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Simple Summary: In in vitro co-cultures of CLL cells and nurse-like cells (NLC), protection against
apoptosis is only provided by M2-like NLC, and not M1-like NLC. In this study, we propose that
fine-tuning of NLC polarization (and therefore survival of leukemic cells) is dictated by a balance
between IL-10 and TNF.

Abstract: Tumor-associated macrophages (TAMs) in chronic lymphocytic leukemia (CLL) are also
called nurse-like cells (NLC), and confer survival signals through the release of soluble factors and
cellular contacts. While in most patient samples the presence of NLC in co-cultures guarantees high
viability of leukemic cells in vitro, in some cases this protective effect is absent. These macrophages
are characterized by an “M1-like phenotype”. We show here that their reprogramming towards
an M2-like phenotype (tumor-supportive) with IL-10 leads to an increase in leukemic cell survival.
Inflammatory cytokines, such as TNF, are also able to depolarize M2-type protective NLC (decreasing
CLL cell viability), an effect which is countered by IL-10 or blocking antibodies. Interestingly, both
IL-10 and TNF are implied in the pathophysiology of CLL and their elevated level is associated with
bad prognosis. We propose that the molecular balance between these two cytokines in CLL niches
plays an important role in the maintenance of the protective phenotype of NLCs, and therefore in the
survival of CLL cells.

Keywords: Nurse-like cells; polarization; survival; CLL; IL-10; TNF

1. Introduction

Nurse-like cells (NLC) are recognized as tumor-associated macrophages (TAMs) found
in the lymphoid organs of chronic lymphocytic leukemia (CLL) patients [1]. This disease
is the most common B-cell malignancy in the Western world and is characterized by an
accumulation of monoclonal CD5+ and mature-appearing B cells in lymphoid tissues and
peripheral blood [2]. Numerous studies have shown that CLL cells are especially dependent
on their specific tumor microenvironment (TME) and, when cultured in vitro, prone to
spontaneous apoptosis. TME of CLL forms a complex medium made up of the extracellular
matrix, chemokines, cytokines, and cells including NLC; and has been widely shown to
be critical for cancer cell survival, chemoresistance, homing, and proliferation [3–7]. NLC
expressing CD68, CD163, and CD206 are found in all tumoral niches [8–10]. They form
a survival support for CLL cells, mediated by cell contacts involving different surface
molecules such as LFA-3 or galectin-1 [7,11,12] and, controversially, CD31 [13–15]. More-
over, NLC produce pro-survival soluble factors, such as: BAFF, APRIL, SDF-1 (CXCL12), or
BDNF [16,17], and can also stimulate the release of CCL3 and CCL4 by leukemic cells to
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further strengthen TME [18]. It has been shown that soluble molecules, such as HMGB1 or
CSF-1, were involved in NLC differentiation from blood monocytes, [8,19], but that cell con-
tacts between monocytes and CLL cells are also essential [1,10]. However, TAMs, like other
macrophages, are highly plastic and readily respond to signals from the microenvironment
by fine-tuning their polarization status. Thus, their phenotype will depend on the balance
between various pro-M1 factors, such as TNF, IFN-γ, or pro-M2 factors including IL-4,
IL-13, or IL-10 [20]. NLC were clearly defined to be closer to the M2 end of the spectrum
regarding their phenotype and their pro-survival properties [21] (for review). Unexpectedly,
both TNF and IL-10 are implicated in the pathophysiology of CLL, levels of which have
been correlated with an adverse prognosis in vivo [22–24]. Indeed, TNF has been listed as
an important factor for leukemic proliferation and survival [22,25]. This is not in agreement
with the fact that TNF favours the M1 macrophage phenotype, despite the current view
of NLC being M2-polarized in the TME. On the other hand, IL-10 thwarts anti-tumoral
immune responses, inhibits pro-inflammatory cytokines like TNF, and increases the level
of pro-survival molecules such as ICAM-1 on the surface of CLL cells [26–28].

So far, no study has investigated the simultaneous influence of TNF and IL-10 on
NLC-mediated protection of CLL cells. We propose here that IL-10 counterbalances the
pro-M1 effect of TNF on NLC, thus preserving their pro-niche capacity. We believe that
these experiments are useful to understand the impact of TNF and IL-10 on pro-tumoral
phenotypes of NLC.

2. Materials and Methods
2.1. Patient’s Samples

Peripheral blood samples from CLL Patients were obtained from the Hematology
Department with informed consent and referenced in the INSERM cell bank. According
to French law, the INSERM cell bank has been registered with the Ministry of Higher
Education and Research (DC-2013-1903) after being approved by an ethics committee
(Comité de Protection des Personnes Sud-Ouest et Outremer II). Clinical and Biological
annotations of the samples have been reported to the Comité National Informatique et
Liberté (the Data Processing and Liberties National Comittee). Blood samples were collected
from previously untreated patients. PBMC from CLL patients’ blood were isolated by
density-gradient centrifugation on Ficoll-PaqueTM PLUS (GE Healthcare, Sweden). For all
experiments except co-culture, fresh PBMC were used. The remaining cells were frozen in
Cryostor CM10 (STEMCELL Technologies, France) and stored in liquid nitrogen.

2.2. CLL Cells Isolation

CLL cells were isolated from fresh or frozen PBMC using a negative selection kit—
EasySep™ Human B Cell Enrichment Kit II Without CD43 Depletion (STEMcell, Saint
Égrève, France), according to the manufacturer’s instructions. Purity and viability of the
cells after isolation were measured by flow cytometry following staining with CD5/CD19
antibodies and Annexin-V/7-AAD, respectively. For each experiment both values exceeded
95%.

2.3. Cell Cultures

The whole PBMC and isolated CLL cells cultures were cultured in a complete medium:
RPMI 1640 with GlutaMAX (Gibco, France) supplemented with 10% of FBS (Life Technolo-
gies, France) and 100 µg/mL of penicillin/streptomycin (Sigma-Aldrich, France). Cells
were plated at high density (10 × 106 cell/mL) in tissue culture treated plates (Corning,
USA), and maintained at 37 ◦C in a humidified atmosphere with 5% CO2. In experiments
to evaluate the NLC phenotype, cells were cultured in a 4 mL/well of 6-well plates, and to
evaluate CLL cells viability, cells were cultured in a 200 µL/well of a 96-well plate or in a
400 µL/well of a 48-well plate in the case of fluorescence microscopy imaging.
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2.4. Cytokine Treatment

In order to evaluate the effect of cytokines on the NLC phenotype and CLL cells
survival, cells were treated at the indicated time points with 10 ng/mL of human TNF or
50 ng/mL of IL-10 (Miltenyi Biotec, France).

2.4.1. Blocking Antibodies

Blocking antibodies against human TNF or IL-10, and relevant isotype controls were
purchased from BD Pharmingen (France). To evaluate the effect of TNF or IL-10 depletion
on CLL cells viability and NLC phenotype, PBMC were treated at day zero with a single
dose of antibodies alone or in combination at 10 µg/mL, with or without the addition of
10 ng/mL of TNF. The effect of blocking antibodies on CLL cells viability or NLC phenotype
was measured on day 12 by flow cytometry.

2.4.2. Co-Culture Experiments

Co-culture experiments were used to imitate CLL cells contact with resident NLC after
re-entering the lymph node.

NLC were generated as described above. After 12 to 14 days of culture non-adherent
PBMC were separated from adherent NLC by gentle pipetting and washed twice with
PBS at room temperature. Subsequently, NLC were co-cultured with purified CLL cells at
10 × 106 cells/mL in 200 µL of complete medium, supplemented with TNF or IL-10. To
access basal survival of cancer cells, CLL cells alone were cultured in parallel. CLL cells
were co-cultured with NLC from the same (autologous) or different (heterologous) patient.
After five days of co-culture, CLL cells viability was measured by flow cytometry using
Annexin-V/7-AAD staining.

2.5. Flow Cytometry Analysis

Antibodies against CD5-PC7, CD19-BV421, CD14-PC7, CD16-PE, CD64-PE, CD71-
APC-Cy7, CD86-BV421, CD163-FITC, CD169-APC, CD206-BV421, CD209-FITC, and rel-
evant isotype controls were purchased from Sony Biotechnology Europe. 7-AAD and
Annexin-V-FITC viability kit were purchased from Miltenyi Biotec, France. Data were
acquired on an LSRII flow cytometer (BD Biosciences, France). The obtained results were
further analyzed by Flow Logic 700.2A (Inivai Technologies, Australia).

2.5.1. CLL Cells Analysis

On day seven or 12 of culture, floating cells were separated by gentle pipetting and
incubated with Human BD Fc Block™ (2.5 µg/mL) in flow cytometry buffer (2% FBS in
PBS) for 15 min at 4 ◦C, followed by staining with 1 µg/mL of CD5 and CD19 antibodies
for 20 min at 4 ◦C. After washing, cells were stained with Annexin-V-FITC according
to manufacturer protocol. Following the Annexin-V staining, cells were re-suspended
in Annexin-V buffer, containing 7-AAD (0.8 µg/mL) and immediately analyzed by flow
cytometry.

2.5.2. NLC Analysis

After 12 or 14 days of CLL PBMC culture, floating cells were harvested and NLC were
washed twice with PBS and incubated with 1 mL of Accutase (Biolegend, France) for 20 min
in 37 ◦C. Subsequently, 0.5 mL of FBS was added and cells were further detached with
gentle scrapping (Sarstedt, USA). Both floating and adherent cells were further combined,
washed in PBS, re-suspended in flow cytometry buffer containing 2.5 µg/mL of Human
BD Fc Block™ (BD Biosciences, France) and incubated for 15 min at 4 ◦C. Subsequently,
cells were stained with antibodies at saturating concentrations, for 20 min at 4 ◦C. After
washing, cells were re-suspended in PBS, containing 7-AAD (0.8 µg/mL) and immediately
analyzed by flow cytometry.
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2.6. Fluorescence Microscopy Imaging

PBMC for fluorescence microscopy analysis were plated in 48-well plates in 400 µL
of the complete medium at 10 × 106 cells/mL to allow maturation of NLC. Cytokine
treatments and removal of the floating PBMC were cultured according to the co-culture
paragraph. Additionally, NLC and isolated CLL cells were stained with specific fluorescent
dyes for subsequent visualization of contact between CLL cells and NLC or measurements
of phagocytosis during the culture.

2.6.1. Stainings

Visualization of contact between CLL cells and NLC. After removal of floating cells, NLC
were stained with mitochondrial MitoView633 (Biotium, USA) or Cell MASK Deep Red
plasma membrane dye (Thermo Fisher Scientific, France). Purified CLL cells were stained
with cytoplasmic CellTracker Orange CMTMR (Sigma-Aldrich, USA) or CellTrace™ CFSE
Cell Proliferation Kit (Thermo Fisher Scientific, France) dye according to the manufacturer’s
instructions.

Phagocytosis assay. During in vitro CLL culture, NLC can phagocyte dying CLL cells
in a process called efferocytosis. To evaluate the phagocytosis capabilities of NLC after
cytokine treatment, purified CLL cells were stained with pHrodo dye (Thermo Fisher
Scientific, USA). The fluorescence of pHrodo is dependent on pH and increases significantly
with acidification of environment (such as in the case of a phagocytosis event). For the
pHrodo staining, each 5 × 106 of purified CLL cells were diluted in 500 µL of PBS and mixed
with 500 µL of staining buffer (0.1 M of sodium bicarbonate, pH 8.5) containing freshly
diluted pHrodo to the final concentration of 20 µg/mL. Cells were incubated in a multiwells
plate for 2 h at 37 ◦C and 5% CO2. Subsequently, cells were collected and washed twice
with a cold complete medium. Next, cells aggregates were removed by passing through a
40 µm nylon filter (Miltenyi Biotec, France), counted with a haemocytometer (Marienfeld,
Germany), and plated at 2 × 105 cells/mL of complete medium containing 1 nM of Hoechst
33342 (Life Technologies, USA) with pre-stained NLC.

2.6.2. Image Acquisition

Following the staining, the plates were mounted in Operetta CLS High-Content Anal-
ysis System (PerkinElmer, France) equipped with an automated spinning disk fluorescence
confocal microscope and analyzed with a 20× objective. Cells were maintained at 37 ◦C
and at 5% of CO2. Cells morphology and distribution were visualized using bright field
(BF) imaging. Depending on the staining: violet, green, orange or red channels were used
to visualize cell nuclei, mitochondria, cytoplasm or plasma membrane of the cells. For each
well, multiple fields were analysed and images were acquired every 15 min for at least 3 h.

2.6.3. Image Analysis

Calculation of changes in pHrodo intensities within NLC were evaluated by Columbus
software (PerkinElmer, France). Briefly, NLC were segmented based on the size, nuclei
detection, and plasma membrane staining. The pHrodo intensity values within each NLC
cell region were extracted and changes in the pHrodo signal intensities were calculated by
subtracting fluorescence values at the first time point from the fluorescence values at the
last time point (3 h).

2.7. Statistical Analysis

The Mann–Whitney U test was used for comparison of viability of CLL cells from
different cultures (Figure 1B) or MFI ratios of surface markers on NLC (Figure 1E). Paired
t-test (Figure 2C,E and Figure 3C) or Wilcoxon test (Figure 3E) were used to determine the
differences in viability of CLL cells or MFI ratio in phagocytosis assays. One-way ANOVA
with Geisser–Greenhouse correction (Figures 3F and 4B,C,E,F) was used to compare the
results after various treatments.
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Figure 1. Non protective NLC for CLL cells harbour an M1-like phenotype. (A,B). Flow cytometry
analysis of the percentage of viability (Annexin V/7-AAD negative cells) of CLL cells from cultures
of PBMC from CLL patients after 14 days. (One representative experiment (A) and data for PBMC
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from 35 CLL patients separated in two groups, one with high CLL cells viability and one with low CLL
cells viability (B)). (C–E) Surface markers expressed by NLC analysed by flow cytometry at 14 days
of cultures of PBMC from CLL patients with low (red) or high (green) in vitro CLL cells viability,
comparing to the unstained (US: white) and the isotypic (IC: blue) controls (D) one representative
experiment; (E) compilation of MFI ratios (marker/isotypic control) of five donors. (F) Fluorescence
imaging of co-cultures of NLC (red staining) and CLL cells (green staining), at 1 min and 120 min, for
patients with high (left) and low (right) in vitro viability of CLL cells. * indicates p < 0.05.

A

UT
TNFα

20

40

60

80

100

TNF at day 6 only

B
-C

L
L

 c
el

ls
 v

ia
b

ili
ty

 [
%

]

LAB281119

MOR130321

CAS090421

VIC230421

LIR050621

RAY310521

ROD310521

VIC_thawed

DEL070621

ROB190821
UT

TNFα

20

40

60

80

100

TNF at day 6 only

B
-C

L
L

 c
el

ls
 v

ia
b

ili
ty

 [
%

]

LAB281119

MOR130321

CAS090421

VIC230421

LIR050621

RAY310521

ROD310521

VIC_thawed

DEL070621

ROB190821
UT

TNFα

20

40

60

80

100

TNF at day 6 only

B
-C

L
L

 c
el

ls
 v

ia
b

ili
ty

 [
%

]

LAB281119

MOR130321

CAS090421

VIC230421

LIR050621

RAY310521

ROD310521

VIC_thawed

DEL070621

ROB190821

CB

UT IL-10
Low CLL cells viability culture

IL-10

7
-A

A
D

High CLL cells viability culture
UT

AnnexinV AnnexinV

AnnexinV AnnexinV

1.4%1.2%

1.5%

CD206

CD64

CD169

CD71

CD209

CD204 CD16

CD14CD163

CD86

US

IC

UT

IL-10

US

IC

UT

IL-10

D

20

40

60

80

100

UT IL-10

C
LL

 c
el

ls
 v

ia
b

ili
ty

 [
%

]

High CLL cells 
viability culture

20

40

60

80

100

UT IL-10

C
LL

 c
el

ls
 v

ia
b

ili
ty

 [
%

]

✱

Low CLL cells 
viability culture

4.7%1.7%

7.1%

36.8%0.8%

32.4%

2.0%1.4%

3.2%

7
-A

A
D

7
-A

A
D

7
-A

A
D

E

1

10

100

1000

UT IL-10

M
FI

✱
merge Hoechst CellMask pHrodo

50um 50um

Figure 2. IL-10 rescues viability of CLL cells from patients with low protective NLC. (A) Surface
markers expressed by NLC analysed by flow cytometry at 14 days of cultures of PBMC from CLL
patient with low in vitro CLL cells viability, untreated (UT: red) or treated with IL-10 (grey), comparing
to the unstained (US: white) and the isotypic (IC: blue) controls. Representative histograms from five
independent experiments. (B,C) Percentage of the CLL cells viability at 14 days of culture of PBMC
from CLL patient with low or high in vitro CLL cells viability untreated (UT) or treated with IL-10
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(B) one representative experiment; (C) eight and five independent experiments for high viability
and low viability cultures respectively). (D,E) Phagocytosis of CLL cells (blue dots) by NLC (red)
visualized (D) upper: untreated; lower: IL-10 treated and quantified (E) thanks to the green pHrodo
fluorescence. * indicates p < 0.05.
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Figure 3. TNF depolarizes protective NLC, leading to a decrease of CLL cells viability. (A) Surface
markers expressed by NLC analysed by flow cytometry at 14 days of CLL’s PBMC cultures incubated
or not (UT: green) with TNF at day zero (orange) or at day six (yellow), compared to the unstained (US:
white) and the isotypic (IC: blue) controls. Representative histograms from eight independent experi-
ments. (B,C) Phagocytosis of CLL cells (blue dots) by NLC (red) is visualized. (B) upper: untreated;
lower: TNF treated and quantified (C) thanks to the green pHrodo fluorescence. (D,E) Percentage
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of CLL cells viability at 14 days of culture of CLL PBMC-incubated or not (UT) with TNF at day zero
or at day six. (D) one representative experiment. (E) A total of 19 independent experiments for TNF
treatment at day zero and 10 independent experiments at day six. (F) Co-culture experiments: percent-
age of the CLL cells viability cultivated alone (white) or co-cultivated with autologous control NLC
(untreated, green) or depolarized NLC (previously treated with TNF; orange). * indicates p < 0.05.
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Figure 4. IL-10 repolarizes TNF-depolarized NLC which induce the increase of CLL cells viability.
(A,B) Flow cytometry analysis of the viability (Annexin V/7-AAD negative cells) of CLL cells from
cultures of CLL’s PBMC incubated or not (UT) with TNF at day zero following by treatment or
not with IL-10 at day five. (A) one representative experiment; (B) five independent experiments.
(C) Percentage of the CLL cells viability alone (white) or in a CLL’s PBMC culture without treatment
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(green) or in co-culture with autologous depolarized NLC previously treated with TNF (orange) or
with autologous repolarized NLC (treated with TNF at day zero then with IL-10 at day five; purple)
(14 independent experiments). (D) Surface markers expressed by NLC analysed by flow cytometry
at 14 days of CLL’s PBMC cultures incubated or not (low viability, UT: red) with TNF at day zero
(orange) or with TNF plus an IgG control (blue), or with TNF plus an anti-TNF antibody (green),
compared to the isotypic control (IC: dark blue). (E,F) Percentage of the CLL cells viability at day 14
in CLL’s PBMC cultures untreated (E) or treated with TNF at day zero (F) without antibodies (red) or
in the presence of IgG negative control (blue) or anti-IL-10 antibody (grey) or anti-TNF antibody (light
green) or the combo anti-IL-10 antibody plus anti-TNF antibody (pale yellow) (nine independent
experiments). * indicates p < 0.05.

Prior to statistical analyses, the flow cytometry data (presented on Figure 1E), was
first transformed into an MFI ratio. Results of the bar plots are shown as mean ± SD. The
lines in the middle of the boxes for box and whiskers plots represent median values. All
statistical analyses were performed using Graph Pad Prism 9.1.2. The p-values below 0.05
were considered statistically significant.

3. Results
3.1. CLL Cells Viability Depends on M2-like NLCs In Vitro

The culture of CLL cells in the presence of NLC typically allows the cancer cells
to maintain high viability in vitro. To our surprise, in some of the CLL PBMC cultures,
we observed poor survival of CLL cells, despite the presence of NLC. (Figure 1A,B). In
order to elucidate this phenomenon, we decided to analyse the phenotype of NLC by
flow cytometry, especially as we didn’t observe clear connections between mutational
status and lymphocytosis of the patients, and the viability of CLL cells in vitro. To do
that, we cultured CLL PBMC for 14 days to allow for the outgrowth of NLC, thanks to
contact between monocytes and cancer cells. Then, we investigated the phenotype of
NLC by flow cytometry. Classically, NLC are characterized by M2-like phenotype with
a high expression of CD163 and CD206 (Figure 1C and Supplementary Figure S1). We
further enriched the analysis with several myeloid markers to better distinguish potential
differences between NLC from PBMC with low CLL cells in vitro viability (noted: low
viability) and from PBMC with high CLL cells in vitro viability (noted: high viability), In
comparison to isotypic controls, expression of CD163, CD206, CD169, CD209, and CD14
was higher for NLC from samples with high viability (Figure 1D: green) compared to
expression by NLC from samples with low viability (Figure 1D: red). Moreover, expression
of CD86, CD64, CD71, and in a smaller proportion of CD204, was higher for NLC from
samples with low viability (Figure 1D: red) compared to expression by NLC from samples
with high viability (Figure 1D: green). This was observed with at least six different donors
from each group (Figure 1E). To confirm that the NLC phenotype analyzed from these
two kinds of samples translates into their functionality, we tested the propensity of NLC
to attract CLL cells in a protective manner. After 14 days of high or low viability PBMC
cultures, floating cells were removed and the remaining NLC were stained with a plasma
membrane fluorescent dye. Subsequently, CLL cells were isolated from the frozen PBMC
sample, stained with cytoplasmic fluorescent dyes and mixed with NLC. Cells were then
visualized by live video-microscopy using an Operetta system. The acquired pictures
clearly show a strong grouping of CLL cells around NLC from samples with high viability
already after one minute which progresses further until 120 min into the experiment, while
NLC from samples with low viability did not induce this phenomenon (Figure 1F and
Supplementary Figure S2 for video).

These results prove that NLC from high viability CLL cultures not only display an
M2-like phenotype but are also able to attract and facilitate contact with cancer cells, which
has been previously shown as the hallmark of their protective functions. On the contrary,
NLC from low viability CLL cells cultures are characterized by an M1-like phenotype, with
no capacity to attract CLL cells.
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3.2. IL-10 Rescues the Viability of CLL Cells in Patient Samples without Protective NLC

IL-10 is known to be an immunosuppressive agent, favouring the M2 phenotype of
macrophages. We wanted to know whether this cytokine, naturally produced by CLL
cells, could be involved in the protective effect of NLC for CLL cells. PBMC from patients
with low CLL cells in vitro viability were cultivated with or without IL-10 for 14 days.
Subsequently, the phenotype of NLC was analysed by flow cytometry. Treatment with
IL-10 induced an increase of CD163, CD206, CD169, CD14 and weakly of CD209, and a
decrease of CD64 and CD71 (Figure 2A). This was in agreement with a switch of the NLC
phenotype towards an M2-like phenotype close to that of NLC generated in culture with
high CLL cells viability. To go further, the effect of IL-10 was also evaluated on CLL cells
viability. IL-10 was shown as having no effect on CLL cells alone (Supplementary Figure S3)
or on the viability of CLL cells from samples known to have a high viability. However, IL-10
significantly increased the CLL cells viability in samples with low viability (Figure 2B,C).
We then compared phagocytosis capacities of NLC from low viability cultures and NLC
from cultures treated with IL-10. Results showed that NLC from IL-10-treated cultures
displayed a significantly higher propensity to phagocyte dying CLL cells (efferocytosis)
compared to untreated NLC (Figure 2D,E and Supplementary Figure S4 for video).

Thus, the addition of IL-10 in the culture induces an M2-like phenotype of NLC, which
in turn leads to increased survival of CLL cells viability.

3.3. TNF-Induced Depolarization Abrogates Pro-Survival Functionality of NLC

TNF is known as a strong pro-inflammatory cytokine polarizing macrophages towards
an M1-like state, but has also been linked to an increase of CLL cells viability [22,25].
Thus, we asked the question of whether the treatment of CLL’s PBMC cultures with TNF
could induce a modification of the NLC phenotype, leading in turn to a decrease in CLL
cells viability. This could potentially mimic the phenotype of low viability CLL cultures
characterized previously. PBMC from blood samples of CLL patients were cultivated for
14 days in the presence of TNF added either at day zero or at day six of the culture for
each sample. NLC phenotype and CLL cells viability were analysed by flow cytometry,
while the phagocytic properties of NLC were evaluated by fluorescent microscopy. As
shown in Figure 3A, TNF added at the beginning of the culture induced a strong decrease
of the expression of CD163, CD206, CD169, CD14, CD16, and CD204; and an increase of
CD86, CD64, and CD71. The addition of TNF at day six induced the analogous, although
less pronounced, changes for the previously mentioned surface markers (Figure 3A). The
depolarization of NLC with other M1 agents, such as IFN-γ and LPS, also changed the final
polarization of NLC, but with a distinct pattern and effect on the viability of CLL cells. On
the other hand, treatment with IL-10 led to a slight enforcement of the M2 phenotype of
NLC (Supplementary Figure S5). We then compared phagocytosis capacity of NLC from
high viability cultures and NLC from cultures treated with TNF. Results showed that NLC
from untreated cultures displayed a significantly higher propensity to phagocyte dying
CLL cells (efferocytosis) compared to NLC treated with TNF (Figure 3B,C). Analysis of the
percentage of the viability of CLL cells was done by staining with 7-AAD and Annexin V
(Figure 3D). Treatment of the cultures with TNF at day zero or day six induced a significant
decrease of the CLL cells viability compared to cultures without treatment (Figure 3E). No
direct toxic effect of TNF was observed on CLL cells viability (Supplementary Figure S3).
To be sure that the decrease of CLL cells viability was strongly due to the depolarisation of
NLC, we performed co-culture experiments. PBMC from the same patients were cultivated
for 12 to 14 days in the presence or absence of TNF. Subsequently, floating cells were
removed and NLC were further co-cultured with autologous CLL cells isolated from frozen
PBMC vials. The viability of isolated CLL cells was then analysed after five days of co-
culture. As expected, the viability of CLL cells cultured alone was significantly decreased
compared to the condition with M2-like NLCs. Interestingly, the CLL cells viability from
the cultures treated with TNF was comparable to that of CLL cells cultured alone, signifying
the lack of protective effect of NLC on leukemic cells (Figure 3F).
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TNF is therefore able to depolarize protective M2-like NLC into non-protective M1-like
NLC.

3.4. IL-10 Repolarizes TNF-Depolarized NLC to Recover the Protective Effect on CLL Cells

We then wondered whether IL-10 could induce the repolarization of TNF-depolarized
NLC, which in turn, would result in an increase of CLL cells viability. PBMC from CLL
patients were therefore cultivated in the presence of TNF at day zero, then IL-10 was added
or not at day five. The CLL cells viability analysis by flow cytometry showed, as expected,
a decrease in the viability of cultures treated with TNF, which could be partially countered
by co-treatment with IL-10 at day five (Figure 4A,B). At the same time, we showed that
low viability CLL cells cultures (Figure 4B: black, purple and green samples) could also
be rescued by the addition of IL-10 at day five. Going further, we performed the same
experiment of co-culture of freshly isolated CLL cells and TNF-depolarized NLC (TNF at
day zero) or IL-10-repolarized NLC (TNF at day zero then IL-10 at day five). As predicted,
the presence of protective M2-like NLC in the culture increased the viability of CLL cells,
compared to the monocultures of cancer cells. At the same time, the co-culture with TNF-
depolarized NLC showed a decrease of cancer cells viability, comparable to the culture of
CLL cells alone (Figure 4C: orange block). However, the percentage of CLL cells viability
was increased when CLL cells were co-cultivated with IL-10-repolarized NLC (Figure 4C:
purple block). To reinforce the message of relevance of IL-10 on the protective function
of NLC and thus CLL cells survival, we used blocking antibodies against IL-10 and TNF.
First, the phenotype of M1-like NLC cultivated in the presence of anti-TNF or IgG control
was analysed by flow cytometry. Expression of CD163, CD14, CD206, CD209, and CD169
which were further decreased by the presence of TNF in the culture, were restored in the
presence of anti-TNF compared to the cultures with the IgG control, while expression of
CD71 was slightly decreased (Figure 4D). The expression of CD16 and CD86 were similar
in the conditions with anti-TNF or IgG control. The percentage of CLL cells viability in
the presence of blocking antibodies was also evaluated, revealing that blocking IL-10 in
the culture induced a decrease of the viability while blocking TNF increased it slightly
(Figure 4E). These effects were even more pronounced if cells were treated with TNF at the
beginning of the culture, when the addition of the anti-TNF blocking antibody led to an
increase of the viability percentage, while blocking IL-10 led to a small decrease depending
on the sample (Figure 4F).

4. Discussion

CLL cells have been shown to be resistant to in vitro apoptosis, in the majority of
cases, if cultivated in the presence of NLC [29]. However, in some cases CLL cells display a
decrease in survival, even in the presence of NLC. We demonstrated here that NLC obtained
from PBMC of these patients can be considered as non-protective for CLL cells, displaying
an M1-like phenotype, with a low capacity to attract leukemic cells, and are unable to
perform efferocytosis, i.e., phagocytosis of dying cells. However, addition of IL-10 to the
cultures of PBMC from these patients led to a significant increase in CLL cells viability.
The role of IL-10 in mediating leukemic survival is still controversial, implying a possible
involvement in CLL cells maintenance or cell death. IL-10 was involved as provoking
apoptosis by decreasing Bcl-2 protein levels or activating STAT1 protein [30,31]. On the
contrary, IL-10 was given as a pro-survival cytokine for CLL cells acting as an autocrine
growth factor and mediating pro-survival signals through the activation of STAT3 [32–34].
However, nobody asked the question of a possible indirect effect of IL-10 on CLL cells,
notably via the microenvironment such as NLC.

Given that IL-10 is a pro-M2 cytokine for myeloid cells and that protective NLC display
an M2-like phenotype, this cytokine could maintain and/or polarize NLC towards an M2
protective state to further support leukemic survival. To answer this question, we first
generated a model which could mimic cultures with low CLL cells viability. We showed
that the addition of TNF in cultures of PBMC from patients with high in vitro CLL cells
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viability led to a preclusion of the M2 polarization of blood monocytes into NLC when
added at day zero, and to a depolarization of maturating NLC when added at day six of the
culture. Even though TNF was shown in some studies as increasing CLL cells viability and
correlated with a bad prognosis in patients [22,25], we showed here that it is also able to
block or depolarize the M2 protective phenotype of NLC leading to a decrease in leukemic
viability (Figure 3). M2 markers such as CD206, CD204, CD169, CD163, and CD16 were
abrogated with TNF at day zero and highly decreased with the addition of TNF at day
six of the culture with an increase of M1 markers, such as CD86, CD64 and CD71. At
the same time, TNF treatment led to a significant decrease of the efferocytosis capacity
of NLC. To further exclude the possibility that the effect of TNF might be mediated by
other cells present in CLL PBMC culture, we performed experiments with mature NLC
co-cultured with freshly isolated CLL cells, in an autologous manner. Co-cultures with
TNF- treated NLC led to a decrease in the survival of CLL cells, proving that depolarization
of NLC decreases their protective effect. Interestingly, IL-10 was shown here to restore the
survival of CLL cells from low viability PBMC cultures by inducing M2 polarization of NLC,
and also to rescue CLL cells in PBMC cultures treated with TNF. Furthermore, co-culture
experiments with freshly isolated CLL cells and TNF depolarized NLC further repolarized
by IL-10 displayed the restoration of protective NLC capacities. Thus, we demonstrated
here for the first time that non-protective NLC with an M1-like phenotype can be reoriented
towards an M2 protective phenotype thanks to IL-10. This was in agreement with the
indirect action of IL-10 on the CLL cells viability via NLC.

Moreover, blocking of TNF in CLL’s PBMC cultures increased CLL cells viability, in
particular for samples from patients with low in vitro viability. Interestingly, blocking of
IL-10 in CLL’s PBMC cultures could decrease the CLL cells viability for samples previously
displaying high survival of CLL cells, and further decrease survival in initially low viability
cultures, especially upon additional treatment with TNF.

All these results, combined with multiple research listing TNF as an important factor
for CLL progression, suggest that the TNF and IL-10 interplay constitutes an important axis,
allowing both activation of CLL cells by TNF, while at the same time, IL-10 is preserving the
M2 protective polarization state of NLC. The M2 polarization of NLC shown by high CD163
staining in lymph nodes was indeed correlated with progressive disease [6]. IL-10 and
TNF produced by CLL cells and others in the in vitro culture of PBMC from CLL patients
may therefore have an impact on the NLC phenotype and CLL cells viability. IL-10 favours
the M2-like protective NLC state and counterbalances the M1-agent TNF, preserving the
pro-tumoral effect of NLC on leukemic cells.

Even if in vitro cultures of PBMC from CLL patients do not exactly reflect the CLL
microenvironment, it can be sufficiently representative to appreciate the interaction between
CLL cells and NLC. No work in the literature has reported concentrations of TNF or IL-
10 in lymph nodes. However, TNF was shown as produced by T cells, CLL cells and
macrophages in CLL patients [25]; and TNF released by CLL cells was proposed as one
of the reasons for dysfunctional hematopoiesis in CLL [35]. IL-10 was also shown to
be produced by CLL cells. Interestingly expression of this cytokine was shown to be
upregulated by CD5, which is present on the surface of leukemic cells [36]. Additionally,
CD5 expression is modulated, dependent on the life cycle of CLL cells. Its expression
is increased while CLL cells reside in lymph nodes and, after returning to peripheral
blood, CD5 level is gradually downregulated. It would further suggest, that CLL cells
express the most of IL-10 while in the lymph nodes, where this cytokine could not only
support proliferation of the CLL cells, but also preserve the pro-tumoral polarization state
of NLC [36]. In addition, high levels of TNF and IL-10 were measured in the serum of
high risk groups of CLL patients [23] with a median of 5.04 pg/mL for IL-10 compared to
zero for healthy donors [27,37,38] and 17 to 34 pg/mL for TNF, level for healthy donors
being at 5 pg/mL [39]. It is impossible to extrapolate this information to the lymph nodes
compartment but we could speculate that cells of TME are continuously producing and
using these cytokines. Levels of IL-10 and TNF in serum and/or in lymph nodes of patients
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could be therefore linked to the aggressiveness of the disease, and directly linked to NLC
polarization, which has a high impact on leukemic cells viability. The amount of these
cytokines and more precisely the proportion of IL-10 / TNF produced in the TME can be
responsible for the polarization of NLC on which CLL cells viability depends. Classical
therapies can also modulate the proportion of these cytokines. Indeed, treatment of patients
with ibrutinib enforces M2 phenotype of NLC with exacerbating M2 markers expression,
increasing their immunosuppressive profile [34]. Moreover, in vitro treatment of NLC
with ibrutinib induces the protection of CLL cells from drug-induced apoptosis partially
through the secretion of IL-10 [34]. This results in further support targeting of IL-10 to
potentially decrease pro-tumoral function of NLC and TME. Anti-IL-10 in combination with
classical therapies in CLL could be beneficial as shown in other diseases such as leukaemia
or melanoma [40,41]. In addition, all conventional drugs used in the treatment of CLL
could be applied in cultures of CLL cells in vitro to document the types of molecules /
cytokines that could be released that induce the depolarization of M2 protective NLC in
M1 non-protective NLC.

These results also enforce the possibility of targeting TNF that is associated with
disease progression [22,42]. Blocking of TNF could therefore lead to stabilization of the
disease, or at least to partial resolution of inflammation. This could be followed by anti-IL10
treatment, combined with targeting of the CLL microenvironment, particularly NLC, to
decrease the survival of remaining cancer cells.

5. Conclusions

In this study, we showed that NLC obtained from PBMC of patients with a low in vitro
viability of CLL cells can be considered as non-protective for CLL cells, displaying an M1-
like phenotype. We also demonstrated that these non-protective NLC or TNF-depolarized
NLC can be reoriented towards an M2 protective phenotype thanks to IL-10, confirming
the importance of IL-10 in the CLL progression.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14010016/s1, Figure S1: NLC display a phenotype close to M2 macrophages. Figure S2:
Video microscopy from a sample with high CLL cells viability. Figure S3: TNF and IL-10 have no
effect on the viability of isolated CLL cells. Figure S4: video microscopy with IL-10. Figure S5: TNF,
IFN-γ and LPS depolarize NLC toward a M1-like phenotype.
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