
REVIEW

Multi-layered global gene regulation in mouse embryonic stem
cells

Samuel Beck • Bum-Kyu Lee • Jonghwan Kim

Received: 29 July 2014 / Revised: 9 September 2014 / Accepted: 11 September 2014 / Published online: 17 September 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Embryonic stem (ES) cells derived from the

inner cell mass of developing embryos have tremendous

potential in regenerative medicine due to their unique

properties: ES cells can be maintained for a prolonged time

without changes in their cellular characteristics in vitro

(self-renewal), while sustaining the capacity to give rise to

all cell types of adult organisms (pluripotency). In addition

to the development of protocols to manipulate ES cells for

therapeutic applications, understanding how such unique

properties are maintained has been one of the key questions

in stem cell research. During the past decade, advances in

high-throughput technologies have enabled us to system-

atically monitor multiple layers of gene regulatory

mechanisms in ES cells. In this review, we briefly sum-

marize recent findings on global gene regulatory modes in

ES cells, mainly focusing on the regulatory factors

responsible for transcriptional and epigenetic regulations as

well as their modular regulatory patterns throughout the

genome.
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Abbreviations

ES cell Embryonic stem cell
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DBP DNA-binding proteins

TF Transcription factor

TE Trophectoderm

LIF Leukemia inhibitory factor

ChIP Chromatin immunoprecipitation

PET Paired-end tag

ChIP-seq Chromatin immunoprecipitation followed

by massive-parallel sequencing

PPI Protein–protein interaction

PDI Protein–DNA interaction

NODE Nanog and Oct4-associated deacetylase

NuA4 Nucleosome acetyltransferase of H4

CGI CpG island

DNMT DNA methyltransferase

Mbd Methyl-binding domain containing protein

NuRD Nucleosome remodeling deacetylase

DKO Double knockout

H3K36me3 Histone H3 lysine 36 trimethylation

H3K4me1 Histone H3 lysine 4 monomethylation

H3K4me3 Histone H3 lysine 4 trimethylation

H3K27me3 Histone H3 lysine 27 trimethylation

H3K27ac Histone H3 lysine 27 acetylation

H2AK119ub Histone H2A lysine 119 ubiquitination
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CHD Chromodomain helicase DNA-binding

FISH Fluorescence in situ hybridization

3C Chromosome conformation capture

4C Circular chromosome conformation capture

5C Carbon-copy chromosome conformation

capture

ChIA-PET Chromatin interaction analysis by paired-

end tag sequencing

PolII RNA polymerase II

Introduction

Embryonic stem (ES) cells are in vitro cultural counterparts

of the inner cell mass (ICM, mouse) [1] or epiblast (human)

[2] of developing embryos. These cells self-renew for a

prolonged time in vitro while keeping their potential to

generate all three germ layers (pluripotency) [3]. Due to

these unique characteristics which are not observed in their

in vivo counterparts, ES cells have attracted tremendous

attention as useful tools for studying early mammalian

development, making genetically-modified mouse models

to unravel gene functions [4], and nurturing future thera-

peutic applications in regenerative medicine.

During the early era of mouse ES cell studies, estab-

lishments of ES cells were limitedly successful in only few

mouse strains [3, 5]. Therefore, ES cells were often

regarded as cultural artifacts until ES cells from other

species/strains were later reported [3]. However, the limi-

tations in deriving ES cells due to the initial strain

dependency forced various studies to be performed on

almost identical genetic backgrounds and culture condi-

tions, allowing diverse data sets from independent

experiments to be easily integrated for systematic analyses.

Except for a few human cell lines extensively tested by the

ENCODE project [6, 7], mouse ES cells are the most

widely studied mammalian model system.

Over the last decade, understanding the underlying

regulatory mechanisms enabling the unique characteristics

of ES cells has been one of the major goals in the field of

stem cells and developmental biology [3, 8]. Besides the

uniqueness of ES cells, accumulated knowledge of tran-

scriptional regulations in ES cells significantly advanced

our view of mammalian gene regulation. In particular,

recently developed high-throughput methodologies, such

as massive-parallel sequencing [9], enabled researchers to

perform unbiased mappings of chromosomal targets of

many transcription factors (TFs), DNA-binding proteins

(DBPs), and epigenetic regulators, as well as epigenetic

modifications including DNA and histone modifications.

These efforts tremendously expanded our understanding of

the regulatory mechanisms of global gene expression

programs in ES cells where various regulatory entities are

sophisticatedly interconnected to sustain the unique iden-

tities of ES cells.

In this review, we provide an overview of recent

advances in understanding global gene regulatory mecha-

nisms in mouse ES cells. We summarize key regulatory

factors and their roles in transcriptional and epigenetic

regulations. Another focus is on global gene regulations

mediated by long-range interactions among multiple

chromatin domains in ES cells. We also discuss ES cell-

specific modular regulations where functionally separable

sub-networks are tightly intertwined to maintain self-

renewal and pluripotency of mouse ES cells.

Transcriptional regulation in es cells

As one of the key regulatory mechanisms determining

cellular characteristics, transcriptional regulation is medi-

ated by multiple components including cis-regulatory

elements (promoters, enhancers, and insulators) and trans-

acting factors (sequence-specific TFs, general TFs, co-

activators [10], co-repressors, mediators [11], chromatin

modifiers, and chromatin remodelers [12, 13]). The

importance of transcriptional regulation was recently

highlighted by master TFs-mediated cell fate changes, such

as somatic cell reprogramming [14] and trans-differentia-

tion [15–19].

Core pluripotency TFs in ES cells

In ES cells, Oct4, Sox2 and Nanog have been traditionally

considered the core pluripotency TFs. The core TFs are

exclusively expressed in early embryos and play critical

roles in maintaining ES cell identity by governing the ES

cell-specific gene expression program [20]. They were

initially identified in loss-of-function studies, and an indi-

vidual disruption of Oct4 [21], Sox2 [22] or Nanog [23]

abolished early embryogenesis due to the failures of

forming intact ICM, where mouse ES cells are derived,

indicating their central roles in establishing and maintain-

ing the pluripotency of ES cells. Proper levels of the core

TFs in ES cells are important for both maintaining pluri-

potency and suppressing differentiation. Niwa et al. [24,

25] showed that approximately twofold induction of Oct4

in mouse ES cells prompts mesodermal and endodermal

differentiation, while 50 % reduction of Oct4 results in

differentiation toward a trophectoderm (TE) lineage by

inducing Cdx2 and Eomes. Moreover, a recent study by

Radzisheuskaya et al. [26] shows the reduced level of Oct4

in ES cells results in the failure of normal differentiation

into embryonic lineages, while restoration of Oct4 rescues

the differentiation capability. Consistently, Oct4?/- ES
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cells can maintain stabilized pluripotency state accompa-

nying with increased Oct4 occupancy across the genome,

but shows compromised differentiation due to the delay in

initial exit from the ESC state [27]. These results indicate

that the level of Oct4 in wild-type ES cells is necessary for

proper differentiation into all embryonic lineages. Simi-

larly, the knockdown of Sox2 in ES cells leads to primarily

TE differentiation [28, 29], whereas ectopic expression of

Sox2 induces multiple lineages [30]. The similar pheno-

typic consequences upon perturbations of Oct4 or Sox2

imply a functional linkage between these two master TFs.

Consistently, Oct4 and Sox2 form a heterodimer and syn-

ergistically activate their pluripotency-related target genes,

including Nanog [31] and Fgf4 [32]. Unlike Oct4 and

Sox2, an elevated level of Nanog was sufficient to maintain

mouse ES cells without leukemia inhibitory factor (LIF),

and Nanog-deficient ICM was prone to differentiate into

parietal endoderm-like cells and fail to form an intact

epiblast [23, 33]. However, further study performed by

Chambers et al. [34] showed that, although they are prone

to differentiate, Nanog null ES cells can self-renew infi-

nitely in vitro, colonize embryonic germ layers, and

contribute to the somatic lineages of fetal and adult

chimaeras. Further studies suggested that pluripotency-

related TFs are not only critical in ES cell maintenance but

also function as lineage-specifying factors [35–37].

Initial efforts to understand global target gene regulation

by the core TFs were made using human [20] and mouse

[38, 39] ES cells by combining chromatin immunoprecip-

itation (ChIP) and microarray (ChIP-chip) or paired-end

tag sequencing (ChIP-PET), revealing that the core TFs

share a substantial number of common target genes

including core TFs themselves [20]. These core pluripo-

tency TFs-mediated auto-regulatory and feed-forward

regulatory mechanisms suggested that the core TFs form a

tight regulatory circuit to maintain ES cells. More recently,

ChIP analyses followed by massive-parallel sequencing

(ChIP-seq) uncovered that the core TFs co-occupy mainly

distal enhancer regions rather than promoters of target

genes [40] to form pluripotency-specific enhanceosomes in

mouse ES cells [41–43].

Extended core regulatory network in ES cells

To gain more insights into the detailed action mechanisms

of the core pluripotency TFs, pull-downs of protein com-

plexes followed by mass spectrometry analyses were

performed, and various interaction partner proteins of the

core TFs were identified [44–49]. Orkin and colleagues

[44] conducted a pioneer work to define a Nanog-centered

protein–protein interaction (PPI) network and found mul-

tiple previously unknown Nanog-associated proteins,

including Nacc1 (Nac1), Zfp281, Dax1, Sall4, and Rif1.

From subsequent pull-downs of newly-identified Nanog-

associated proteins they constructed an extended Nanog-

centered PPI network [44]. Interestingly, depletion of Na-

nog-associated factors in ES cells often showed the loss of

pluripotency, suggesting that many Nanog-associated TFs

may play critical roles in the maintenance of ES cells. A

more recent study has newly identified eight additional

Nanog-interacting partners, including Tet (10–11 translo-

cation) family proteins, which synergistically enhance

somatic cell reprogramming with Nanog [50]. Oct4-cen-

tered PPI network was also defined by multiple

independent research groups; van den Berg et al. [46]

showed that Oct4 is physically associated with 166 pro-

teins, including TFs (Sall4, Tcfcp2l1, Dax1, and Esrrb) and

chromatin modifiers (SWI/SNF and NuRD complexes) that

are implicated in the self-renewal of ES cells. Depletion of

Oct4 decreased the chromosomal target occupancy of

Oct4-associated factors, indicating that Oct4 recruits its

associated factors and cooperatively regulates their com-

mon targets. Another pull-down study of Oct4 by Pardo

et al. [47] also revealed that Oct4 interacts with a wide

range of TFs and epigenetic regulators. The mutations of

Oct4-interacting partners often lead to the early lethality of

developing embryos, indicating that Oct4-associated fac-

tors also exert critical roles in early embryogenesis.

Although there was an apparent discrepancy between Oct4-

centered interactomes defined by these two independent

groups, most recent mapping of Oct4 interaction partners

by Ding et al. [48] identified larger size (*198 proteins) of

high-confident Oct4-interactome with significant overlap

with both of two previous studies [46, 47]. All these ele-

ments indicate that surprisingly many factors are involved

in the regulation of ES cells in addition to the three core

pluripotency TFs.

In addition to the PPI studies, an extended core TF-

centered protein–DNA interaction (PDI) network was

constructed using a ChIP-based method. Global target

mapping of four somatic cell reprogramming factors (Oct4,

Sox2, Klf4, and cMyc) [14] and some Nanog-associated

TFs (Nanog, Dax1, Rex1, Zfp281, and Nacc1) [44]

revealed that target genes bound by few factors tested are

in general inactive, whereas common targets of many TFs

are mostly active in ES cells [39]. The results suggest that

there might be a differential gene regulatory mode relying

on target co-occupancy of regulatory TFs. This observation

also raises the question of how pluripotency factors dis-

criminately activate or repress their target genes. One

possible explanation is that multiple ES cell core TFs and

their associated factors form enhanceosomes by co-occu-

pying enhancers to promote target gene activation [40],

while Oct4 and Nanog also form a distinctive repressive

complex such as NODE (Nanog and Oct4-associated

deacetylase), containing HDAC1/2 (histone deacetylases
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1/2) and Mta1/2 [45]. Induced expression of development-

related genes upon knockdown of the NODE complex

subunit supported the idea that the NODE is responsible for

the repression of lineage-specific marker genes in ES cells

[45].

Modular action of various TFs

While unbiased mapping of targets of various TFs in ES

cells disclosed their cooperative actions on common target

gene regulations [20, 39, 40, 51], differential target occu-

pancy patterns were observed between the targets of the

core TFs and targets of cMyc [40, 51]. The results indi-

cated that TFs in ES cells can be divided into multiple

distinct classes based on their target occupancy patterns.

Recent analysis of the chromosomal targets of many active

TFs in ES cells defined three functionally separable TF

classes (Core, MYC and PRC; Table 1; Fig. 1a) [51]. The

core pluripotency TFs, Oct4, Sox2 and Nanog, as well as

other TFs, such as Smad1, Stat3, Nacc1, Dax1, and Zfp281,

form the Core class TFs, and mainly co-occupy distal

regulatory elements of mouse ES cells. On the other hand,

cMyc, its binding partner proteins (Max, Tip60 and

Dmap1), and other TFs sharing their targets with cMyc

(Zfx, Cnot3, E2F1, and E2F4) form the MYC class and co-

occupy mainly promoter elements of highly active genes in

ES cells. The PRC class is composed of factors in poly-

comb repressive complexes 1 and 2 (PRC1 and PRC2,

respectively), and occupies promoters of inactive genes,

including lineage-specific regulators in ES cells. In the

pluripotent state of ES cells, targets of the Core and MYC

classes are highly active while targets of the PRC class are

inactive [51]. Upon differentiation, targets of the Core and

MYC classes are suppressed whereas targets of the PRC

class are induced. Interestingly, target gene activities of the

Core and MYC classes were opposite in partially repro-

grammed cells [51], suggesting that each class of TFs may

form a functionally separable regulatory subnetwork.

The core class TFs largely co-occupy distal enhancer ele-

ments of pluripotency-related genes with a previously known

enhancer binding protein p300, a histone acetyltransferase

[52], and form ES cell-specific enhanceosomes [40] to pro-

mote communication between enhancers and promoters via

protein-mediated long-range interactions (Fig. 1b). Accord-

ingly, Young and colleagues [53] reported that mediator

proteins such as Med1 and Med12 share common targets with

multiple core TFs. With extremely strong mediator occupancy

signals, they further defined ‘super-enhancers’ spanning large

domains of chromatin [54]. Their works additionally sug-

gested that the context-dependent conformation of super-

enhancers bound by tissue-specific master TFs and mediators

primarily determine the cell-type specific gene expression

program. Interestingly, most recent study of Oct4 and Sox2

using single molecule imaging analyses in ES cells has

revealed that Sox2 binds first to target enhancers followed by

the recruitment of Oct4 [55], suggesting that the core TFs

assemble enhanceosomes in a hierarchical order. Notably, the

Core class includes downstream effectors in signaling path-

ways, such as Smad1 and Stat3 [40], further supporting the

notion that enhancers function as integration hubs of external

signaling [56].

Unlike the Core class, ChIP-seq analyses revealed that

the MYC and PRC classes preferentially occupy the

proximal promoters of their target genes [51, 57]. Given

that cMyc interacts with multiple proteins, including a

NuA4 (nucleosome acetyltransferase of H4) complex in ES

cells, and cooperatively regulates a common set of target

genes, how the factors composing the NuA4 complex

influence the pluripotent state of ES cells will be of great

interest. Recently, two independent research groups

reported that an elevated level of cMyc amplifies the

expression of its already existing target genes instead of de

novo activation of additional target genes [58, 59], sug-

gesting that cMyc functions as a universal nonlinear

amplifier for all active genes rather than a binary on–off

switching factor. In agreement with this observation, Rahl

et al. [60] showed that cMyc plays a key role in releasing

paused RNA polymerase II (PolII) via its interaction with

positive transcription elongation factor b (P-TEFb) rather

than recruiting PolII at its target genes. Although all these

studies support that cMyc globally functions as a tran-

scriptional activator, it also can, with Miz1 and/or other co-

repressor proteins such as Hdac1, suppress the expression

of differentiation-related genes, including Hox cluster

genes in human ES cells [61–64]. Future studies will be

required to determine the mechanistic roles of cMyc as a

repressor and its global contribution to promote the plu-

ripotent state of ES cells.

Mapping unbiased targets of TFs is critical for under-

standing the roles of specific TFs. However, even with

various individual and group efforts, less than 10 % of

DBPs within the genome have been subjected to ChIP-seq

study in mammalian cells [7]. Since the majority of factors

so far tested in ES cells belong to only a few classes, one

obvious question is whether there are TFs forming unique

subnetworks other than the three classes so far reported in

ES cells [51]. The lack of ChIP-grade antibodies for a

broad range of TFs has been an obstacle in mapping TF

occupancies even with multiple systematic efforts to cat-

alog ChIP-grade antibodies [65–67]. Alternative attempts,

such as tagging TFs, have been tried to circumvent current

limitations and to increase throughput [39, 68–70]. Con-

sidering the complexity of the global transcriptional

regulation in which hundreds of DBPs are tightly inter-

connected with numerous cis-regulatory elements, further

systematic studies of all active TFs in ES cells, possibly
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Fig. 1 Schematic representation of global gene regulatory modes in

ES cells. a Transcriptional and epigenetic regulatory classes defined

in ES cells. Recent studies of mapping targets of TFs and histone-

modifying enzymes as well as histone modification signatures

revealed that tested factors belong to mainly three classes based on

their target co-occupancy (Core, MYC and PRC classes) [51]. As

depicted, each class is associated with distinct TFs/DBPs, cis-

regulatory elements and histone modification marks. Notably, core

pluripotency factors including Oct4 and Nanog belong to the Core

class and occupy distal enhancer elements with enhancer specific

histone modification marks (H3K4me1 and H3K27ac). Both MYC

and PRC classes occupy proximal promoters, but show opposite

target gene activities with unique histone modification marks (MYC

class: H3K4me3 and H3K27ac; PRC class: H3K27me3 and

H2AK119ub). Regulation of silent genes under the control of

methylated promoters has not been well-understood in ES cells.

Detailed factors, histone marks and other information involved in

each regulatory class are summarized in Table 1. b Interactions

between regulatory classes in ES cells. Proximal promoters of

development or lineage specification-related genes that are mainly

repressed in ES cells harbor bivalent histone marks (H3K4me3 and

H3K27me3), and are associated with both MYC and PRC classes

(upper panel). Distal enhancer elements occupied by the Core class

factors interact with the MYC class-bound proximal promoters via a

long-range chromosomal looping. Interactions between two classes

are facilitated by mediator and cohesion complex (lower panel).

c Spatial compartmentalization of chromosomal domains with

regulatory classes. Active chromatin domains formed in the center

of nucleus show tight interconnection between the Core and MYC

classes via long-range chromosomal interactions. Genes repressed by

the PRC class are co-localized and form nuclear sub-compartments

called polycomb bodies. The repressive polycomb bodies are distinct

from the nuclear lamina-associated silent domains anchoring at the

nuclear periphery. Ctcf and cohesion demarcate chromatin domains
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with more advanced technologies, will be necessary to gain

more comprehensive insights into the pluripotency-specific

global transcriptional regulatory mechanisms in ES cells.

Epigenetic regulation in ES cells

In addition to transcriptional regulation, structural altera-

tions of chromatin by epigenetic regulations including

covalent modifications of DNA and histone tails, as well as

alterations of nucleosome positions, render a favorable or

unfavorable environment for TFs to interact with cis-regu-

latory elements of the genome, and eventually modulate a

specific gene expression program. Together with TFs, elab-

orate and dynamic interplay among various epigenetic

regulators play pivotal roles in maintaining the pluripotent

state of ES cells as well as in determining proper cell fates

during development.

The roles of DNA methylation in pluripotency

of ES cells

The first layer of epigenetic regulation is DNA methyla-

tion, which primarily occurs at the cytosine of a CpG

dinucleotide, producing 5-methylcytosine (5mC). In

mammals, approximately, 70–80 % of total CpG sequences

in their genomes are methylated [71], while some cis-

regulatory regions, such as active enhancers or promoters

are hypomethylated in a context-dependent manner [72].

Another type of DNA elements called ‘CpG islands’ (CGI),

where multiple CpG dinucleotides are clustered and stret-

ched near promoters [71], show mostly constant

hypomethylation regardless of the tissue types or devel-

opmental stages [73, 74]. Among three well-conserved

DNA methyltransferases (DNMTs; Dnmt1, Dnmt3a and

Dnmt3b), Dnmt3a and Dnmt3b are responsible for de novo

methylation during early embryogenesis [75]. On the other

hand, Dnmt1 maintains genomic methylation during cell

divisions. Deletion of both Dnmt3a and Dnmt3b blocks de

novo methylation in ES cells, resulting in developmental

abnormalities [76]. Similarly, homozygous deletion of

Dnmt1 leads to delayed development followed by early

embryonic lethality [77]. Notably, Dnmt1-null ES cells are

capable of self-renewing in vitro [77], but die during

differentiation due to increased apoptosis [78]. Overex-

pression of Dnmt1 also results in embryonic lethality due

to the loss of imprinting caused by global hypermethylation

of genome [79].

Although methylated DNA is generally considered a

signature for gene silencing, some studies suggested that de

novo methylation does not induce silencing of active pro-

moters [80]. Therefore, the precise mechanisms involved in

DNA methylation-mediated gene silencing still remain to

be determined. One plausible model is that DNA methyl-

ation passively hampers the binding of TFs as most TFs

preferentially bind to the regions lacking DNA methylation

[81]. For example, the promoters of Oct4 and Nanog are

hypomethylated in ES cells; however, CpG dinucleotides

in those promoters become hypermethylated along with

complete silencing of their expressions upon differentiation

[82, 83]. Another model involves methyl-binding domain

containing proteins (Mbds), which can recognize methyl-

ated DNAs and further interact with other repressor

complex proteins [84]. Nucleosome-remodeling deacetyl-

ase (NuRD) complex, a well-known repressor complex

comprising HDAC1, HDAC2, Mi-2a/b (also known as

Chd3/Chd4), RbA and Mta [84–87], binds to its target

through Mbd proteins that can recognize methylated DNA

[84].

Recently, important roles of Tet proteins (Tet1, Tet2 and

Tet3), which can convert 5mC to various demethylated

forms of DNA, such as 5-hydroxymethylcytosine (5hmC),

5-formylcytocine (5fC) and 5-carboxylcytosine (5caC),

have been illuminated in ES cells [88, 89]. In particular,

Tet1 sustains the level of Nanog in ES cells by maintaining

consistent demethylation of Nanog promoters in ES cells

[90]. Tet1/Tet2 proteins also physically interact with Na-

nog and facilitate somatic cell reprogramming by

establishing naı̈ve pluripotency through their catalytic

activity [50]. Moreover, Tet1 replaces Oct4 during somatic

cell reprogramming via reactivation of Oct4 by demeth-

ylation of the Oct4 promoter [91]. Genome-scale mapping

studies also revealed that Tet1 preferentially occupies CGI

to prevent undesirable activity from DNMTs [92], con-

tributing to the establishment of poised chromatin status,

which is evidenced by the strong enrichment of 5hmC,

particularly in the proximal regions of transcription start

sites harboring both active (H3K4me3) and repressive

(H3K27me3) histone marks (see below) [93]. Conversely,

other studies showed that Tet1 single- or Tet1/Tet2 double-

knockout (DKO) ES cells maintain pluripotency [94, 95].

Although a portion of Tet DKO embryos died before birth,

apparently normal Tet mutant mice with slightly reduced

levels of 5hmC, as well as some aberrant methylation,

raises speculation that Tet3 may compensate for the loss of

Tet1 and Tet2. The individual Tet proteins need to be

further characterized to clarify the roles of DNA methyl-

ation status in ES cells as well as during early

developments.

Promoter-specific epigenetic regulations

Histone tails of eukaryotes are often covalently-modified

with acetylation, methylation, phosphorylation, and ubiq-

uitination, encompassing diverse information on local

chromatin statuses, favorable for either activation or
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repression of related genes (histone code, [96]). Studies

revealed that the chromatin architecture of ES cells is

globally open, marked with abundant active histone sig-

natures including H3K4me3 and acetylation-enriched

histones, and is transcriptionally hyperactive [97, 98]. In

conjunction with these observations, the majority of pro-

moters in ES cells harbor active histone marks, such as

H3K4me3, H3K9ac and H3K14ac, accompanied by pre-

loaded PolII [99]. These histone signatures are associated

with transcription initiation, but only subsets of genes are

transcribed into full-length mRNA with elongation histone

marks (H3K36me3).

Interestingly, prior works showed that lineage-specific

genes in ES cells harbor very distinct histone signatures

called ‘bivalent marks’ (Fig. 1b) [100]. The repressed

lineage-specific regulators have bivalent histones contain-

ing both active (H3K4me3) and repressive (H3K27me3)

marks that are rapidly activated upon differentiation. Genes

with bivalent marks or repressive mark (H3K27me3 only)

in their promoters are functionally distinct from non-

marked genes (without H3K4me3/H3K27me3) that are

silent in ES cells (Table 1; Fig. 1a) [101, 102]. Intrigu-

ingly, promoters of the core TFs, such as Oct4, Sox2 and

Nanog, are switched from active (H3K4me3) to bivalent

marks when ES cells undergo differentiation, revealing that

histone modifications are not associated with a specific

functional category of genes, but reflect the context-

dependent activity of genes [101].

The two most well-known histone marks (H3K27me3

and H3K4me3) are generally observed near the proximal

promoters, and generated by PRC and Trithorax-group

(TrxG) proteins, respectively [103, 104]. Polycomb com-

plexes, PRC1 and PRC2, primarily suppress developmental

regulators in ES cells [57, 105] by forming H2AK119ub

and H3K27me3, respectively. Recently, studies of CxxC

domain containing proteins involved in the PRC-mediated

repression revealed the sequential recruitment of PRCs to

their repressive target genes. Briefly, CxxC containing

Kdm2b occupies CpG promoters and recruits non-canoni-

cal PRC1 (Rybp-PRC1), priming a repressive histone mark

(H2AK119ub), which in turn recruits PRC2, generating a

H3K27me3 mark. Subsequently, canonical PRC1 (Cbx7-

PRC1) is recruited to further expand H2AK119ub mark

[106–108]. Interestingly, deletion of subunits in PRC2 did

not affect the self-renewal of ES cells [57, 105, 109, 110].

However, PRC2-depleted ES cells showed apparent defects

in differentiation, suggesting the important roles of PRC in

the proper differentiation of ES cells [110, 111].

The active histone mark H3K4me3 is catalyzed by TrxG

group proteins such as Set1A/B or Mll1/2 (mixed lineage

leukemia 1/2), forming a SET1/MLL complex [104, 112].

Wdr5, a core member of the SET1/MLL complex, physi-

cally interacts with Oct4, and its depletion impairs self-

renewal of ES cells and somatic cell reprogramming [113].

In contrast, loss of Dpy-30, another subunit of the SET1/

MLL complex, abrogates pluripotency while maintaining

self-renewal of ES cells [114]. Notably, the occupancy of

TrxG group proteins is largely guided by MYC class TFs

such as Max, as Max interacts with Wdr5 in ES cells [51]

and in HeLa cells [115]. Mof, another MYC family protein,

also plays an imperative role in sustaining ES cells by

recruiting Wdr5 to active promoters via a physical inter-

action [116]. These observations provide strong evidence

of the collaborative modular regulation of the MYC class

TFs, TrxG proteins, and corresponding active histone sig-

natures (Table 1).

Enhancer-specific epigenetic regulations

Enhancers act over a long distance and enhance the activity

of target gene promoters to govern the identity of specific

cell types by connecting tissue-specific master TFs, medi-

ators, and RNA PolII machinery [117]. The formation of

enhancer-TFs complexes (enhanceosomes) is context-spe-

cific, as suggested in the interaction between core

pluripotency TFs and ES cell-specific distal regulatory

elements [40]. Recent genome-wide studies revealed that

the global enhancer connectivity within the genome is

extensively reorganized to change tissue-specific gene

expression programs during differentiation [54, 118–120].

Although a conventional definition of enhancers was linked

to their interaction with transcriptional co-activators [117],

additional characteristics of enhancers, such as p300

occupancy and a prevalent H3K4me1 mark, have been

reported and have become widely used for the annotation

of tissue-specific enhancer elements [56, 119, 121, 122].

Furthermore, more recent studies classified enhancers in

ES cells into two groups (active and poised enhancers)

depending on the combination of multiple histone marks

[119, 121, 122]. Active enhancers are generally open with

low nucleosome density and marked with both H3K4me1

and H3K27ac signatures with bindings of p300 and Brg1, a

subunit of the SWI/SNF chromatin remodeling complex

[119, 121, 122]. On the other hand, poised enhancers are

functionally inert in self-renewing ES cells with

H3K27me3 signatures, but rapidly acquire active enhancer

signatures upon differentiation.

For successful differentiation of ES cells, active

enhancers controlling ES cell-specific genes must be

inactivated. Histone H3K4/K9 demethylase Lsd1 (also

known as Kdm1a), the first mammalian histone demeth-

ylase identified [123], has been reported to localize at the

active enhancers in ES cells and modulate the inactivation

of ES cell-specific enhancers [124]. While Lsd1-depleted

ES cells could self-renew normally in vitro, the cells

showed defects in differentiation mainly due to the failure
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of histone demethylation at ES cell-specific enhancers.

Other studies suggested that Lsd1 interacts with the NuRD

complex, suggesting that other factors are also required for

proper differentiation [124]. Consistently, ES cells lacking

Mbd3, a subunit of NuRD complex, failed to silence the

activity of pluripotency factors upon differentiation, and

these cells self-renew even in the absence of LIF [125].

Interestingly, global target mapping of HDACs and NuRD

complexes revealed that they are more enriched in the

enhancers of active genes rather than repressed genes [124,

126], which is somewhat inconsistent with our general

understanding of their repressive enzymatic functions. It is

conceivable that HDACs may play a major role in atten-

uating the expression of active genes to balance their levels

within an appropriate range, or they may prime active

genes for future repression during differentiation.

Influence of chromatin remodeling on pluripotency

of ES cells

ATP-dependent chromatin remodelers provide open or

closed chromatin structures by rearranging nucleosome

compositions or repositioning nucleosomes [12, 13]. These

local chromosomal changes, along with other histone and

DNA modifying enzymes in either a conjunctive or

sequential manner, affect the accessibility of transcrip-

tional machineries onto cis-regulatory elements, and

eventually determine local gene activity. ATP-dependent

chromatin remodeling complexes can be divided into sev-

eral groups, such as SWI/SNF, ISWI, and CHD, with

different types of ATPase core subunits [13].

ES cells have a distinctive SWI/SNF complex so-called

esBAF comprised of Baf155, Baf60A, Baf250a, and the

ATP-dependent helicase Brg1 [127, 128]. Depletion of

Baf250a resulted in defects, particularly in mesodermal

lineage specifications upon differentiation of ES cells

[129]. Brg1 co-localizes with the core TFs on pluripotency-

specific enhancers [128], implying its involvement in

maintaining low nucleosomal density at enhancers.

Another SWI/SNF complex, Tip60-p400, physically

interacts and shares global targets with cMyc at active

promoters harboring H3K4me3 marks in mouse ES cells

[51, 130]. p400 has been known to replace H2A with his-

tone variants such as H2A.Z in the nucleosome of active

promoters [131]. ES cells with depletion of Tip60 or p400

showed reduced proliferation, up-regulation of lineage-

specific genes, defects in embryoid bodies (EB), and tera-

toma formations, indicating that Tip60-p400 is required for

maintaining the identity of ES cells [130]. A recent study

additionally revealed that INO80, another SWI/SNF chro-

matin-remodeling complex, is also critical for maintaining

ES cell identity [132].

Mammalian ISWI ATP-dependent chromatin-remodel-

ing complexes containing Snf2h or Snf2l ATPase facilitate

the sliding of nucleosomes by disrupting the interactions

between histone proteins and DNA [133]. The importance

of Snf2h was shown by the embryonic lethality of Snf2h-

null mice before implantation due to the defects in cell

growth of the blastocyst stage embryo [134]. A study of

another ISWI complex NURF (nucleosome remodeling

factor) containing Snf2l and Bptf (bromodomain and PHD

finger TF) revealed that Bptf is associated with H3K4me3

marks [135]. Bptf-null ES cells showed deregulation of

genes implicated in development of all three germ layers

and genes particularly regulated by Smad, suggesting that

Bptf links a Smad signaling pathway to the transcription of

lineage-specific genes [136].

Chromodomain helicase DNA-binding (CHD) family

chromatin remodelers also have been known to play critical

roles in sustaining pluripotency. Chd1 recognizes

H3K4me2/3 [137] and occupies the promoters of active

genes where the MYC class TFs bind [51, 138]. Chd1-

deficient ES cells self-renew in vitro but are preferentially

differentiated into neural lineages upon EB formation

while showing defects in primitive endoderm differentia-

tion [139]. Interestingly, these cells also showed

accumulation of heterochromatin, suggesting that Chd1

plays direct roles in rendering open chromatin to prevent

heterochromatin formation in ES cells [139]. A disruption

of another CHD family, Chd7 in mouse embryos resulted

in prenatal death due to the multiple tissue defects [140]. In

ES cells, Chd7 co-localizes with the core factors on active

enhancers [141] and plays a role as a molecular rheostat to

maintain the level of ES cell-specific factors. As discussed

earlier, Chd3/4, also known as Mi-2a/b in NuRD complex,

were also reported to occupy active enhancers in ES cells

[124].

Higher-order chromatin architecture

So far, we discussed the factors responsible for the

transcriptional and epigenetic regulations in ES cells and

their functions occurring through local changes in chro-

matin structures of the genome. More recently, studies

have revealed that chromatin structures are further orga-

nized into specific higher-order architectures depending

on cell types and developmental stages [142]. A growing

body of evidence supports that higher-order chromatin

structures also play an imperative role as a new regula-

tory layer controlling stem cell characteristics. In this

section, we summarize recent understandings of higher-

order chromatin architectures mediated by long-range

interactions.
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Unique and dynamic chromatin structures of ES cells

The chromatin structure of an ES cell is largely open with

less heterochromatin composition, loosely compacted

compared to the chromatin of differentiated cells, and

transcriptionally hyperactive due to active chromatin-

remodeling enzymes and general TFs [97, 143, 144]. The

chromatin plasticity of ES cells is believed to secure rapid

genomic adaptation upon differentiation to promote line-

age-specific gene expression programs [145, 146]. The

recently developed Hi-C assay [147], a powerful tool in

identifying global higher-order chromatin interactions,

suggested that chromatins are largely organized with dis-

tinct megabase-sized topological domains [148]. This is

consistent with previous microscopic observations of sub-

cellular gene locations showing that gene-enriched

chromosomal domains are located in the center of the

nucleus, while gene-depleted regions or centromeres are

found in the nuclear periphery (Fig. 1c) [149, 150]. Chro-

mosomes of human ES cells showed similar organization

wherein pluripotency genes, such as Nanog and Oct4, are

located closer to the center of the nucleus [151]. Upon

differentiation, repressive histone modifications are ele-

vated globally while pluripotency genes are relocated from

the center of the nucleus to the nuclear lamina to become

silenced [152]. These results suggest that the genomic

structures of ES cells are not only established to provide a

favorable environment for maintaining ES cell identity, but

also experience reorganization to benefit specific lineage

commitments during differentiation.

Techniques for chromosomal conformation capturing

Early studies of chromatin conformations relied on

microscopic observation via DNA fluorescence in situ

hybridization (FISH) for a limited number of genomic loci.

Chambeyron et al. [153] showed that the extrusion of a

Hoxb locus from its chromosomal territories coincides with

its activation. This observation brought up the idea that

chromosomal localization may affect gene activity. Thanks

to the development of chromosome conformation capture

(3C) technology, local chromatin structures and small-scale

physical interactions between distant genomic regions have

been studied in depth [154, 155]. To identify multiple

interacting regions of a given genomic locus, chromosome

capture has been integrated with circularization (circular

chromosome conformation capture: 4C) or other genome-

wide analysis tools, such as tiling array (4C-array or

chromosome conformation capture-on-chip [156]) and

high-throughput parallel sequencing (4C-seq [157]).

Additional approaches were invented to capture chromo-

somal interactions within a cell as a whole (carbon-copy

chromosome conformation capture: 5C [158], Hi-C [147]).

More recently, a new method was developed to study

unbiased chromosomal interactions mediated by specific

proteins (chromatin interaction analysis by paired-end tag

sequencing: ChIA-PET, for the review of technological

details, see [155]).

Long-range interaction mediated higher-order

chromatin structures in ES cells

It has been shown that long-range interactions and higher-

order chromatin structures are mediated by specific pro-

teins [159] such as nuclear Ctcf/cohesin [160–162], p300/

Cbp [163], and mediators [164, 165], and these proteins

link one chromosomal region to another via long-range

looping. An integrative analysis using HI-C and Ctcf ChIP-

seq in human cells revealed that Ctcf is a major architect

building chromosomal structures by mediating interactions

both within a chromosome and between different chro-

mosomes (Fig. 1c) [161]. ChIA-PET assays of Ctcf in

mouse ES cells identified 1,480 cis- and 336 trans-acting

chromatin interactions [160], and another study on Ctcf-

mediated loops unveiled that Ctcf partitions distinct chro-

matin compartments with different transcriptional and

epigenetic statuses [162]. Ctcf loops also determine the

boundaries of lamin-associated silent chromosomal regions

and function as a barrier between silent and active regions

[162].

Additionally, ChIA-PET assays of PolII disclosed

interactions between multiple active promoters (P–P

interactions) and pervasive interactions between promoters

and enhancers (P–E interactions) [166, 167]. Notably,

promoters of the core TFs (Oct4, Sox2, Nanog, and Klf4)

are interconnected within close physical proximity in ES

cells. However, in neural stem cells, Sox2 gene is con-

nected with Olig1 and Olig2 genes that play important

roles in decision of neural cell fate, implying that gene

relocation and replacement of interaction partners coincide

with differentiation. On the other hand, regulatory elements

of Oct4 gene lacking PolII-mediated chromatin interactions

in somatic cells obtain intrachromosomal interactions

during somatic cell reprogramming [166], highlighting

critical roles of long-range looping-mediated chromatin

structure changes in pluripotency-specific gene expression

programs. Notably, unlike a prior assumption of proximity-

governed interactions between enhancers and promoters,

this work revealed that approximately 75 % of enhancers

communicate with distal promoters rather than their nearest

promoters.

Mediators are major culprits in linking promoters and

enhancers as a complex with cohesin, bridging two dif-

ferent chromosomal regions by encircling them with

cohesin rings [53]. Depletion of these proteins in ES cells

results in overall collapse of ES cell-specific chromatin
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interactions and loss of a pluripotent state. Moreover, as

discussed earlier, extremely high levels of mediator occu-

pancy are associated with super-enhancers that regulate a

global tissue-specific gene expression program, supporting

the importance of long-range interactions mediated by

mediators [54]. Other co-activators, such as p300 and Cbp,

also mediate long-range looping at Nanog locus in ES cells

by physical interaction with Nanog proteins, in turn acti-

vating other pluripotency genes [163].

The fact that pluripotency factors such as Oct4 and

Nanog particularly bind to the enhancers of ES cell-specific

genes suggested that pluripotency factors may also play

important roles in organizing chromatin configurations. A

recent 4C-seq study has revealed that Klf4 proteins recruit

cohesin onto the Oct4 enhancer before the activation of

endogenous Oct4 during somatic cell reprogramming

[168]. Similarly, depletion of Klf4 leads to differentiation

of ES cells due to the disruption of Klf4-mediated long-

range interactions between Oct4 enhancers and promoters,

indicating that Klf4 also involves high-order chromatin

architecture to induce pluripotency [168]. Another 4C-seq

study of Nanog locus also emphasized the interactions

between Nanog locus and other pluripotency-specific genes

[169]. Importantly, Eed-mediated long-range looping at the

PRC-mediated repressive regions also has been reported

[170]. Particularly, genes repressed by PRC are co-local-

ized together within distinct nuclear sub-compartments

called polycomb bodies [171] that are different from pre-

viously known silent nuclear peripheries (Table 1; Fig. 1c)

[170].

Summary and future perspectives

Interconnection of multiple regulatory mechanisms

Research in the past decade aided by modern systems

biology tools have demonstrated that the global gene

expression program in mouse ES cells is controlled by

multiple layers of regulatory steps, such as transcriptional

and epigenetic regulations. Emerging patterns of tightly

interconnected regulatory pathways are more evident with

recent demonstrations of long-range interactions among

various cis- and trans-regulatory elements.

Epigenetic signatures generated by the recruitment and

action of histone modifiers [52, 172, 173] and chromatin

remodeling complexes [12, 87] are intertwined with tran-

scriptional regulation mediated by sequence-specific and

general TFs. De novo bindings of TFs to their target sites

are affected by pre-formed local nucleosome density [174,

175], DNA methylation status [81], epigenetic modifica-

tions [172], and other preoccupied transcription factors

[176]. Sequence information in cis-regulatory elements

becomes functional only when they are occupied by reg-

ulatory factors with accompanying chromatin and

epigenetic statuses. Now it is clear that these associations

between epigenetic modifications and TF occupancies are

collectively formed within separate chromosomal territo-

ries [148] with long-range interactions [166]. Table 1

summarizes interrelations between each transcriptional

regulatory class so far known in ES cells and the entities of

global gene regulation, including TFs, epigenetic regula-

tors, epigenetic modifications, chromatin status, subcellular

localizations, and so on. All these regulatory layers and

regulators should be collectively considered as a whole, not

as separate entities, for a more comprehensive under-

standing of pluripotency-specific gene expression program.

Implications of modular transcription and epigenetic

regulations

Notably, analysis of accumulated TF or DBP occupancy

data suggested that a group of TFs or regulators tend to

share similar chromosomal targets as a functionally sepa-

rable regulatory subunit as shown in mouse ES cells: the

Core, MYC and PRC classes [51]. The co-occupancy

mediated modular action of TFs seems to help transcrip-

tional controls in diverse ways. First, the cooperation of

multiple TFs within each class may secure the successful

execution of gene regulation compared to the sole action of

a single TF. Conversely, each TF within a subnetwork may

have unique functions to make up a complete functionality,

as Tcf3, a negative regulator of transcription, shares com-

mon targets with the core factors in ES cells and balances

the levels of the core factors [177]. Second, more impor-

tantly, TFs or DBPs within a subnetwork are almost always

associated with distinct histone-modifying enzymes and

histone modification marks, as summarized in Table 1 and

Fig. 1, suggesting that the gene expression programs in ES

cells is achieved by the modular actions of both TFs and

epigenetic regulators. This view is particularly imperative,

as suggested in the works by Zaret and colleagues [176,

178–180]; pioneering factors recognize and occupy target

sequences in an epigenetic status-independent manner at

the beginning, and then recruit other TFs or epigenetic

regulators, allowing changes in chromatin status, further

interacting with other cis-regulatory elements to form

higher-level chromatin interactions, in turn changing cel-

lular characteristics [167, 179, 181]. Third, the modular

actions of TFs and epigenetic regulators seem to ensure

rapid and precise cellular responses in environmental

changes, as shown in Lsd1 and Mi-2/NuRD cases [124]. As

discussed above, these putative repressors are responsible

for the removal of pluripotency-specific enhancers upon

differentiation, implying their roles in rapid response to

environmental changes. Last, the modular action of
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multiple factors also involves signal transduction pathways

[40]. As most effectors of signaling pathways are TFs, their

actions are dependent on the pre-formed modular regula-

tory network, such as enhanceosomes [40]. This also

explains previous observations of context-specific respon-

ses of signaling pathways [182–184].

Implication of chromosomal interactomes

Recently attained knowledge on chromatin conformation in

ES cells suggested important biological significances.

Considering limited cellular resources, spatial segregation

of active, repressive and silent regions may enable more

efficient way of gene regulation [170]. In addition, as

described above, chromosomal conformations not only

constrain global gene expression, but also involve gene

activity changes in response to environmental changes or

differentiation cues [166, 185].

Moreover, results from the enhancer-promoter interac-

tome studies disclosed that multiple enhancers interact not

only with a single promoter, but frequently with multiple

promoters to form clusters of multiple co-expressed genes

[166, 167]. More collective and high-ordered approaches to

map global chromosomal interactomes will be required for

the acquisition of more comprehensive views of global

gene regulatory mechanisms.

Future directions

To our surprise, some of the newly-attained genome-wide

data seemed somewhat inconsistent with our conventional

understanding of the functions. For example, the genomic

targets of some previously known repressor proteins such

as Lsd1 [124, 186] and Hdac1 [126] are near the regulatory

elements of active genes rather than the repressed genes in

ES cells. Moreover, general approaches of mapping TF

targets often do not show any strong correlation with the

activity of the target genes upon perturbation of tested

factors [187–189]. Therefore, to get better insights into the

roles of TFs or epigenetic regulators, in addition to their

enzymatic functions and context-dependent genome-wide

occupancies, the interacting partners, target cis-elements

and three-dimensional chromatin interactions should be

considered together. Aligned with these comprehensive

studies linking diverse aspects of gene regulations, con-

ventional genetics studies aiming to understand the

functions of each regulatory factor in early development or

in vivo should also be continued.
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