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Abstract

In structured environments, antibiotic producing microorganisms can gain a selective advantage by 

inhibiting nearby competing species1. However, despite their genetic potential2,3, natural isolates 

often make only small amounts of antibiotics, and laboratory evolution can lead to loss rather than 

enhancement of antibiotic production4. Here we show that, due to competition with antibiotic 

resistant cheater cells, increased levels of antibiotic production can actually decrease the selective 

advantage to producers. Competing fluorescently-labeled Escherichia coli colicin producers with 

non-producing resistant and sensitive strains on solid media, we found that while producer 

colonies can greatly benefit from the inhibition of nearby sensitive colonies, this benefit is shared 

with resistant colonies growing in their vicinity. A simple model, which accounts for such local 

competitive and inhibitory interactions, suggests that the advantage of producers varies non-

monotonically with the amount of production. Indeed, experimentally varying the amount of 

production shows a peak in selection for producers, reflecting a trade-off between benefit gained 

by inhibiting sensitive competitors and loss due to an increased contribution to resistant cheater 

colonies. These results help explain the low level of antibiotic production observed for natural 

species, and can help direct laboratory evolution experiments selecting for increased or novel 

production of antibiotics.

Natural microbial isolates, in particular those from soil environments, are known for their 

potential ability to synthesize a range of antibiotics5,6. In these dense ecosystems, where 

antibiotic producers, resistant and sensitive species coexist7,8,9,10, the ability to inhibit 

nearby species can give a producer a competitive advantage. Often, however, natural 

producers are not maximizing their production potential: metabolic engineering of natural 
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species can increase production of antibiotics several-fold without significant reduction in 

growth11,12. It is possible that high production levels are still costly in nature, or that 

antibiotics are produced at small amounts not for inhibition of competitors but because they 

instead function as signaling molecules at subinhibitory concentrations13,14,15,16,17. 

Alternatively, it is possible that the low production level of antibiotics does stem directly 

from their inhibitory role: in complex ecosystems high toxicity against competitors, even at 

no cost, may not be the most advantageous strategy. It remains unclear whether there are 

indeed inherent limits on the optimal level of antibiotic production when focusing only on 

their toxic activity against competing species.

The inhibitory effect of antibiotic production can only be selected for in spatially structured 

environments. Well-mixed environments present two obstacles to the evolution of antibiotic 

producers. First, microbially-produced antibiotics can be too dilute to inhibit competitor 

species and thus producers can only gain when they are already above a critical abundance, 

leading to density-dependent selection18,19,20,21,22. Second, regardless of their abundance, 

when producers simultaneously compete not only with antibiotic-sensitive but also with 

resistant strains, the resistant strain can out-compete the producers23. These resistant non-

producers receive the same benefit of decreased competition without incurring any costs of 

antibiotic production and can thus be thought of as ‘cheaters’20,24 (similar to cheaters in 

other public good systems19,25). Spatially structured environments, in contrast, circumvent 

the problem of dilution by concentrating antibiotics around producer colonies, allowing 

producers even at low abundance to kill sensitive competitors in their immediate vicinity1. 

Spatial structure can also limit the success of resistant cheaters by restricting the selective 

advantage of inhibiting competitors to the locality of producers23,26. However, even in 

spatial environments, evolution does not consistently lead to enhancement of antibiotic 

production4,27. Here, combining experiments and modeling of competition in spatial 

environments, we mapped the conditions allowing selection for antibiotic production and 

asked how the amount of antibiotic produced affects the selective advantage it confers.

To measure selection for antibiotic production, we used a colicin-based three-strain system 

in which producer and cheater strains compete in the presence of a sensitive strain1,23,26. 

Colicins are plasmid-encoded, toxic proteins produced by E. coli that specifically target 

other E. coli28. The three strains we used share the same genetic background and consist of 

colicin producers, colicin-resistant “cheaters”, and colicin-sensitive competitors23. Producers 

carry the ColE2 plasmid, which encodes a gene for the colicin E2 toxin, a DNA 

endonuclease that is co-transcribed with immunity and lysis factors29. The colicin operon is 

repressed by LexA30, allowing its expression to be tuned by inducing DNA damage (Figure 

1a; we use mitomycin C). When released, colicin can enter and kill the sensitive strain, but 

not the resistant strain (Fig. 1b). We differentially labeled each of these three strains with 

plasmid-encoded fluorescent proteins – CFP, YFP, or mCherry. Plating the strains on agar 

and imaging in the three fluorescence channels allowed the abundance of each strain to be 

quantified (total fluorescence of colonies in the appropriate channel, see Supplementary Fig. 

S1). We defined selection for antibiotic production η as the final ratio of producers to 

cheaters normalized by their seeding ratio (set to 1).
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Competing the three strains on solid media showed that producers benefit from the 

inhibition of nearby sensitive colonies while also allowing cheater colonies in the vicinity to 

gain from this inhibition. Starting with pair-wise competition, we found that producer 

colonies make zones of inhibition and grow larger when competing against sensitive versus 

resistant competitors (Fig. 1c)1,4. When all three strains were grown together, we observed 

cheater colonies growing both outside and inside these inhibition zones with the colonies 

inside growing larger than the colonies outside (Fig. 1d). Proximity to a producer colony 

thus conferred a gain to these cheater colonies. We therefore asked how the densities of the 

competing strains affect the outcome of the competition between producers and cheaters.

Varying the seeding densities of the producers and sensitive strains we found that selection 

for production requires both high density of sensitive competitors and low density of 

producers (η, Fig. 2a). Selection for production increased with increasing sensitive 

competitor density (p=2.5×10−21 and t(61)=15, linear regression), consistent with the benefit 

of production stemming from the inhibition of sensitive species. Indeed, in separate two-

strain competition experiments, we found that the difference in growth of producers when 

competing against sensitive versus resistant strains appears only above a critical density of 

these competitors (Fig. 2b, p <.01 at densities above 100 CFU/cm2, two-sample t-test), 

where there is a significant chance of competitors falling within an inhibition zone (critical 

density ~ 1/πri
2, where ri = 0.86 mm, Fig. 1c). This difference widens at high competitor 

density: the growth of producers declined inversely with the density of resistant competitors 

(indicating a purely competitive interaction between these strains), but plateaued at high 

sensitive competitor density. The zone of inhibition therefore insures that a fixed amount of 

resources is available to producer colonies despite increased sensitive competitor density.

While selection for production increased with the density of sensitive colonies, it decreased 

with the density of producers due to elevated cheating. The relative growth of producers over 

resistant non-producers (cheaters) in the three-way competition declined with increasing 

producer density (Fig. 2a, p=3.6×10−24 and t(61)= −17, linear regression). At a high density 

of sensitive competitors, cheater colonies grow much better when they are near a producer 

(Fig. 2c). As the chance of a cheater to be seeded close to a producer increases linearly with 

the producer density, the average growth across all cheater colonies is proportional to the 

producer density (Fig. 2d, darkest line). This relationship stems from the producer inhibiting 

sensitive cells; when the density of sensitive competitors is low, cheater colony growth is not 

helped by producer density (Fig. 2d, lightest line). In sum, in a three-way competition, 

increasing producer density reduces selection for producers by increasing the chance that 

cheater colonies benefit from inhibition of sensitive competitors by nearby producers.

We developed a simple model to quantitatively understand how selection for producers 

varies with seeding density and the amount of antibiotic produced. Our model calculates the 

growth of producer, cheater, and sensitive colonies randomly seeded on a continuous two-

dimensional space, interacting through inhibition and competition (Fig. 3a). Each producer 

colony is surrounded by a circular inhibition zone of radius ri where sensitive colonies are 

killed24,31. The remaining colonies compete for a single limiting resource evenly distributed 

across space: each colony can access this resource only within a given “grazing zone” of 

radius rg around itself and the amount of resource that lies inside overlapping grazing zones 
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is evenly shared. Each colony’s growth is proportional to its total captured resources. As in 

our experiments, we define selection for antibiotic production η as the ratio between the 

total growth of all producer colonies relative to that of cheater colonies, normalized by their 

initial ratio (set to 1).

The model predicted that an intermediate level of antibiotic production best optimizes its 

benefit. We ran simulations of the model, testing how the selective advantage of production 

depends on the seeded densities of sensitive and producer colonies, as well as on the level of 

production. In accordance with our experimental data (Fig. 2a), the model showed a 

monotonic increase in selection for production with the density of the competing sensitive 

strain and a monotonic decrease with producer density (Fig. 3b). However, when varying the 

radius of inhibition ri, we observed a non-monotonic dependence: selection for producers 

peaked at an intermediate level of production (Figure 3c). A more realistic model accounting 

for the diffusion of antibiotics from each producer colony yielded similar selection peaks 

(Supplementary Fig. S2). Interestingly, the reduction in the selective advantage of increased 

production following the peak arose solely from the competitive interactions accounted for 

by the model without assuming any direct costs of production. Because selection for 

production in this model is driven by competitive interactions, the peak selection decreased 

in magnitude and shifted to lower production levels with increased producer density (Fig. 

3c).

To test for the presence of optimal production level as predicted by the model, we performed 

competition experiments at varying levels of colicin expression. We tuned colicin expression 

by varying the concentration of mitomycin C (MMC) in the growth media at sub-inhibitory 

levels (Supplementary Fig. S3), thereby controlling the size of inhibition zones 

(Supplementary Fig. S4). We measured the relative growth of producers to cheaters in the 

presence of sensitive competitors under a range of colicin induction levels. Selection for 

production peaked at intermediate levels of colicin induction (Figure 4a, p=2.8×10−5 and 

t(13)= −6.3 at low producer density, see Methods; see Supplementary Fig. S5 for dye swap 

control). As in the model simulations, higher producer density (which benefits cheaters, Fig. 

2c,d) led to a lower selection peak (p<.01 at MMC>0, two-sample t-test) and smaller 

optimal level of colicin induction.

The decline in producer fitness at high colicin induction is not due to the cost of production, 

but rather the increased benefit gained by cheaters. Because inducing the colicin operon 

causes cell lysis, production can incur a fitness cost (Supplementary Fig. S3). However, the 

growth per producer colony increases monotonically over the range of mitomycin C 

concentration where the peak is observed (Fig. 4b, p<10−4 and t(18)>5.8, linear regressions), 

demonstrating that the benefit of production was always higher than its direct cost, both in 

the presence and absence of cheaters (Supplementary Fig. S6). On the other hand, increasing 

colicin production also increased the growth of cheater colonies taking advantage of nearby 

producers (Figure 4c), consistent with larger inhibition zones both increasing the probability 

of a resistant colony landing inside a zone, and freeing up more nutrients to these cheater 

colonies. This benefit gained by individual cheater colonies thereby increased the overall 

cheater growth as a function of colicin induction (Fig. 4d, p<10−7 and t(18)>9.0, linear 

regressions). Thus, increased toxin production simultaneously decreases competition from 
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sensitive cells and increases competition from resistant cheaters, leading to a competitive 

trade-off that sets the optimal level of toxin production.

The selective advantage of antibiotic production depends on the ability of producers to out-

compete resistant cheaters. We have found that selection for antibiotic production requires 

restricted conditions consisting of a high density of competitors but a low density of 

producers to limit cheating. At any given density, there is an intermediate level of antibiotic 

production that maximizes producer selection, balancing a trade-off between inhibiting 

sensitive competitors while limiting the advantage of inevitably appearing cheaters. 

Considering this trade-off helps to understand the limited quantities of antibiotics produced 

in nature32, and may explain the prevalence of high molecular weight natural antibiotics 

(such as colicin) and contact-dependent killing mechanisms33, which act in shorter ranges 

and are thus less vulnerable to cheaters. Beyond the ecological implications, this study also 

provides a framework for designing improved selection schemes for antibiotic drug 

discovery.

Methods

Strains and media

The original producer, resistant, and sensitive strains derived from BZB1011 are from a 

previously published study26. Plasmids expressing CFP, YFP, or mCherry under the PR 

promoter34 were constructed from the pZ vector system35 and transformed into the base 

strains.

Cells were cultured on M9 minimal media supplemented with 0.4% glucose and 50 mg/mL 

kanamycin. Agar plates (1.3% Difco agar) were made in the same media supplemented with 

mitomycin C (5 ng/mL, unless otherwise indicated). Mitomycin C (VWR) stock solution (1 

mg/mL DMSO) was stored at −20°C in 100 μL aliquots for no more than one month; fresh 

aliquots were thawed for each experiment. Plates were stored in the dark overnight and dried 

in a sterile hood for 10 minutes before adding cells.

Competition experiments on agar plates

Overnight cultures of individual strains were diluted 1:100 and grown to OD600=0.1–0.7. 

Cultures were mixed at specified ratios, immediately added to plates (100 μL/plate) and 

spread using glass beads. For experiments measuring selection for antibiotic production, the 

initial producer to cheater ratio was set to 1. Plates were incubated for 7 days at 37°C 

(varying density experiments) or at 27°C (varying mitomycin C experiments) in order to 

limit colicin expression at low mitomycin C induction (Supplementary Fig. S7).

Image processing

1. Image acquisition—Images in bright-field and fluorescence channels were acquired in 

raw format (CR2) using a Canon EOS T3i digital SLR mounted on a custom scaffold36. 

Each plate was imaged twice, with the plate rotated approximately 180 degrees between 

imaging. Consistent exposures were used for each experiment. Dark (no illumination) and 
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bright (uniform fluorescent bacterial lawns) images were acquired for background 

correction.

2. Basic processing—DCRAW37 was used to convert images from CR2 format to 16-bit 

TIFFs. We developed a semi-automated MATLAB processing pipeline to extract colony 

information from the TIFF images. Hot pixels were removed by averaging nearest neighbor 

pixel values. MATLAB’s built-in demosaic function (gradient-corrected linear interpolation) 

was used to convert the Bayer pattern encoded images to RGB format. Values below dark 

and above saturation for each channel were trimmed to enable visualization.

3. Normalization—Background values were subtracted from each image channel based on 

the dark image controls for each exposure. Flat-field frames for each fluorescence channel 

were obtained by averaging and smoothing the corresponding bright images (8 images per 

channel, 2D Wiener filter with 144 pixel window). Illumination correction was performed by 

dividing each image channel by the flat-field frame. This flat-field correction also served to 

normalize the intensities of each channel with respect to one another.

4. Segmentation—Global thresholds for each channel were manually selected to segment 

images into bright (colonies) and dark (no colonies) regions. Areas within 0.5 cm of plate 

edges were masked. Contiguous bright regions with area greater than 2 pixels were 

identified as putative colonies. We tabulated the centroid, area, and total intensity of each 

such object.

5. Colony recognition—Segmented objects consisted of real colonies as well as artifacts 

caused by light reflections. To remove these artifacts, we aligned the two rotated images of 

each plate and discarded segmented objects only present in one of the two images and with 

area less than 65 pixels (0.05 mm2). Alignment in each channel was first performed 

automatically, by minimizing nearest-neighbor distances between centroids of objects in the 

two images across three rigid transformation parameters (translation in two dimensions and 

angle of rotation). Manual setting of alignment parameters was used only when automated 

alignment failed in all channels.

6. Calculating selection for production—Growth of each colony was calculated as the 

total intensity minus the mean intensity of the segmented background multiplied by the 

colony area. Selection for production η was defined as the relative growth of producers to 

cheaters, normalized to the initial ratio. For the variable-density experiments, we calculated 

growth of each strain as the summed growth of identified colonies divided by the mean 

seeding density, since colonies were impossible to separate at high seeding densities. For the 

colicin induction experiments, we calculated growth of each strain as the mean growth per 

colony, which yields a more precise value when the number of plated colonies is variable 

due to low-number fluctuations. Applying the summed-growth analysis to the Fig. 4 data 

yielded similar, but noisier, results (Supplementary Fig. S8).
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Comparison of colony growth measurements

Each strain was individually spread at ~10 CFU/plate on media without MMC and grown for 

2–6 days at 37°C. On each day, plates were imaged and 2 colonies of each strain were 

removed using a 5 mm biopsy punch. The colony-bearing agar cores were each vortexed in 1 

mL PBS to suspend cells. Cell suspension was serially diluted to ~100 CFU/mL, then 1 mL 

of diluted suspension was added to the surface of an agar plate and allowed to dry without 

spreading. CFU were counted after overnight incubation at 37°C and used to back-calculate 

total growth of the original colony. Colony growth based on fluorescence intensity was 

measured using the image processing pipeline described above.

Liquid-culture growth measurements

Overnight cultures were diluted 1:2×104 and grown in 200 μL cultures in a 96-well plate 

(Corning 3370) for 42 hours at 27°C with shaking. Growth yield was measured using a 

VICTOR3 plate reader (Perkin Elmer).

Solid-media growth curves

Each strain was individually spread at ~10 CFU/plate on media containing 0–32 ng/mL 

MMC (4 plates per condition) and incubated at 27°C. Plates were imaged every day; 

colonies appeared on day 2. Colony growth was measured using the image processing 

pipeline described above.

Measurement of inhibition zones

Producer colonies were identified as described above. For each plate image, mean 

fluorescence intensity in the sensitive (CFP) channel (after illumination correction and 

normalization) was measured for locations r pixels from producer colony centers, varying r 
from 1–40 pixels. Inhibition zone size was defined as the distance at which sensitive 

intensity reached half-maximum value (0.14), using linear interpolation between bracketing 

measurements and setting intensity at r=0 to the minimum value (0.065).

No-cheater competition

Because illumination artifacts in the red channel are difficult to correct without confirming 

image alignments in the green channel, we used YFP-marked producers in experiments 

without cheaters. Control experiments with the addition of mCherry-marked cheaters were 

run in parallel with the no-cheater competitions; experiments were performed as described 

above.

Simulations

Simulations of the model were implemented in MATLAB. Colonies were seeded in a square 

environment of area A by sampling location coordinates from a uniform random 

distribution. Sensitive colonies within ri of any producer colony were removed. Resource 

allocation was determined by partitioning the environment into square grid-cells with side 

length dx. For each grid-cell, resources equal to the area of the grid-cell were partitioned 

equally among all colonies within rg of the grid-cell. For visualization of colony growth, 

colony areas were set to the total resources obtained by each colony, scaled by a constant k. 
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The full parameter set and values for the simulations in Fig. 3 are shown in Supplementary 

Table S1.

Statistical analysis

Linear regressions were fit to the data in Figures 2a, 2d, 4b, and 4d, testing against a null 

hypothesis of slope = 0 (t-statistics). In Figures 4b and 4d, we took the log of the x-axis and 

only used data for MMC>0. A quadratic model was fit to the low producer density data in 

Figure 4a for MMC = 0–8 ng/mL, testing significance of the squared term coefficient (t-
statistic). Two-sample t-tests were performed on the data in Figures 2b and 4a to compare 

the effects of competitor resistance or producer density, respectively.

Cooperative inhibition simulations

Producer colonies were treated as equivalent instantaneous point sources of antibiotics. 

Solving the two-dimensional diffusion equation at a time t results in a sum of Gaussian 

distributions of antibiotic concentration centered on each producer colony:

where rk is the distance to the kth producer colony (rk
2 = (x−xk)2 + (y−yk)2), c is the amount 

of antibiotic production, and σ2=2Dt (where D is the diffusion constant). Sensitive strain 

colonies were removed where the antibiotic concentration exceeded a threshold 

concentration MIC.

Code availability

Code for running the image processing pipeline and the model simulations are available 

upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Colicin producers inhibit sensitive competitors in their vicinity, promoting their own 
growth as well as that of nearby resistant, non-producing cheaters
a, The colicin E2 operon contains toxin, immunity, and lysis genes under an SOS promoter 

induced by DNA damage. b, Producer strain releases colicin (red hexagons) which kills a 

sensitive strain, but is ineffective against a resistant strain. Strains are differentially labeled 

with fluoresceist reporters. c, Two-strain co-culture on solid media (containing 16 ng/mL 

mitomycin C) shows representative producer colonies (red) inhibiting growth of nearby 

sensitive (blue), but not resistant (green), colonies (scale bars = 1 mm). Sensitive colonies do 

not grow within the inhibition radius ri. d, Co-culture of all three strains together, showing 

the resistant strain can act as a production cheater. Left, growth across entire surface of 

representative plate; right, zoomed image of 1 cm2 box region (scale bar = 1 mm). Resistant 

colonies are small when competing with the sensitive strain (dash arrow) but they gain in 

size when growing in the vicinity of producer colonies (solid arrow).
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Figure 2. Producers have an advantage over resistant cheaters only at high densities of sensitive 
competitors and low densities of producers
a, Selection for production relative to the non-producing resistant cheater in three-way 

competitions on agar for varying seeding densities of sensitive and producer cells (producer 

density [P] = cheater density [C], mean of 4 replicates). b, Mean growth of producer 

colonies (arbitrary units) in pairwise co-culture with sensitive competitors (blue) versus 

resistant (green, line showing reciprocal fit, slope=−1). Gain from killing, measured as the 

difference between the two lines (arrows), appears and further increases as the seeding 

density of competitors increases beyond a critical density equal to 1/πri
2 (dotted line). Error 

bars show s.d. of 3 replicate plates, [P]=0.7 CFU/cm2. c, The growth of individual cheater 

colonies (arbitrary units, green dots) decreases with their distance to producer colonies (d is 

distance to the nearest producer colony; sensitive density [S]=20,000 CFU/cm2, [P]=[C]=3 

CFU/cm2; pooled data from 4 replicates; line shows smoothened average by local linear 

regression. Inset: example of two representative cheater colonies indicated by × and ▽ 
(scale bar = 1 mm). d, Mean cheater growth increases linearly with producers at high 

sensitive density (solid gray line shows fit, slope = 0.98 ± 0.09 at 95% c.i.), but is not helped 
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by producers at low sensitive density (dashed gray line, slope = 0.13 ± 0.05 at 95% c.i.). 

Each series is normalized to the mean growth at the lowest producer density (n=4, error bars 

show s.d.).
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Figure 3. A simple model of competition and inhibition predicts that selection for antibiotic 
production is maximized at intermediate production levels
a, Steps in simulating model: (1) Random seeding of producers (red), sensitive (blue) and 

cheater (green) colonies at given densities (scale bar = 2 mm); (2) killing sensitive colonies 

inside inhibition zones of radius ri around producer colonies; (3) final growth of each colony 

is determined by the amount of resource available to it in a grazing zone of radius rg around 

it. Resources in overlapping grazing zones of two or more colonies are equally shared 

among them. b, Selection for production increases monotonically with the density of 

sensitive species and decreases with the density of producers (mean of 20 simulations per 

parameter set). c, Selection for production η is maximized at an intermediate level of 

production ri
* (n=50 simulations per parameter set, error bars show s.e.m.). Panels show 

sample simulations at indicated points (scale bars = 2 cm). Parameter values are given in 

Supplementary Table 1; see Supplementary Fig. S9 for effects of adding cost to the model 

and Supplementary Fig. S10 for the effect of varying rg.

Gerardin et al. Page 14

Nat Microbiol. Author manuscript; available in PMC 2017 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. The advantage of producers over cheaters is maximized at an intermediate level of 
antibiotic production
a, Selection for production in three-way competitions as a function of varying levels of 

colicin induction via mitomycin C ([S]=2,000 CFU/cm2; high density: [P]=[C]=20 CFU/

cm2, low density: [P]=[C]=2 CFU/cm2; mean of 4 replicate plates for each point, error bars 

show s.d.). Left-most points represent no-killing (NK) controls, where the sensitive 

competitor was replaced with resistant. Differences between these experiments and the 

simulation results (Fig. 3c) may be attributable to model parameters such as production cost 

(Supplementary Fig. S9), grazing zone radius (Supplementary Fig. S10), cooperative 

toxicity (Supplementary Fig. S2), or antibiotic diffusivity (Supplementary Fig. S11). b, 

Mean growth (arbitrary units) of producer colonies increases monotonically with production 

level (n=4, error bars show s.d.). Insets: representative colonies from highlighted data points. 

c, Growth (arbitrary units) of individual cheater colonies close to producer colonies 

increased with colicin induction (each series is pooled data from all replicates in the high [P] 

condition; solid lines are smoothened averages calculated by local linear regression). See 

Supplementary Fig. S12 for low [P] data. d, Mean growth (arbitrary units) of resistant 
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colonies at low and high producer density for varying production levels (n=4, error bars 

show s.d.).
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