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Since their initial description by Enrico Sertoli in 1865, Sertoli cells have continued to
enchant testis biologists. Testis size and germ cell carrying capacity are intimately tied to
Sertoli cell number and function. One critical Sertoli cell function is signaling from Sertoli
cells to germ cells as part of regulation of the spermatogenic cycle. Sertoli cell signals can
be endocrine or paracrine in nature. Here we review recent advances in understanding the
interplay of Sertoli cell endocrine and paracrine signals that regulate germ cell state.
Although these findings have long-term implications for treating male infertility, recent
breakthroughs in Sertoli cell transplantation have more immediate implications. We
summarize the surge of advances in Sertoli cell ablation and transplantation, both of
which are wedded to a growing understanding of the unique Sertoli cell niche in the
transitional zone of the testis.

Keywords: sertoli cell (SC) niche, transitional zone (TZ), Sertoli cell ablation, Sertoli cell transplantation,
Spermatogenesis, FSH signaling, AR signaling, Exosome extracellular vesicle (EV)
INTRODUCTION

Although germ cells are the stars of spermatogenesis, Sertoli cells are the sustaining lead, without
which, spermatogenesis would cease to occur. Sertoli cells provide the supportive framework within
which germ cells will safely undergo rounds of mitosis and meiosis (Figure 1). This structure which
includes tight junctions between adjacent Sertoli cells, divides the seminiferous epithelium into the
basal and adluminal compartments, serving a protective role as the testicular region within the
seminiferous tubules that is immuno-privileged (1–5). Sertoli cells act as the mediator between germ
cells and endocrine signaling, from controlling spermatogenesis by hormones (follicle stimulating
hormone [FSH] and testosterone [T]), originating from outside of the seminiferous tubule (6–8).
Sertoli cells also have direct impacts on germ cell development through paracrine signaling (9–11).
These roles are all key elements required to orchestrate the symphonic cyclicity of steady-state
spermatogenesis within the adult testis. When aberrations in Sertoli cell function occur, this
intricate exchange breaks down and spermatogenic failure may occur, ultimately challenging the
fertility of the male. Recent research into the niche population of Sertoli cells at the transition zone
between the rete testis and seminiferous tubules, as well as studies of Sertoli cell transplantation, are
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FIGURE 1 | Architecture of Sertoli cells in the adult mouse seminiferous tubule. The bodies of Sertoli cell cytoplasm (green) can be seen engulfing germ cells (red)
from basal lamina to lumen while Sertoli cell nuclei (blue) are located basally. Top row: zoomed inset from grey boxed region in Middle Row: seminiferous tubule
cross section at stage V-VI. Bottom Row: Longitudinal sections showing multiple stages. All scale bars are 50µm.
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bringing new insights to the field. Both branches of investigation
offer the promise of a deeper understanding into how Sertoli cells
come to reside properly in the testis, and methods for getting
functional Sertoli cells in to replace Sertoli cells that are deficient.

Aside from the germ cell based histological staging of
spermatogenesis defined by consistent cell associations present
in cross-sections of the seminiferous tubule (Figure 2), generally
the stages of the cycle can also be defined by unique metabolic
and molecular Sertoli cell identities (22–24). Specifically in
regards to the androgen signaling pathway, Sertoli cells display
stage specific temporal peaks of AR expression in rodents (stages
VI-VIII) (25–27) (Figure 2A), and humans (stage III) (28)
(Figure 2B). For germ cells, as one progresses concentrically
towards the seminiferous tubule lumen, this AR peak period
coincides with: undifferentiated type A spermatogonia meiotic
entry, elongating spermatid adhesion, and spermiation (29–32).

ENDOCRINE AND PARACRINE SIGNALS
Larose et al. 2020 (33) took a more granular look at the direct
impact of AR presence in Sertoli cells on germ cell meiotic
progression. Using SCARKO mutant mice (Sertoli cell androgen
receptor knockout) they defined a Sertoli cell-AR androgen
independent period of germ cell development from meiotic
initiation to early prophase. Germ cells in these mice that did
not undergo apoptosis (and many germ cells did) progressed up
to what, histologically, appeared to be relatively normal
pachytene spermatocytes. But upon deeper investigation using
scRNA-seq, the most advanced germ cells were transcriptionally
defined and resembled leptotene or zygotene spermatocytes (33).
This discrepancy between transcriptomic and histological cell-
identity was also reported in Pdrm9mutant germ cells (34). This
finding calls into question the many definitive studies using
models of androgen deficiency or receptor deletion causing a
defined maturation arrest that predates the use of scRNA-seq
Frontiers in Endocrinology | www.frontiersin.org 2
technology and relied solely on classical histological assessment.
Revisiting these classic maturation arrest studies with modern
bioinformatics tools has the potential to elucidate other
molecular details similar to those reported by 33.

Transcriptomic analysis on SCARKO mutant mice also
identified a set of genes (including: Fabp9, Gstm5, Ybx3, Meig1,
Spink2, Rsph1, Aldh1a1, Igfbps, Piwil1, Mael) regulated by AR
signaling in Sertoli cells. Collectively this gene set seems to
license spermatocytes for the first meiotic division, as well as
for spermiogenic competency (33). Another gene, Rhox5,
initially transcribed in Sertoli cells, is an androgen-inducible
transcription factor (35–39). RHOX5 regulates Sertoli cell gene
expression controlling cell surface and protein secretion in
relation to germ cells (7, 40–43). Rhox5 has two promoters,
distal and proximal. Previously, these promoters were
understood to drive different tissue-specific expression, with
the exception that both promoters are active in adult Sertoli
cells Bhardwaj et al. 2022 defined a postnatal temporality to
Rhox5 promoter activity (44). The proximal promoter is
activated shortly after birth, while the distal promoter is
dormant until late in the postnatal period also identified novel
androgen-responsiveness for the Rhox5 distal promoter. The
group then established that the proximal promoter can act as
an enhancer for the distal promoter and further, that RHOX5
up-regulates its own transcription via the distal promoter (44).

Rhox5 expression in Sertoli cells is dependent on FSH
signaling (36). Unlike Ar, in adult mouse Sertoli cells Fshr has
a consistent expression level throughout the stages of
spermatogenesis (23) and knockout experiments have shown
there is a degree of added redundancy in the FSH pathway when
working synergistically with the AR pathway (45, 46). Reported
activity of both proximal and distal Rhox5 promoters into
adulthood specifically in Sertoli cells at Stages II-V (outside AR
peak) and VI-VIII (within AR peak) (44). Potentially, Rhox5 is
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yet another recipient of synergistic T and FSH action. This would
add another layer to the evolutionary pressure postulated by 44.
According to the authors, this pressure drove retention of the
Rhox5 distal and proximal promoters. This evolutionary
pressure was probably directed at the initial temporally-
staggered promoter expression of Rhox5 postnatally.
During the first wave of spermatogenesis, Ar and Fshr are
known to have dynamic expression patterns in mouse Sertoli
cells (24, 44).

T and FSH synergism is not limited to Sertoli cell
transcription factors. A newer player in the realm of
intercellular signaling is the extracellular vesicle, which can
hold and transport an array of different molecules including:
growth factors, cytokines, mRNAs, bioactive lipids, and
microRNAs (47–49). A recent report by Mancuso et al 2015
utilized a porcine Sertoli cell culture system to define the
extracellular vesicle components with FSH-alone and
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synergistic T+FSH stimulation (50). Proteomic analysis showed
FSH-alone increased proteins generally linked to modulating the
hypothalamic-pituitary axis regulating testosterone biosynthesis,
the blood-testis-barrier, and spermiation (INHA, INHB, PLKA,
HPT, SERA and AT1A1). While stimulation (50) with T+FSH
increased proteins generally linked to blood-testis-barrier
adherens junctions, and gating endocrine and paracrine
regulation of spermatogenesis (INHA, INHB, TPA, EGFL8,
EF1G and SERA). These extracellular vesicles also contained
transcripts (Amh, Inhb, Abp, Fshr), which the authors postulate
could function in loading germ cells, and other testicular cells,
with mRNA that will later be translated (50).

Extracellular vesicles are generally accepted to belong to 3
categories: exosomes, microvesicles, and apoptotic bodies (51,
52). Exosomes, were recently the focus of exciting findings in
the field. Aside from transporting mRNA, extracellular vesicles,
specifically exosomes, can also transport microRNA (53).
A

B

FIGURE 2 | Seminiferous epithelial stages of mouse and human spermatogenesis as classic spermatogenesis cycle staging charts using germ cell associations and
morphology. Spermatogenesis is the process of sperm development and involves phases of mitosis, meiosis, and spermiogenesis (morphological cell changes).
(A) Spermatogenesis in mice is a cycle that takes ~8.6 days (12–14). The time necessary for a germ cell to go from type A spermatogonia to spermatozoa (the
complete process or duration of spermatogenesis) is about 35 days (12, 13, 15). In mice, spermatogenesis is divided into 12 stages (I-XII) and 16 spermatid
developmental steps. A, In, and B are type A, intermediate, and type B spermatogonia, respectively. Pl, L, Z, P, D, M, and 2º are preleptotene, leptotene, zygotene,
pachytene, diplotene, meiotic, and secondary spermatocytes, respectively. Steps of spermatid development are numbered 1-16. Sections were stained with Periodic
Acid Schiff’s regent-hematoxylin (PAS-H), which is a conventional staining for staging of mouse testis sections. Scale is 20mm. (B). Spermatogenesis in men is a 16
day cycle with a complete duration that was classically determined to be 64 days but modern methods show to be closer to 74 days (16–21). In humans,
spermatogenesis is divided into 6 stages (I-VI) and 6 spermatid developmental steps. Adark, Apale and B are type A dark, type A pale and type B spermatogonia,
respectively. Pl, L, Z, P, D, M, A and 2º are preleptotene, leptotene, zygotene, pachytene, diplotene, meiotic metaphase, meiotic anaphase and secondary
spermatocytes, respectively. Steps of spermatid development are labeled Sa, Sb1, Sb2, Sc, Sd1 and Sd2. Sections were stained with Periodic Acid Schiff’s regent-
hematoxylin (PAS-H), which is a conventional staining for human testis histology assessment. Scale is 20mm.
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Paracrine signaling from Sertoli to germ cells by exosomes
containing microRNA would putatively be to silence genes.
Indeed, a recent report by Li et al. 2021, revealed that Sertoli
exosomes contain the microRNA miR-486-5p (54). The
authors used a culture system of adult Sertoli cells and P6
germ cells enriched for spermatogonial stem cells. Using this
system demonstrated that Sertoli cell exosomes with miR-486-
5p down-regulated spermatogonial stem cell expression of Pten
by targeting of the Pten-3’UTR by miR-486-5p. The authors
further identified that both Stra8. and Sycp3 were indirectly up-
regulated in spermatogonial stem cells by the decrease in
repressive PTEN. Ultimately this exosome exchange would
seem to be part of the differentiation signal from Sertoli cells
to spermatogonia (54).

The observations of Li et al. 2021 about Sertoli cell miR-486-
5p containing exosomes adds to the evolving school of thought
on how undifferentiated spermatogonia enter meiosis (54).
Spermatogonial differentiation and meiotic entry is established
to be highly dependent on retinoic acid (RA) signaling (55, 56).
The commonly proposed paracrine source of germ cell
stimulating RA is Sertoli cells and spermatocytes (32, 57–60).
Much like AR, RA levels in the seminiferous epithelium are also
cyclic and peak at stage VIII, the same stage at which
undifferentiated spermatogonia commit to meiosis (61).
Timing for meiotic entry is critically important, and inherent
in understanding the control of this timing is the need to define
how spermatogonia control RA-responsiveness. In the fetal testis
CYP26B1, which catabolizes RA, is a key regulator in blocking
fetal male germ cell meiotic entry (62–65). Using the first wave of
spermatogenesis as a synchronized model of spermatogenesis,
Velte et al. 2019 (66) showed that CYP26 also blocks meiotic
entry at postnatal day 6 (P6) in undifferentiated spermatogonia
that are poised to respond to RA. Spermatogonial poising for RA
responsiveness is generally thought to be accomplished through
RARG (RA receptor gamma) expression (66). Indeed, this model
was eloquently validated by in Suzuki et al. (67), who defined two
sub-populations of undifferentiated spermatogonia in the adult
mouse testis. Early-undifferentiated spermatogonia did not
express RARG, while late-undifferentiated spermatogonia did
express RARG (67). However deeper analysis in a follow-up
study further sub-divided late-undifferentiated spermatogonia
into a group expressing Dppa3 (Dppa3+) and RARG that quickly
transition to a differentiating spermatogonia (KIT+) state upon
RA stimulation. While the other group of late-undifferentiated
spermatogonia express RARG but not Dppa3 (Dppa3-) and have
delayed differentiation (68). Whether or not Dppa3 transcript
presence is the product of exosome-mediated microRNA
silencing is still an open question.
SERTOLI CELL TRANSPLANTATION
AND TRANSITIONAL ZONE SERTOLI
CELL NICHE

Clinically, men can suffer from an array of Sertoli cell-origin
infertility. In some cases the ligand is the issue: gonadotropin-
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deficient men, mutations (69) and androgen dysregulation (70).
In other cases the receptor is the issue, such as complete or
partial androgen insensitivity syndromes resulting from
polymorphisms or deletions of the androgen receptor (71, 72).
Extracellular vesicles may offer the possibility of a cell-free
treatment for some forms of infertility due to specific types of
Sertoli cell deficiencies. Theoretically extracellular vesicles could
be injected clinically through the rete testis using the ultrasound-
guided injection technique (73–76). Although these types of
therapeutics are still years away, extracellular vesicles could
become clinically relevant sooner due to their diagnostic
potential. Two recent studies demonstrated the value of
seminal exosome analysis as markers of Sertoli cell damage by
varicocele (77), and predictive of testicular sperm presence in
NOA men (78).

Another exciting technology that has seen a surge of progress
lately is Sertoli cell transplantation. Ralph Brinster pioneered
germ cell transplantation over a quarter century ago, his
technique was later applied to transplant the somatic cells of
the seminiferous epithelium, Sertoli cells (79). Some of the
earliest reporting of Sertoli cell transplantation as a method for
repairing the spermatogonial stem cell niche goes back to the
early 2000’s (80, 81). A challenge to restoring Sertoli cell function
through transplantation of functional Sertoli cells is what to do
about clearing out the dysfunctional Sertoli cells from the
seminiferous epithelium to make space. Previously transgenic
lines and cadmium has been used for Sertoli cell ablation (81–
84). Although effective, from a clinical perspective these methods
are not feasible and pose adverse risks, respectively.

Yokonishi et al. 2020 (85) recently identified a safe alternative
to cadmium, benzalkonium chloride (BC), which is an FDA-
approved non-toxic agent present in over-the-counter eye drops
and hair conditioner (86). The authors show that admission of
0.02% benzalkonium chloride through the mouse rete testis is
sufficient to ablate Sertoli cells. Further this group defines the
temporal windows for host Sertoli cell ablation, donor Sertoli cell
transplantation, and donor germ cell transplantation. The
window for host germ cell survival is also detailed, the method
is tested with cryopreserved testicular cells, and a culture version
of the method demonstrates benzalkonium chloride utility in
large mammals (dog) (85). In a follow-up study the same group
shower that fetal mouse gonadal cells transplanted into an
ablated adult mouse testis are competent to colonize, mature,
and support host germ cell spermatogenesis (87). An added level
of temporality in transplanted donor Sertoli cell colonization
after ablation, was recently defined in another robust ablation
study. Using a transgenic system of Sertoli cell ablation, Imura-
Kishi et al. 2021 showed that donor Sertoli cells first colonize the
transitional zone where they resume repression of
spermatogenesis. After reaching an equilibrium in the
transitional zone Sertoli cells then proliferate further,
repopulating the host seminiferous epithelium where the donor
Sertoli cells will support host spermatogenesis (88).

The transitional zone of the testis goes by many names
(Sertoli valve, transitional region, tubulis rectus, intermediate
region, terminal segment) expertly reviewed in (89). Foundation
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papers first describing this area between the rete testis and
spermatogenic seminiferous epithelium date back to the 60’s
(90–97). Sertoli cells in the transitional zone are morphologically
distinct having long string-like cell bodies that extend distally
into the rete testis, structurally giving the zone a valve
appearance histologically (98). At least a sub-population of
these transitional zone Sertoli cells has been documented by
multiple labs to be proliferatively competent (99–103).
Specifically, because some transitional zone Sertoli cells do not
express the maturation markers p27, GATA4 and AR (101). AR
is not just a marker for Sertoli cell maturation and proliferative
cessation (104, 105). Loss of AR has been shown to inhibit Sertoli
cell maturation (106). In men and rodents, germ cells that reside
in this region are exclusively spermatogonia that seem to be
predominantly undifferentiating spermatogonia (88, 92, 99, 107).
Collectively the transitional zone represents a unique Sertoli-
germ cell niche within the testis.

During their ablation experiments, Imura-Kishi et al. 2021,
identified transitional zone Sertoli cell Cyp26a1 expression that is
at least partially responsible for blocking RA signaling to the
spermatogonia in the transitional zone. Due to the proximity to
the rete testis, the authors also showed retrograde rete derived
FGF signaling may also competitively inhibit RA signal in the
transitional zone (88). A separate recent report defined two sub-
populations of transitional zone Sertoli cells that were KRT8+,
DMRT1- or KRT8+,DMRT1+ (108). DMRT1 is essential in
differentiation of Sertoli cells into a non-proliferative state
(109). These studies elucidated the molecular uniqueness of the
transitional zone niche, but there is still much we do not
understand about cell identity and function in the transitional
zone. Given the recent reports on exosomes, one cannot help but
wonder if there is also a unique population of transitional zone
Sertoli cell extracellular vesicles that are part of maintaining
this niche.

DISCUSSION
Ablation and transplantation are done via injection through the
rete testis (110). Even when done by the most skilled pair of
hands, this represents a traumatic event to the surrounding
tissue. The plasticity of the Sertoli cell population in the
transitional zone and the robustness of this epithelium is a
fortunate coincidence for this method, but also represents an
intriguing source for discoveries in reversing Sertoli cell
Frontiers in Endocrinology | www.frontiersin.org 5
dysfunction and repopulating a Sertoli cell deficient testis.
Sertoli cells in human testes partially resume proliferation after
gonadotropin suppression with coincident reduction of AR
(111). Continued research into maintenance and control of
proliferative transitional zone Sertoli cells in conjunction with
Sertoli cell transplantation has the potential to unlock new
therapeutics for treatment of Sertoli cell based male infertility,
and reversing the reproductive harm done by gonadotoxic
cancer treatment.
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