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Original Article

Targeting complement C5a to improve radiotherapy sensitivity in 
non-small cell lung cancer 
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Background: Tumor local and distant relapse recurrence after radiotherapy (RT) is one of the critical 
factors leading to poor prognosis. The effective antitumor effects of RT are dependent upon the participation 
of innate and adaptive components of the immune system. C5a/C5aR1 signaling can regulate antitumor 
immune effect in the tumor microenvironment (TME). Thus, exploring the changes and mechanism in 
the TME induced by RT-mediated complement activation may provide a novel perspective for reversing 
radioresistance.
Methods: First, fractionated radiation of 8 Gy ×3 fractions were targeted at Lewis lung carcinoma (LLC) 
tumor-bearing female mice to measure the infiltration of CD8+ T cell and analyze the RNA sequencing 
(RNA-seq) in RT-recruited CD8+ T cells. Second, tumor growth was measured in LLC tumor-bearing mice 
treated with RT either with or without C5aR1 inhibitor to clarify the antitumor effect of RT combined with 
C5aR1 inhibitor. Third, we detected the expression of C5a/C5aR1 and their signaling pathways on radiated 
tumor tissues. Furthermore, we investigated the expression of C5a in tumor cells at different time points 
after different doses of RT.
Results: In our system, RT induced the increased infiltration of CD8+ T cells and local activation of 
complement C5a/C5aR. Concurrent administration of RT and blocking of C5aR improved radiosensitivity 
and tumor-specific immune response, which was reflected by high C5aR expression in CD8+ T cells. The 
AKT/NF-κB pathway was found to be an important signaling pathway in C5a/C5aR axis mediation by RT.
Conclusions: RT promotes the release of C5a from tumor cells and leads to up-regulation of C5aR1 
expression via the AKT/NF-κB pathway. Inhibition of the combination of complement C5a and C5aR could 
improve RT sensitivity. Our work provides evidence that the combination of RT and C5aR blockade opens a 
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Introduction

Lung cancer represents a leading cause of cancer-
associated deaths globally, with high rates of morbidity and  
mortality (1). It is estimated that 2 million new cases of 
lung cancer are diagnosed annually with approximately 
1.76 million deaths globally (2). Radiotherapy (RT) is 
one of the most critical modalities for the treatment of all 
stages of lung cancer (3). Despite the significant progress in 
radiation technology, the overall prognosis of RT for lung 
cancer remains far from satisfactory (4). Tumor local and 
distant relapse after RT is one of the critical contributors to 
poor prognosis. Numerous studies have demonstrated that 
many cancer patients develop radioresistance in a period of 
treatment, which can be induced by intrinsic and extrinsic 
factors (5,6). The antitumor effects of RT are dependent upon 
the participation of innate and adaptive components of the 
immune system (7,8). RT can induce immunosuppression by 

depleting immunocompetent cells that are within irradiated 
volume and by upregulating the expression of programmed 
cell death ligand 1 (PD-L1) to generate resistance to 
the immune system (9,10). Radioresistance is associated 
with the modulation of immune responses (4). RT could 
destroy radiosensitive immune cells and keep radioresistant 
immune cells alive, thereby altering the proportion of 
immune cells in the tumor microenvironment (TME), thus 
contributing to immunosuppressive status (11). RT develops 
immunosuppressive effect to enhance the removal depletion 
of CD8+ T cells to induce radioresistance (10). Lymphocyte 
dysfunction can be related to the inferior prognosis and 
weaker anti-tumor immune response in patients receiving 
RT (12). In addition, RT can stimulate the recruitment of 
polymorphonuclear neutrophils (PMNs) to the TME and 
neutrophils form extracellular traps (NETs) to promote tumor 
metastasis, which is thought to induce radioresistance (13). 
The change of immune status in pro- and anti-tumor immune 
cells can also affect RT sensitivity (14). LncRNA KCNQ1OT1 
has been clarified as a therapeutic target to improve RT  
sensitivity (15). It is becoming increasingly clear that 
reversing tumor resistance to RT can dramatically 
improve the efficacy of tumor-targeting RT. However, the 
underlying molecular mechanisms of radioresistance have 
remained elusive and developing an effective strategy to 
overcome radioresistance has continued to be a significant 
challenge.

The complement system is a major constituent of 
innate immunity and bridge between innate and adaptive 
immunity, which takes part in immune defense, immune 
surveillance, and homeostasis (16,17). Complement can 
mainly be activated by 3 distinct pathways, namely, the 
lectin pathway (LP), the classical pathway (CP), and 
the alternative pathway (AP) (18). Mounting evidence 
suggests that complement activation in the TME of many 
types of cancers has been implicated in tumor growth, 
recurrence, and metastasis (16,19,20). As a complement 
activation product, C5a is closely connected with tumor 
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Highlight box

Key findings 
•	 RT was shown to promote the release of C5a from tumor cells 

and led to up-regulation of C5aR1 expression via the AKT/NF-
κB pathway. Inhibition of the combination of complement C5a and 
C5aR could improve RT sensitivity.  

What is known and what is new?  
•	 Recent studies have identified synergistic combinations of C5aR 

signal blockade with chemotherapy, checkpoint inhibitors and 
other antitumor therapy.

•	 We found that C5a produced by tumor cells could combine with 
C5aR1 to lead to the generation of radioresistance.

What is the implication, and what should change now? 
•	 Our work provides evidence that the combination of RT and C5aR 

blockade represents a new window of opportunity to promote an 
anti-tumor therapeutic effect in NSCLC. C5aR1 inhibitors might 
be effective sensitizers for RT in the clinic. Conclusions based 
on animal experiments needed to be validated by further clinical 
studies.
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progression, serving a regulatory role in the TME (21-23).  
C5aR1 (CD88) is the specific receptor of C5a, expressing 
on the surface of various cell membranes (24). C5a interacts 
with C5aR1 to promote M2 (pro-tumorigenic) polarization 
of tumor-associated macrophages (TAMs) and influence 
the recruitment of myeloid-derived suppressor cells 
(MDSCs) to stimulus exhaustion of CD8+ T cells (25,26). 
Thus, the depletion of complement might reprogram  
a n  i m m u n o s u p p r e s s i v e  T M E  t o  i m p e d e  t u m o r  
progress ion (27) .  In murine models ,  i t  has  been 
demonstrated that complement activated by chemotherapy 
and anti-programmed cell death protein 1 (PD-1)/PD-L1 
antibodies induces tumor-mediated immunosuppression in 
a C5a-dependent manner (26,28). However, little is known 
about the relationship between C5a/C5aR axis and RT.

RT may release negative regulatory factors to construct 
an immunosuppressive microenvironment. It has been 
shown that complement can be released by various 
immune cells (29). Both innate and adaptive immune 
components participate in the antitumor activity of RT (7). 
In cancer therapy, it appears necessary for avoiding tumor-
immune escape during the generation of CD8+ T cell  
cross-priming (30). RT has been understood to promote the 
positive regulatory factor high mobility group protein B1 
(HMGB-1) to promote anti-tumor immunity (31). However, 
it has remained unclear whether C5a, as a negative regulator 
that leads to inhibitory TME in tumors, is associated with 
RT resistance. It has been reported that combination RT 
with anti C1 treatment significantly prolonged survival in 
glioblastoma mouse models (32). Up to now, the role of 
the C5a/C5aR1 axis in cancer radioresistance and relevant 
regulatory mechanisms have not been investigated. In recent 
years, studies have investigated the release of complement 
from tumor cells, but little attention has been given to the 
correlation between complement release and RT. Thus, 
given the function of complement C5a in tumor progress, 
exploring the changes in the TME induced by RT-mediated 
complement activation may provide a novel opinion on the 
factors restricting antitumor effects of RT.

The main goal of this research was exploring the changes 
and mechanism in the TME induced by RT-mediated 
complement activation. It is anticipated that better 
understanding of such mechanisms may provide a novel 
perspective and multiple therapeutic targets for reversing 
radioresistance. We present this article in accordance with 
the ARRIVE reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-23-258/rc).

Methods

Mice

We purchased 6-week-age female C57BL/6J wild-type 
(WT) mice from Vital River Company (Beijing, China). All 
mice were housed under specific-pathogen-free conditions 
at the animal facility of The First Affiliated Hospital 
of Shandong First Medical University & Shandong 
Provincial Qianfoshan Hospital. All animal care and 
protocols were approved by the Institutional Animal Care 
and Use Committee of The First Affiliated Hospital of 
Shandong First Medical University & Shandong Provincial 
Qianfoshan Hospital (No. 2022-S303), in compliance with 
the Guide for the Care and Use of Laboratory Animals 
published by the US National Institutes of Health (NIH; 
Bethesda, MD, USA; publication No. 96-01). A protocol 
was prepared before the study without registration.

Cell culture

Lewis lung carcinoma (LLC) tumor cells (mouse lung 
cancer cells) were cultured in Dulbecco’s modified Eagle 
medium [DMEM; Biological Industries (BI), Kibbutz 
Beit Haemek, Israel] containing 10% heat-inactivated 
fetal bovine serum (FBS; BI, Israel) plus 1% penicillin and 
streptomycin (BI, Israel) at 37 ℃ with 5% CO2. The cells 
were routinely examined to be mycoplasma free. LLC cells 
were purchased from Boster Company (Pleasanton, CA, 
USA; catalog No. CX0056).

In vivo experiment models

To explore the antitumor effects of RT and blockade of 
C5aR signaling, 1×106 LLC cells were subcutaneously 
injected into the right hindlimb of experimental mouse. 
The animals were randomly entered into vivo experiments 
when the longest diameter of tumors reached 6–8 mm (n=4 
or 5 per group, randomly). On days 14, 16, and 18, local 
RT with a dose of 8 Gy was performed using a RS 2000 
pro Biological X-ray Irradiator (Rad Source Technologies, 
Buford, GA, USA). The total radiation dose was, thus, 
24 Gy. Mice were anesthetized with 3 μL/g 10% chloral 
hydrate prior to RT. For blockade of C5aR signaling, 
the inhibitor of C5aR (W-54011; MedChemExpress, 
Monmouth Junction, NJ, USA; catalog No. HY-16992A), 
which had been resuspended in dimethyl sulfoxide (DMSO) 
and then diluted in normal saline, was intraperitoneally 
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injected at 5.0 mg/kg/day on days 15, 17, 19, 21, and 
23 post tumor radiation. Blinded experiments were not 
used in this study. Tumor sizes were measured 3 times a 
week by digital caliper in length and width and the tumor 
volume was calculated using the formula V (mm3) = length 
× width2/2. Mice were assessed daily and were weighted 
twice a week to ensure good health. Mice that lost more 
than 20% of body weight and become moribund were 
euthanized. All mice were euthanized by injection of chloral 
hydrate and tumors and spleens were resected, weighed, and 
processed for RNA, proteins, flow cytometry, histology, and 
immunohistochemistry (IHC).

In vitro experiment models

LLC cells were grown overnight in 6-well culture plates 
(2×105 per well) and separately irradiated 0, 4, and 8 Gy 
using RS 2000pro Biological X-ray Irradiator (Rad 
Source). At 24 and 48 hours later, the supernatant was 
discarded, and the corresponding cells were collected for 
further quantitative real-time polymerase chain reaction  
(qRT-PCR).

qRT-PCR

Total messenger RNA (mRNA) was extracted from 
irradiation-treated cells, freshly pulverized tumor and 
spleen using FastPure Cell/Tissue Total RNA Isolation 
Kit V2 (Vazyme, Nanjing, China; catalog No. RC 112-
01). Then, we used HiScript III RT SuperMix for qPCR 
(+gDNA wiper) (Vazyme; catalog No. R323-01) to 
synthesize complementary DNA (cDNA) according to 
the manufacturer’s protocol. The RT-qPCR sequences 
of each gene primers were as follows: C5a, forward: 
5 ' -GGGAAGCTGCTGATGAGAAT-3' ,  rever se : 
5 ' - C T T T C A C C A G G T T G G C AT T G - 3 ' ;  C 5 a R , 
forward:  5 ' -GTGTCCCTGGCCTACATCAA-3' , 
reverse :  5 ' -AGGAGTCGTCCATGGAAACC-3' ; 
tumour necrosis  factor  a lpha (TNF-α ) ,  forward: 
5 ' -CATGCGTCCAGCTGACTAAA-3 ' ,  r ever se : 
5'-TCCCCTTCATCTTCCTCCTT-3'; interleukin-6 (IL-
6), forward: 5'-CCACTTCACAAGTCGGAGGCTTA-3', 
reverse: 5'-TGCAAGTGCATCATCGTTGTTC-3'; IL-
12, forward: 5'-GTGAACCTCACCTGTGACACGC-3', 
reverse: 5'-TGAATACTTCTCATAGTCCCTTTGG-3'; 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 
forward:  5 ' -GGTGCCTGTCGTTGTGTTC-3' , 
reverse: 5'-GCTCCTTCTGGTGCTGTTG-3'; β-actin, 

forward: 5'-GGCTGTATTCCCCTCCATCG-3', reverse: 
5'-CCAGTTGGTAACAATGCCATGT-3'. Relative gene 
expressions were normalized against β-actin and GAPDH 
and calculated by 2−ΔΔCt method (33).

Western blotting

Protein extraction from mouse tumor tissues were 
performed following standard protocols. The protein 
concentrations were estimated by the BCA Protein Assay 
Kit (Solarbio, Beijing, China; catalog No. PC0020) 
to ensure equal amounts of protein were subjected to 
immunoblotting. Samples were resolved on 10% sodium 
dodecyl sulfate (SDS) polyacrylamide gradient gel, 
transferred onto a polyvinylidene difluoride (PVDF) 
membrane (Solarbio) and then incubated with the 
primary and secondary antibodies. The following primary 
antibodies were used: anti-C5aR (Abcam, Cambridge, 
MA, USA; 1:500), anti-AKT (Proteintech, Rosemont, IL, 
USA; 1:1,000), p-AKT (Proteintech; 1:500), IκBα [Cell 
Signaling Technology, Danvers, MA, USA (CST); 1:1,000], 
p-IκBα (CST; 1:1,000), β-actin (Boster; 1:1,000). Finally, 
an enhanced chemiluminescence (ECL) reagent (Boster, 
catalog No. AR1173) was used to detect labeled protein 
bands. The bank densities were quantified by ImageJ 
software (version 1.62; NIH, USA).

Flow cytometry

Tumor tissues and spleens with or without RT were 
removed on day 3 after tumor radiation. Spleens were 
pulverized with a tissue homogenizer. Tumors were 
manually minced with scissors, digested with collagenase 
IV (1  mg/mL, Solarbio,  catalog No. C8160) and 
deoxyribonuclease (DNase) I (0.2 mg/mL, Solarbio, catalog 
No. D8071) at 37 ℃ for 30 minutes, then passed through 
70-μm cell nylon mesh to acquire single-cell suspensions. 
Single cells prepared as above were centrifuged at  
3,500 rpm for 5 minutes, followed by erythrocyte lysis 
with RBC lysis buffer (BioGems, Westlake Village, CA, 
USA) to react at room temperature for 15 minutes under 
strict exclusion of light. After centrifugation at 500 g for  
5 minutes, the supernatant was discarded and the cells were 
resuspended in sample diluent. Following that, lymphocytes 
were obtained by mouse visceral organ tissues lymphocyte 
separation solution kit (TBD, Beijing, China; catalog 
No. LTS1092P) for further analysis according to the 
manufacturer’s protocols.
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In order to detect C5aR expression and proportions of 
cytotoxic T lymphocytes (CTLs; CD8+) on day 3 after RT, 
cells were harvested and treated with phycoerythrin (PE) 
anti-mouse CD88 (C5aR) antibody (BioLegend, San Diego, 
Ca, USA) and fluorescein isothiocyanate (FITC) anti-
mouse CD8 antibody (BioLegend) for 30 minutes at 4 ℃. 
Cells were then resuspended in phosphate-buffered saline 
[PBS; 0.05% bovine serum albumin (BSA)] and fixed in 
4% paraformaldehyde fixative (Solarbio). All samples were 
assayed by FACSAria III Cell Sorter [Becton, Dickinson, 
and Co. (BD) Biosciences, Franklin Lakes, NJ, USA] and 
data acquired was performed with FlowJo Software (Tree 
Star, Ashland, OR, USA).

Cell sorting

Single-cell suspensions from tumor tissue were obtained as 
described earlier. CD8+ CTLs were isolated by magnetic 
bead cell sorting using mouse CD8a positive selection kit II 
Protocal (EasySepTM, catalog No. 18953) according to the 
manufacturer’s instructions. TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA) was added to the obtained cells, which 
were then stored at −80 ℃ until further processing.

Histology and IHC staining

For histology, tumor tissues were fixed in 4% formalin, 
embedded in paraffin, sliced into 4-μm sections and stained 
with hematoxylin and eosin (H&E).

For IHC staining, after a set of processes including 
dewaxing, rehydration, antigen retrieval with citrate buffer 
pH 6.0, endogenous peroxidase blocking with 3% H2O2 
for 10 minutes, followed by incubating with a primary 
anti-C5 antibody (Affinity, Amherst, NH, USA; 1:50) 
overnight at 4 ℃ and then with a secondary antibody 
(Zhongshan Goldenbridge Biotechnology Company, 
Beijing, China; catalog No. SP-9001) for 30 minutes at 
37 ℃. Immunodetection of the slides was performed by 
3,3'-diaminobenzidine (DAB). All images were captured 
with an Olympus LCX100 Imaging System (Olympus, 
Tokyo, Japan). Results were analyzed with ImageJ software 
(version 1.62; NIH).

Immunofluorescence (IF) staining

Paraffin-embedded tissues were prepared at 4 μm thickness. 
After processes of dewaxing, rehydration, and antigen 
retrieval with ethylenediaminetetraacetic acid (EDTA) 

antigen retrieval buffer (pH 8.0) (Servicebio, Wuhan, 
China; G1206), the slides were then blocked with blocking 
solution [PBS with 10% fetal calf serum (FCS) and 0.1% 
TritonX] at room temperature for 1 hour, then washed in 
PBS and incubated overnight at 4 ºC in the appropriate 
primary anti-C5aR antibody (Abcam, 1:500) and anti-
CD8a antibody (Boster, 1:50) diluted in blocking solution. 
Sections were then washed with PBS and incubated for  
1 hour at room temperature with secondary antibody, 
treated with 4',6-diamidino-2-phenylindole (DAPI) 
(Servicebio, catalog No. G1012) to stain cell nuclei and add 
spontaneous fluorescence quenching reagent (Servicebio, 
catalog No. G1221). Images were acquired by laser confocal 
scanning microscope system (Eclipse C1; Nikon, Tokyo, 
Japan).

Enzyme-linked immunosorbent assay (ELISA)

According to the statistical significance, a mouse 
complement C5a ELISA Kit (Boster, catalog No. EK0987) 
was used to measure the level of mouse C5a in blood and 
tumor tissue homogenates. Mouse blood was left to clot on ice 
for 30 minutes and was subsequently centrifuged at 1,000 g  
at 4 ℃ for 15 minutes to obtain the serum. Tumor tissue 
homogenates and serum were further centrifuged again 
at 12,000 rpm and were stored at −80 ℃ for analysis. The 
sensitivity of this assay was <1 pg/mL. All procedures were 
performed according to the manufacturer’s instructions.

Statistical analysis

No statistical methods were used to predetermine the size 
of the samples. Statistical analysis was performed with 
GraphPad Prism 8.0 (GraphPad Software, San Diego, 
CA, USA) and SPSS statistical software 26.0 (IBM Corp., 
Armonk, NY, USA). Unpaired Student’s t-tests and one-way 
analysis of variance (ANOVA) were used to evaluate P values. 
Data were performed as the mean ± standard deviation (SD). 
Statistical significance was indicated when P<0.05.

Results

RT induced inflammatory and immune pathways and 
upregulated C5aR1 expression in CD8+ T cells

We investigated the recruitment of tumor specific CTLs 
cells in irradiated tumors. It was found that the number 
of recruited CD8+ T cells reached a peak at 60 hours after 
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RT (34). A picture showing the experimental procedures is 
presented in Figure 1A. Tumor sizes in the RT-treated mice 
were smaller than those of the control group (Figure 1B). 
HE staining revealed that the therapeutic effect of RT was 
accompanied by increased T cells in the tumor space (data 
not shown). This phenomenon was further confirmed in IF 
staining and flow cytometry (Figure 1C,1D). The infiltration 
of recruited CD8+ T cells was increased after treatment  
of RT.

For further exploration, we applied RNA-seq analysis 
to screen differentially expressed genes (DEGs) in RT-
recruited CD8+ T cells (Figure 2A). RNA-esq analysis 
exhibited that 444 genes were upregulated and 69 genes 
were downregulated in RT groups compared to control 
groups (Figure 2B,2C). Then, Gene Ontology (GO) 
enrichment analysis of the upregulated DEGs in RT-
treated CD8+ T cells found that they were mainly enriched 
in cellular inflammatory and immune pathways, such as 
leukocyte migration, myeloid leukocyte migration, cell 
chemotaxis, neutrophil migration, positive regulation of 

response to external stimulus, and positive regulation of 
cytokine production (Figure 2D). An important issue for 
our finding was that these functional pathways exist C5aR1 
gene enrichment. It was also found that expression of the 
C5aR1 gene in CD8+ T cells increased significantly after 
RT (Figure 2E). Thus, we guessed that expression of C5aR1 
on CD8+ T cells mediated both inflammatory and immune 
responses to RT. These results implied that RT upregulated 
the expression of C5aR1 on CD8+ T cells to mediate anti-
tumor immunity.

Blocking C5aR signaling in combination with RT can 
produce synergistic effect in anti-tumor efficacy

Next, we tested whether C5aR1 was an important 
component in our RT system. We assumed that blocking 
C5aR signaling would improve response to RT by 
modulating the TME (i.e., CD8+ T cells). In order to test 
this hypothesis, we established an LLC mice model treated 
with RT alone (8 Gy ×3 times, once every other day), 

Figure 1 Infiltration of recruited CD8+ T cells increased after treatment of RT. (A) Mice were inoculated subcutaneously with LLC tumor 
cells and treated with 8 Gy of local RT daily for 3 times. Tumor tissues were collected at the indicated time points for subsequent analysis. 
(B) Tumor tissues in RT and control groups. (C) Immunofluorescence of tumors in RT and control groups. Sections were stained with an 
antibody recognizing CD8 (green) and DAPI (blue). Scale bars represent 50 μm. Representative images are shown. (D) Flow cytometry 
assays displayed that infiltration of CD8+ T cells were upregulated after RT. RT, radiotherapy; DAPI, 4',6-diamidino-2-phenylindole; 
FSC-A, forward scatter-A; FITC-A, fluorescein isothiocyanate-A; LLC, Lewis lung carcinoma; con, control.
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C5aR1 inhibitor (W-54011) alone (5.0 mg/kg/day post 
RT, once every other day), and RT plus C5aR1 inhibitor 
(W-54011) (Figure 3A). Each group maintained the same 
weight in the mice (Figure 3B). The representative images 
of tumors from mice of all groups collected on day 24 are 
displayed in Figure 3C. Compared with the control group, 
RT alone (P<0.0001) and W-54011 alone (P=0.0004) had 
significant impacts on tumor growth, but there was no 
significant difference between these 2 groups. Notably, 
the rate of tumor growth in the RT+W-54011 group mice 
was significantly impeded when compared with RT alone 
(P=0.0114) and W54011 alone (P=0.0114) (Figure 3D,3E). 
The combined treatment also led to a significant efficacy in 
tumor weight (Figure 3F).

RT promotes the release of C5a on tumor cells and leads to 
up-regulation of C5aR expression

Considering that loss of C5aR1 potently promoted 
sensitivity of RT, we next explored the concrete mechanism 
of RT to C5aR expression in CD8+ T cells. Han et al. 
suggested that C5a stimulation significantly upregulates 
the expression of C5aR1 gene in mouse γδT cells (35). 
Cancer cells have been shown to be capable of releasing 
C5a generally cleaved from C5 to combine with C5aR and 
promote cancer invasiveness, which usually occurs at the 
inflammatory phase of acute inflammation (36).

In the in vivo experiment, C5a and C5aR mRNA 
expression was found in tumor tissues by qRT-PCR, and 
was further verified by IHC, IF, and flow cytometry. We 

Figure 2 RT upregulated C5aR1 expression in RT-recruited CD8+ T cells. (A) CD8+ T cells were sorted by magnetic beads for RNA-seq. 
(B) RNA-seq analysis was displayed and the differential genes are shown in the heat map. (C) DEG counts in RT and control groups. (D) 
Top 20 of GO enrichment of the up-regulated genes. The red arrows indicate that these functional pathways exist C5aR1 gene enrichment. 
(E) Volcano map of RNA-seq showing the DEGs. The red dots indicate significantly upregulated genes. RNA-seq, RNA sequencing; RT, 
radiotherapy; DEGs, differentially expressed genes; GO, Gene Ontology.
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profiled the levels of C5a in tumor tissue homogenates 
and blood from mice with or without RT treatment. Data 
showed that RT remarkably increased local C5a levels in 
TME (Figure 4A). Next, RT-qPCR and IHC staining were 
performed on tumor tissues undergoing RT. The results 
of RT-qPCR suggested that significant upregulation had 
occurred in the RT-treated group (Figure 4B), whereas, we 
did not find any change in C5a and C5aR expression in 
the spleen (Figure 4C). Abundant deposition of C5 in RT-
treated mice was detected in the cytoplasm rather than 
on the cell membrane compared with the control group  
(Figure 4D). The significant increases in complement 
cleavage (C5a) products revealed that RT induced 
comprehensive complement activation. The expression 
of C5aR was significantly higher in the RT group  
(Figure 4E) and high infiltration of C5aR+ cells in TME 
were seen (Figure 4F). However, when we conducted the 
same analysis in spleen tissues, no significant differences 
were observed (Figure 4F). In order to evaluate the response 

of tumor cells to RT, an in vitro experiment was conducted 
to detect C5a expression of LLC cells underlying different 
time points 24 and 48 hours after delivery of RT (4 and 8 
Gy radiation). We observed that the mRNA levels of C5a 
were increased at 24 hours after 4 Gy radiation (Figure 4G).

Together, these results indicated that the activation of 
C5a/C5aR pathway mediated by RT was occurred in TME, 
which was attributed by tumor cells and infiltrating immune 
cells.

RT may upregulate C5aR through the AKT/NF-κB 
pathway

As RT induced substantial production of C5a, it was 
important to discover the signaling pathway that induced 
the release of C5a on tumor cells. The role of nuclear 
factor κB (NF-κB) activation in regulation of C5a in 
carcinoma-associated fibroblasts (CAFs) had already been  
characterized (37). Interestingly, a study had shown that 
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the activation of the PI3K/AKT pathway might be a latent 
mechanism of therapeutic resistance of small cell lung 
cancer (SCLC) (38). Consequently, we hypothesized that 
RT might mediate overexpression of C5a and C5aR via 
activation of oncogenic drivers.

Notably, the expressions of C5aR, p-AKT, and p-IκBα 
were upregulated in RT groups, yet that of IκBα was 

decreased (Figure 5A,5B). NF-κB remained inactive 
through binding to inhibitor κB (IκB) protein. As the 
“classical” activation of NF-κB, phosphorylation initiates 
ubiquitination of IκB proteins, thereby resulting in NF-
κB translocation to the nucleus for transcription (39). 
The results of western blotting suggested that sustained  
NF-kB activation was maintained via IκB phosphorylation. 



Yuan et al. C5aR blockade improving RT sensitivity in NSCLC1102

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(5):1093-1107 | https://dx.doi.org/10.21037/tlcr-23-258

In addition, we found that RT promoted the release 
of serious of pro-inflammatory factors such as TNF-α 
(P=0.043), IL-6 (P=0.042), and IL-12 (P=0.018) (Figure 5C), 
which were all downstream of the NF-κB signaling pathway 
(40,41). These results revealed that RT might upregulate 
C5a and C5aR expression via the AKT/NF-κB pathway. 
Therefore, we concluded that C5a/C5aR1 signaling 
regulated the antitumor effect of RT through the AKT/
NF-κB pathway (Figure 6).

Discussion

Fractionated RT might lead to adaptive alterations in the 
TME to confine the intensity and durability of the anti-tumor 
immunotherapy (42). Radioresistance limits the efficacy 
of RT, which has been attributed to microenvironment 
alteration or acquired resistance (43). Adequate adaptive 
immunity has been identified as a key component of 
antitumor immune response (44). Understanding patterns 
of immunomodulatory effects of RT would be useful for 

designing novel combinational therapeutic protocols. 
In the present study, we found that RT induced the 
increased infiltration of CD8+ T cells and local activation 
of complement C5a/C5aR. Concurrent administration of 
RT and blocking of C5aR improved radiosensitivity and 
tumor-specific immune response, which was related with 
highly C5aR expression in CD8+ T cells. The AKT/NF-
κB pathway is an important signaling pathway in C5a/C5aR 
axis mediated by RT.

The complement system plays a role in the immune 
system and represents the link between innate and adaptive 
immunity. Complement C5a has been linked to poorer 
cancer prognosis and advanced tumor stage (45). In both 
CP and AP of complement activation, C3 deficiency would 
be unable to support proteolytic cleavage of C5 to C5a. 
However, C5a might not be produced in the tumors via 
C3 activation (26). Fractionated RT has been shown to 
improve local complement activation (46,47), which is in 
line with our observation that tumor cells produced C5a 
and upregulated C5aR1 upon RT. In our study, we observed 
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an increase in C5aR1 expression on CD8+ T cells after RT 
by RNA sequencing (RNA-seq), so we hypothesized that 
RT may promote the release of C5a to regulate anti-tumor 
immunity, and inhibition of this process can promote the 
sensitivity of RT.

Mounting evidence suggests that RT induces the 
release of C3a and C5a in immune and tumor cells, 
with a contribution of dendritic cell (DC) activation and 
obvious infiltration of CD8+ T-cells (46). Interestingly, 
some studies have found that elevated levels of C5a could 
recruit more MDSCs in the spleen to tumors, followed 
with interfering with the antitumor CD8+ T-cells response 
(48,49). It has been suggested that C5a probably triggers 
the formation of neutrophil extracellular traps (NETs) by 
MDSCs to promote metastasis and cancer progression (50). 
Studies have also revealed that C5a stimulates neutrophils 
to produce reactive oxygen species, which is involved 
in oxidative damage and clearance of T lymphocytes in 
numerous cancers (51). Furthermore, Medler et al. observed 
that PMX-53, a C5aR1 inhibitor, promoted anti-tumor 
efficacy of chemotherapy associated with affecting MDSCs 
in the TME and reversing the depletion state of CD8+ T 
cells (26). The activation of complement C5a could prevent 
side effects of chemotherapy (52). In fact, numerous studies 
have identified synergistic combinations of blocking with 

C5aR signal with chemotherapy, checkpoint inhibitors, and 
other antitumor therapies (25,53). The predominant effect 
of C5aR1 blockade on antitumor affect appears to agree 
with an observation from our research. In the preclinical 
LLC models of our study, anti-C5aR also showed the effect 
of reverse radioresistance. The specific mechanism by which 
complement mediates radiosensitivity needed to be further 
explored.

Many studies  have indicated that  complement 
component might downregulate immunosuppressive 
cell populations to impair T-cell trafficking. Some novel 
ideals were highlighted in our investigation. Firstly, tumor 
infiltrating CD8+ T cells had already been clarified to 
express complement receptors C5aR (54). Next, based on 
our above finding, it was shown that that C5aR1 expression 
in CD8+ T cells in the TME, but not in the spleen, was 
highly inversely correlated with antitumor effect in RT-
treated mice. In fact, complement components could also 
perform a direct role on T cells. C3a and C5a combined 
with C3aR and C5aR have been clarified to mediate T-cell 
induction and inhibit Treg function (55,56). We believed 
that complement produced by RT might regulate anti-
tumor immunity by directly binding to and promoting 
the up-regulation of receptors on the surface of immune 
cells. In addition, Gunn et al. reported that the C5a effect 
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Figure 6 A model underlying the mechanism of C5a/C5aR1 signaling for regulating antitumor effect of RT. RT, radiotherapy.
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in T-cell responses occurred in a concentration dependent  
manner (57). As shown in our study, RT induced the 
release of C5a in concentrations up to 600 pg/mL in the 
TME. High C5a levels within the TME stimulated tumor 
progression accompanied by impacting the infiltration of 
CD8+ T cells (57), which was similar to findings from our 
research. Together, this study was the first to confirm that 
C5a-C5aR mediated by RT suppressed acquired antitumor 
immunity to result in development of radioresistance.

The PI3K/AKT pathway is one of the main pathways 
to maintain the survival of tumor cells, and it is mostly 
upregulated in human tumors. Studies have shown that 
RT could significantly activate the PI3K/AKT pathway, 
enhance the repair of DNA damage caused by RT, 
promote epithelial-mesenchymal transformation (EMT), 
and generate RT resistance (42,58-60). These findings 
suggested that the PI3K/AKT signaling pathway played 
a complex role as a mediator, affecting the effect of RT 
by mediating the biological effects induced by RT. The 
effects of C5a on the enhancement of cancer invasion 
were associated with activation of the PI3K/AKT  
pathway (61). Similarly, our data also showed that RT 
strengthened the C5a-C5aR system by impressing the 
AKT signaling pathway. Blocking with the transfer of p65 
into the cell nucleus decreased the activity of the C5aR1  
promoter (45). Alongside the inhibition of NF-κB signaling 
pathway, C5a secretion is dampened (37). Western blotting 
revealed the phosphorylation and degradation of IκBα in 
mice treated RT. The complement system could secrete 
proinflammatory cytokines including IL-1β, IL-6, and 
TNF-α in human monocytes/macrophages (62). Antagonism 
to C3aR and C5aR1 have been shown to inhibit IL-10 
production in CD8+ T cells to represent a novel mechanism 
of complement-mediated immunosuppression (63). We 
discovered that RT upregulated tumor inflammation and 
mRNA level of TNFα, IL-6, IL-12, and C5aR. Whether 
the blockade of these proinflammatory cytokines could 
generate complement-mediated radioresistance requires 
further research.

Our study had certain limitations. We recognize the 
limitations of using animal models to simulate human 
clinical diseases. Conclusions based on animal experiments 
needed to be validated by further clinical studies. In 
addition, in this study, we only found the phenomena of 
complement C5a reversing radioresistance, the specific 
underlying mechanisms and changes in the TME need to 
be further explored.

Conclusions

In conclusion, RT promotes the release of C5a from tumor 
cells and leads to up-regulation of C5aR1 expression on 
CD8+ T cells via the AKT/NF-κB pathway. Inhibition of the 
combination of complement C5a and C5aR can modulate 
antitumor immune responses and improve RT sensitivity. 
Our work provides evidence that the combination of RT 
and C5aR blockade open a new window of opportunity 
and multiple therapeutic targets to promote anti-tumor 
therapeutic effect in lung cancer. C5a can effectively 
improve long-term survival of lung cancer patients treated 
with radiotherapy as a radiotherapy sensitizer.
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