimensional finite-difference-time-domain method is used to
simulate the optical field distribution and transmission spectra of the
diffractive cells.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.
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