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Abstract

Diagnosing certain fractures in conventional radiographs can be a difficult task, usually tak-

ing years to master. Typically, students are trained ad-hoc, in a primarily-rule based fashion.

Our study investigated whether students can more rapidly learn to diagnose proximal neck

of femur fractures via perceptual training, without having to learn an explicit set of rules. One

hundred and thirty-nine students with no prior medical or radiology training were shown a

sequence of plain film X-ray images of the right hip and for each image were asked to indi-

cate whether a fracture was present. Students were told if they were correct and the location

of any fracture, if present. No other feedback was given. The more able students achieved

the same level of accuracy as board certified radiologists at identifying hip fractures in less

than an hour of training. Surprisingly, perceptual learning was reduced when the training set

was constructed to over-represent the types of images participants found more difficult to

categorise. Conversely, repeating training images did not reduce post-training performance

relative to showing an equivalent number of unique images. Perceptual training is an effec-

tive way of helping novices learn to identify hip fractures in X-ray images and should supple-

ment the current education programme for students.

Introduction

Diagnosing medical imagery is a complex task. To identify abnormalities and reach a correct

diagnosis, radiologists must correctly interpret a large number of visual cues. These cues can

be masked by the generally noisy background in an X-ray image, variation between patients,

slight differences in positioning, or even be mistaken for normal anatomical structures [1].

Residents are typically trained to diagnose conventional radiography in a rule-based manner,

usually with no effort made to cluster numerous examples of the same study or provide imme-

diate gold-standard feedback. Given the visual complexity of X-ray images, learning to diag-

nose radiography in this manner can be difficult. In this study, we investigated how perceptual

learning may apply to radiology training and whether students could more rapidly learn to

diagnose proximal neck of femur fractures in conventional frontal radiographs of the hip.

Humans can easily make perceptual distinctions that are hard to verbalise. A classic exam-

ple is sex identification. People usually have no trouble correctly recognising a face as male or
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female and rely on a large number of visual cues to do so. These cues include distances between

key points on the face [2], the luminance contrast between the eyes, lips, and the surrounding

skin [3], the shape of facial features [4], and hair cues [5]. Although each of these cues is indi-

vidually unreliable, people are able to combine them to make rapid and robust decisions [2, 3,

6]. Traditionally, advanced visual recognition skills were assumed to develop only from years

of practice because they are difficult to explicitly teach. Recent studies, however, suggest that

such skills can in fact be acquired rapidly within days, or even hours, via perceptual training

[7].

The term perceptual training refers to any training whose goal is to improve perceptual

skills, such as the ability to recognise or categorise images. The learning that results from such

training is known as perceptual learning [1, 8]. Instead of learning to interpret a medical image

by following a set of explicit rules, students can instead be trained to visually recognise abnor-

malities. While there have been a large number of perceptual training studies (for a review see

[9]), to the best of our knowledge, there have been only three studies that investigated percep-

tual training in the context of diagnosing medical images, and only one in radiology. Sowden,

Davies and Roling [1] trained novices to identify microcalcification clusters in mammograms

by presenting them with 60 images, three times a day. Each image contained a microcalcifica-

tion cluster and the task was to localise it. Immediate feedback was given. An improvement of

17% in localisation accuracy was observed after three days of training. Similarly, Krasne, Hill-

man, Kellman and Drake [10] trained first and second year medical students in skin histopa-

thology using 261 unique images. The students were required to classify each image as

containing pathological or normal histology. The students were immediately informed if they

were correct or not. Despite a median training time of only 15 minutes, mean categorisation

accuracy increased by approximately 13%. Finally, in a recent study by Xu, Rourke, Robinson

and Tanaka [11], naïve undergraduate students were shown 100 images, one at a time, and

asked to indicate whether or not the image contained a melanoma. As before, the students

were immediately informed if they were correct or not. When subsequently tested on a new set

of images, their false alarm rate had decreased by 19% compared to their pre-training

performance.

Much of the previous research into perceptual learning has assumed that it is a low-level

phenomenon that is achieved by the modification of receptive fields of neurons in early sen-

sory cortical areas that are responsible for the initial encoding of the stimulus [1, 9]. However,

accumulating evidence has argued against this viewpoint. In particular, it has been found that

perceptual learning will sometimes transfer between retinal locations [7, 12]. This finding is

not compatible with the assumption that perceptual learning is achieved by neurons in early

sensory cortical areas as these neurons have highly localised receptive fields. It has also been

reported that the changes in receptive field structure in early cortical areas are often too small

to account for the behavioural changes induced by perceptual learning [13]. More robust

receptive field changes seem to occur at later stages of visual processing, for example cortical

area V4 [13].

For the purposes of this study, we will assume that perceptual learning is not achieved solely

by changing the receptive fields in early cortical areas. Instead, following the lead of Eleanor

Gibson [8], we will conceptualise it terms of later cortical areas learning to select the outputs of

earlier cortical areas that are most relevant for making the required perceptual distinction. Fol-

lowing Petrov et al., we assume that the selection procedure is not all or nothing but instead

occurs by later cortical areas weighting the outputs of early cortical areas when making deci-

sions [14]. For conceptual simplicity, we think of this process as being approximately by a mul-

tilayer perceptron [15]. A multilayer perceptron is an abstract representation of the neural

system. It is an artificial neural network comprising multiple layers of nodes, each layer
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typically fully connected to the next one as a directed graph. Each node performs a weighted

sum of its inputs and passes this value through a nonlinear activation function to determine its

output. The weights therefore determine the degree to which nodes in one layer can affect the

activities of nodes in a subsequent layer. Perceptual learning can be achieved by altering these

weights so as to select the outputs of the previous layer that are most relevant for making the

required perceptual distinction. As such, multilayer perceptrons represent a useful and practi-

cal model of perceptual learning [15] and can be used to make novel predictions.

In our study, we investigated perceptual training in an area in which it had not previously

been applied, diagnosing radiographs. From the previous literature, it is clear that perceptual

learning can improve a participant’s ability to diagnose medical images. However, it is less

clear to what extent this improvement is practically useful. For example, could perceptual

training be used to train a naïve participant up to the level of a board certified radiologist or

would the required amount of training be prohibitive? Our first aim was therefore to quantify

the amount of perceptual training required to do achieve this level of performance.

The second aim of our study was to determine the best way to optimise our perceptual

training. Multilayer perceptrons generally learn quicker when trained only on the more diffi-

cult training images [16]. To the extent that multilayer perceptrons model perceptual learning,

it follows that perceptual learning should also occur quicker when humans are exposed only to

the more difficult training images. Our second aim was to test this prediction.

Our final aim was to investigate to what extent images can be reused during perceptual

learning. It has been shown the repeatedly showing the same training images is an effective

way to train multilayer perceptrons [15]. Our third aim was therefore to investigate whether

repeating image presentations resulted in further perceptual learning (as opposed to showing

the images just once) and, if so, to compare the degree of perceptual learning achieved by

repeating images to the degree of perceptual learning achieved by showing an equivalent num-

ber of novel images. It is often expensive and time-consuming to obtain medical images. Being

able to reuse medical images would therefore make perceptual training more feasible.

Method

Participants

The previous study that is most similar to ours suggests that significant effects can be observed

with just 10 observers [11]. Because we are in a different area (radiology as opposed to derma-

tology), as a precaution we used more participants. For the six experiments listed below, in

total, 142 novices with no prior knowledge in X-ray film interpretation participated. The num-

ber of novices in each experiment is shown in Table 1. They were mostly undergraduate stu-

dents from The University of Melbourne, aged between 17 and 50 years (M age = 23.5 years,

SD = 5.5 years; 49 men). Additionally, we also evaluated the performance of board certified

radiologists and first and second year radiology residents. Unlike the novices, these

Table 1. The number of participants in Experiments 1–6.

Experiment No. of Participants

1 23

2 25

3 22

4 23

5 24

6 25

https://doi.org/10.1371/journal.pone.0189192.t001
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participants received no training and did not participate in the experiments listed below. The

five board certified radiologists were between the ages of 30 and 41 years (M age = 35.8 years,

SD = 5.4 years; 4 men) and had an average experience of 8.5 years. The five 1st and 2nd year res-

idents were between the ages of 25 and 32 years (M age = 28.0 years, SD = 3.2 years; 3 men)

and had an average experience of 1.2 years. All participants had normal or corrected-to-nor-

mal visual acuity (at least 20/25; near-field Snellen eye chart) and normal colour vision (Ishi-

hara plates). This study was approved by The University of Melbourne Human Research

Ethics Committee (Ethics ID 1545113) and all experiments were performed in accordance

with the ethical standards laid down in the amended Declaration of Helsinki [17]. The research

ethics committee approved the lack of parent or guardian consent for participants under the

age of 18. All participants gave written informed consent. Six experiments were conducted in

total, from 19th January to 16th November, 2016. Those in the novice group were paid AU$15/

hour for their participation, and in Experiments 2–6 they could additionally earn a bonus of

AU$5 if they scored above 85% in the post-training test. Results were analysed using IBM

SPSS Statistics 22.

Apparatus and stimuli

The stimuli were cropped hip region images from AP pelvis X-rays selected from the film

archive of the Royal Melbourne Hospital of patients who presented to the emergency depart-

ment with a fracture of head or neck of femur, in all cases confirmed surgically. The images

were anonymized and digitised using the FujiFilm Synapse PACS v4.5 software and presented

on a black background. Annotations were made using Skitch by Evernote. From each pelvis X-

ray each hip region was independently cropped generating two non-overlapping images, one of

the left hip and the other of the right hip, one of which would contain a fracture, while the other

would not. For the sake of consistency, these images were always presented as the right hip (i.e.,

any left hip images were flipped so that they looked like a right hip). X-rays were excluded if the

fracture occurred in a region with abnormal underlying bone (i.e. pathological fracture due to

bone tumourabnormal underlying bones abnormal, such need to include this—I’ any metal-

ware (i.e. total hip replacement, dynamic hip screws). X-rays were also excluded if the non-frac-

tured hip exhibited grossly abnormal pathology, such as tumours or Paget disease. Osteoporosis

and osteoarthritis in either hip were not considered to be exclusion criteria. Images were also

excluded if there was any metalware (i.e. total hip replacement, dynamic hip screws) in either

hip.

Procedure

The stimuli were presented on a personal computer using MATLAB1 and the Psychophysics

Toolbox [18, 19]subtending an area of 25.8˚ × 16.2˚ at the 60 cm viewing distance. They were

presented in darkened room similar to the conditions under which radiologists report. A sin-

gle image was presented on each trial and participants were instructed to indicate whether the

X-ray image contained a fracture or not by pressing one of two keys on the keyboard. The

image remained on screen until a response was made.

Pre-training test. In Experiments 1 and 2, each participant in the novice group was first

tested on 20 images to establish their pre-training accuracy. No feedback was given in this

stage. There was no pre-training test for Experiments 3–6.

Training phase. The training phase was conducted in a single session in Experiments

1–5. In Experiment 1, participants were shown 200 unique images, one at a time, and asked to

indicate whether or not the image contained a fracture. Participants received feedback on

every trial. Specifically, if they made a mistake, an error message appeared and the same image
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was shown again, with arrows indicating the location of the fracture, if there was one (Fig 1).

Participants earned one point for each correct response and the total score was shown on

screen to motivate performance. In Experiment 2, the training procedure was the same but the

novices were only trained on the relatively more difficult images based on the performance of

the novice group in Experiment 1. This was to test the hypothesis that training solely on the

more difficult images would lead to greater perceptual learning. Sixty-two images that had pre-

viously been classified correctly 5–75% of the time were selected as training images. We chose

a wide accuracy range so that it was difficult but still possible to classify those images correctly.

We purposely chose a large range of accuracies to minimise the possibility that we were only

training observers to categorise images of a particular difficulty. This training block was pre-

sented to participants four times for a total of 248 trials. In Experiment 3, novices viewed a sin-

gle block of 320 unique images. These images were selected randomly without regard to

difficulty level. In Experiment 4, each participant was presented with the same block of 320

images twice; and in Experiment 5 participants viewed a single block of 640 unique images.

This was to investigate the effect of repeating the training image set on post-training accuracy.

Experiment 6 was conducted over two days. On the first day of training, each participant was

presented with 640 randomly chosen X-ray images. They then viewed the same block of train-

ing images on the following day. In all six experiments, the target prevalence rate was 50%.

Fig 1. Examples of images shown to participants. (a) An example of the image initially shown to a participant. The image is of the right hip and pelvic

region of a 76-year-old female. A fracture is visible. (b) An example of the feedback the participant would receive if the participant were, in this case, to

incorrectly state that there was no fracture.

https://doi.org/10.1371/journal.pone.0189192.g001
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Post-training test. After the training session, each participant was tested on a single block

of new images to assess their post-training accuracy. No feedback was provided in this test.

The post-training test consisted of 180 images in Experiments 1 and 2. This was reduced to 80

images in Experiments 3–6, because novices continued to learn in the post-training test even

in the absence of feedback. The training and test images were randomly selected from an

image pool without replacement. The board certified radiologists and 1st and 2nd year residents

received no training and were tested on 180 images randomly selected from the same image

pool as was used for the novices.

Results

Accuracy was calculated as the sum of hits and correct rejections divided by the total number

of trials. The data of nine participants from Experiments 1–5 were excluded from the analysis

because their accuracy was at or below the chance level of 50% throughout the experiment,

indicating a lack of engagement with the task. Two participants from Experiment 6 were

excluded because they did not return on the second day of training.

In addition to the mean post-training accuracies for all novices, we also conducted analysis

on the top five novices to explore how training affects the top quartile of our trainees. Because

radiologists are selected on merit, we analysed the results of the top five performing novice

participants in an attempt to control for ability variations, so as to give a more realistic estimate

of the training effects. Participants in the novice group were ranked based on their accuracy in

the first half of the post-training test. For each experiment, the top five performing participants

were selected based on their responses to the first half the post-training test. We then calcu-

lated the mean accuracy of these participants based on their responses to the second half of the

post-training test.

The average pre-training accuracy for the entire novice group obtained from Experiments 1

and 2 was 55.9%. This was significantly higher than the guess rate of 50%, t(47) = 2.31, p = .03.

However, all the novices who participated in this study confirmed before commencing the

experiment that they had no prior knowledge of X-ray film reading. On average, it took partic-

ipants 2.77 seconds to read each image in the training phase. The mean reading time for the

experts in the test phase was 4.62 seconds per image.

The mean accuracies for the entire novice group in each experiment are presented in Fig 2.

For the sake of comparison, the mean accuracy of the residents is shown by the dashed red

Fig 2. Mean accuracies of the board certified radiologists (dashed green line), radiology residents

(dashed red line) and the average of all the undergraduates (blue data points) in Experiments 1–6

plotted against the number of training images viewed in each experiment. Error bars represent standard

error of the mean.

https://doi.org/10.1371/journal.pone.0189192.g002
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lines and the mean accuracy of the board certified radiologists are shown by the dashed green

lines. Fig 3 shows the equivalent data for the top five participants for all the experiments. Inter-

polation was used to determine how many training images are needed to bring the level of the

top five novices up to the level of the residents and board certified radiologists. In general,

mean post-training accuracy increased as the number of training images increased, with the

exception of Experiment 2. t tests revealed that the average post-training accuracy for all nov-

ices in Experiment 2 was lower than that in Experiment 1, t(39) = 2.73, p = .01, Cohen’s d =

.85, despite Experiment 2 utilising more training images than Experiment 1. This shows that

training the participants on just the more difficult training images did not improve perfor-

mance, contrary to what we predicted. Conversely, there was no significant difference in post-

training accuracy in Experiments 4 and 5 regardless of whether the results are averaged over

all novices (t(43) = 0.32, p = .75, Cohen’s d = .004,) or just over the top five novices (t(8) = 0.18,

p = .86, Cohen’s d = .02,). This indicates that showing each image twice did not reduce the

effectiveness of the training. As predicted, reusing images is an effective instructional strategy.

As shown by Fig 2, when accuracy is averaged over all novices, the mean accuracy of the

novices did not exceed that of the residents or the radiologists, even when trained on 1280

images. While it is possible that further training might have improved performance further, it

is unclear whether with sufficiently training could ever be brought up to the standard of resi-

dents. The performance of residents and radiologists may in part reflect the considerable

amount of rule-based conceptual training they receive, in addition to perceptual training.

Fig 3. Mean accuracies of the board certified radiologists (dashed green line), radiology residents (dashed red line) and the top five

undergraduates (blue data points) in Experiments 1–6 plotted against the number of training images viewed in each experiment.

Error bars represent standard error of the mean. The data from Experiments 4–6 was interpolated to predict the number of training images

required to bring the accuracies of the top five undergraduates up to the same level as the radiology residents and board certified radiologists.

https://doi.org/10.1371/journal.pone.0189192.g003
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Conversely, Fig 3 shows that the mean accuracy of the top five novices exceeded that of the

experts. While the underlying learning function for novices is likely to be a power function

[20], it can be approximated by a linear function over a sufficiently narrow range. We therefore

performed a linear interpolation of the data in Experiments 4–6 and predicted that training

novices on 1,037 images could bring the mean accuracy of the top five novices to the same

level of residents. To train on this number of images would take approximately 48 minutes. To

increase the accuracy of top five novices to the same level of proficiency as board certified radi-

ologists would require 1,121 images and approximately 52 minutes of training.

For conceptual ease, the above analysis was presented in terms of percentage correct. We

obtained essentially the same results when we repeated this analysis using a bootstrap compari-

son [21] of d’ (S2 File). The advantage of d’ is that it is a measure of sensitivity that is indepen-

dent of any response bias the observers may have [22]. In this case, discounting the response

bias did not materially affect our results.

Discussion

The primary aim of this study was to determine how much perceptual training is required to

bring naïve observers to the same level of proficiency as board certified radiologists in identify-

ing hip fractures on frontal hip radiographs. It also explored ways to optimise the training pro-

cedure, and set a foundation upon which further research can build. For the average

undergraduate in this study, training did not improve their accuracy to the same level as the

experts. Moreover, the average reading time in our novice group was faster than the average

time spent on each image by the experts. This pattern of response fits a classic speed-accuracy

trade-off explanation for their performance. Biggs et al. [23] conducted a difficult conjunction

search task with professional airport baggage screeners and non-professionals. They found

that non-professional searchers terminated searches faster than professionals and that

response time was the primary predictor of search accuracy for them. But the more experi-

enced professionals responded slower and had more consistent RTs on every trial, in turn, RT

consistency best predicted their performance. On the other hand, our results from the top five

novices suggest that under one hour of training with approximately 1,100 images is sufficient

to train the top performing undergraduates to the level of accuracy of board certified radiolo-

gists. This shows that perceptual training is highly effective and argues for its potential inclu-

sion in the standard radiology curriculum, or at least for modification of existing ad-hoc

training to emphasise clustering of study type and need for immediate feedback.

Comparing the findings of Experiments 1 and 2 reveals that training participants solely on

the more difficult images can be detrimental to their performance compared to training them

on a random sample of images. This was the opposite of what we predicted and may be due to

the training sample in Experiment 2 (i.e. a sample containing only the more difficult images)

being non-representative of the types of images radiologists generally see. The fact that no dif-

ference in post-training accuracy was observed between Experiments 4 and 5 demonstrate that

repeating a training image does not necessarily reduce training effectiveness. This was

expected and is in broad according with the multilayer perceptron literature where training

typically involves repeatedly showing the multilayer perceptrons the same training images

[15].

A number of types of learning could have taken place during the training. Novices would

have acquired a familiarity with the appearance of a healthy femur and its bone tissues, and

would have learnt to search the image for abnormal patterns. Some sensory-learning based

enhancements in sensitivity may also have occurred [1]. Unlike Sowden, Davies and Roling [1]

we did not attempt to isolate any one type of learning as this was not the focus of this study.

Perceptual training in radiology
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Models of medical image perception typically conceptualise the diagnostic process as involving

a holistic first glimpse of the image, followed by a serial search process in locating any abnormal

patterns and then reaching a decision on the significance of any abnormalities found [1, 24, 25].

Our training addressed only the first two components of these models. Accurate diagnosis of

pathological features requires sophisticated understanding of disease pathogenesis for which the

traditional, concept-based, analytical, rule-oriented approach remains important [10].

An open question is how generalizable are our findings. Because the images were selected at

random, there is no reason to believe that our findings would not generalize to all other radio-

graphs showing right hip fractures. In particular, no attempt was made to locate the fracture (if

present) at a particular anatomical location. Similarly, no attempt was made to keep the orien-

tation of the femur at a particular angle nor to keep the scale of the image precisely the same.

Therefore, slight changes in these parameters are unlikely to affect our results. We did, how-

ever, ensure that all the shown images were of right hips, flipping left hip images to make them

look as like right hip images, as needed. Thus, while we would expect most of the training to

transfer to left hip images, it is possible that there might be a slight reduction in performance

for left hip images, which in practice could be avoided by flipping these images so that they

look like right hip images. Of more concern is to what degree our findings would extrapolate

to diagnosing fractures of other bones. Presumably, there would be some transfer of learning,

but the transfer would not be total. As the results of Experiment 1 and 2 showed, performance

is maximised when observers are trained on exactly the sort of images that they are tested on

and is reduced if the training set is not representative of the test set. As Experiment 2 demon-

strated, constructing the training set to over-represent a subset of images reduces the effective-

ness of the perceptual training. That said, some diseases are so rare that showing a few

examples will misrepresent their naturally occurring frequency. While this cannot be avoided,

our findings suggest that this should be minimised as far as possible.

In conclusion, our study demonstrates that perceptual training is likely to be a highly effec-

tive technique for training radiologists in at least some aspects of diagnosis and could be incor-

porated in the radiology curriculum. It may also be a particularly effective method of training

non-radiologists (e.g. reporting radiographers and other physicians) in becoming proficient in

a specific type of examination (e.g. chest x-rays for intensivists and emergency physicians,

mammography for reporting radiographers). While some rare diseases can easily be over rep-

resented by showing just a few examples, as far as possible the training set should accurately

represent the sorts of images the radiologists would need to diagnose in practice at the fre-

quencies at which these images would naturally occur. Repeating these images does not reduce

the perceptual learning relative to showing an equivalent number of novel images. This

reduces the number of images that are required for the perceptual training.
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