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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that typically

results in death within 3–5 years after diagnosis. To date, there is no curative

treatment and therefore an urgent unmet need of neuroprotective and/or neurorestorative

treatments. Due to their spectrum of capacities in the central nervous system—e.g.,

development, plasticity, maintenance, neurogenesis—neurotrophic growth factors (NTF)

have been exploited for therapeutic strategies in ALS for decades. In this review we

present the initial strategy of using single NTF by different routes of administration to

the use of stem cells transplantation to express a multiple NTFs-rich secretome to finally

focus on a new biotherapy based on the human platelet lysates, the natural healing

system containing a mix of pleitropic NTF and having immunomodulatory function. This

review highlights that this latter treatment may be crucial to power the neuroprotection

and/or neurorestoration therapy requested in this devastating disease.

Keywords: Amyotrophic lateral sclerosis, growth factors, therapeutic, stem cell, human platelet lysate

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the upper
and lower motor neurons in the cerebral cortex, brainstem and spinal cord that lead to a
progressive, irreversible muscle paralysis, and swallowing and respiratory dysfunctions. Death
eventually occurs 3–5 years after diagnosis (1). The majority of ALS cases (90%) are sporadic with
unknown cause (2). To date, there is no curative treatment in ALS. Therefore, the development
of new and effective treatment is highly urgent. Among the different approaches, the delivery of
neurotrophic factors (NTFs) is explored since the 90’s because NTFs are necessary to regulate
several physiological processes such as neuronal differentiation and survival, axonal outgrowth
and synapses maintenance (3–5), proliferation and differentiation of stem cells in the nervous
system (6–9). Therefore, these trophic factors represent a promising therapeutic strategy to treat
neurodegenerative diseases (10) such as ALS.
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Graphical Abstract | From single to synergistic neurotrophic growth factors therapies.

PRECLINICAL EVIDENCE OF
NEUROTROPHICS GROWTH FACTORS
ABILITIES TO TREAT AMYOTROPHIC
LATERAL SCLEROSIS (TABLE 1)

Recombinant NTFs Delivery by Injection
Some trophic factors have been demonstrated to promote
cell survival and be protective in both in vitro and in vivo
models of neuronal degeneration: Ciliary Neurotrophic Factor
(CNTF), Brain-derived Neurotrophic Factor (BDNF), Glial-
Derived Neurotrophic Factor (GDNF), Insulin-like Growth
Factor 1 (IGF-1), Vascular Endothelial Growth Factor (VEGF),
and Granulocyte-Colony Stimulating Factor (G-CSF). In vivo
experiments performed in ALS models using single recombinant
growth factors are described in this section.

CNTF, one of the first NTF studied in ALS models, injected
intraperitonally in pmn/pmn mice, mouse model for human
spinal motor neuron disease (11) or subcutaneously in wobbler
mice (12) improved motor function and survival, and decreased
neuronal degeneration and muscle atrophy (13). In addition,
Mitsumoto et al. demonstrated a synergic effect of CNTF
and BDNF, respectively, to arrest disease progression for 1
month (14).

The fusion protein BDNF with the c fragment of the tetanus
toxin (BDNF-TTC) exhibited enhanced neuroprotective effect

in SOD1G93A ALS mice model, but no synergic effect was
observed compared to TTC alone (55). Recently, motor function
improvement and less neuronal loss were observed in SOD1G93A

mice treated with the flavonoid 7,8-dihydroxyflavone, a small-
molecule mimicking the effect of BDNF (56). Two receptors
binding the BDNF, p75NTR and TrkB.T1, were highlighted in
SOD1G93A: a decreased of p75NTR expression correlated with a
delay of mortality and motor impairment (57); a deletion of the
TrkB.T1 increased survival and delayed motor deficit (58).

Treatment with encapsuled GDNF-secreting cells in pmn/pmn
mice did not impact motor neuron degeneration and lifespan
(15). The authors suggest a combined treatment for GDNF with
others NTFs. Recently, astrocytic GDNF triggered by the tumor
necrosis factor α (TNFα) was highlighted in the SOD1G93A

mice, and found to limit motor neuron degeneration and disease
progression (59).

Intraperitoneal (16) or intracerebroventricular (17) injection
of VEGF at doses of 1 g/kg/d and 0.2 µg/kg/d in SOD1G93A mice
and rats, respectively, increased lifespan and improved motor
performance. Similar data were observed in a sporadic model
of ALS rats induced by excitotoxic administration of AMPA
(60, 61).

Finally, protective properties of G-CSF were observed in
SOD1G93A mice when delivered continuously at dose of 30
µg/kg/d (18). Indeed, disease progression was reduced and
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TABLE 1 | Different routes of NTFs delivery and therapies in pre-clinical models.

NTF Delivery route Model Outcomes References

RECOMBINANT NEUROTROPHIC GROWTH FACTORS

CNTF I.P pmn/pmn mice (20–21 d) MP+, S+ (11)

S.C Wobbler mice MP+, MC+ (12–14)

BDNF S.C Wobbler mice MP+ (14)

GDNF S.C pmn/pmn mice (15–18 d) No effect (15)

VEGF I.P SOD1G93A mice (74 d) MP+, DDO+, S+11 d (16)

I.C.V SOD1G93A/LSd rats (60 d) MP+, DDO+, S+10 d (17)

I.S.P Excitotoxic model in rats MP+, DDO+, S+10.5 d, +5 d (18, 19)

Viral vector based gene therapy

AAV-NTF

IGF-1 I.M SOD1G93A mice (90 d) MP+, S+22 d (20)

I.S.P SOD1G93A mice (60 d) MP+, DDO+, S+12.3 d ♂ (21)

In D.C.N SOD1G93A mice (88–90 d) MP+, S+14 d (22)

I.M SOD1G93A mice (60 and 90 d) MP+, DDO+, S+29 d and +15 d ♂,

+24 d and +14 d ♀

(23)

I.V SOD1G93A mice (90 d) MP+, S+10 d (24)

I.C.V SOD1G93A mice (80–90 d) DDO+, S+12 d (25)

VEGF I.C.V SOD1G93A mice (80–90 d) DDO+, S+9 d ♂, +20 d ♀ (25)

I.T SOD1G93A mice (90 d) DDO+, S+12 d (26)

GDNF I.M SOD1G93A mice (90 d) MP+, DDO+, S+16.6 d (27)

I.V SOD1G93A rats (25 d) MP +/–, S– (28)

G-CSF I.S.P SOD1G93A mice (70 d) MP+, DDO+, S+ (29)

Stem cell based therapy

AAV-NTF

hSC-NSC I.S.P SOD1G93A rats (56–62 d) MP+, DDO+, S+11 d (30, 31)

gm hNSC line (VEGF) I.T SOD1G93A mice (70 d) DDO+, S+12 d (32)

hSC-NPC I.S.P SOD1G93A mice (40 d) MP+, S+5 d (33)

gm hNPC (GDNF) I.S.P SOD1G93A rats (∼80 d) rats

(∼80 d)

MP–, S– (34, 35)

Cortex SOD1G93A rats (∼80 d)

macaques

DDO+, S+14 d (36)

hBM-MSC I.S.P SOD1(G93A)dl mice (28w) MP+ (37)

SOD1G93A mice MP+ (38)

mBM-MSC I.V SOD1G93A mice (90 d) MP+, S+17.3 d (39)

gm hBM-MSC (GDNF, VEGF, GNDF/IGF-1, BDNF) I.M SOD1G93A rats (80 d) MP+, S+28 d and +18 d for GDNF,

+ 13 d for VEGF, +28 d for

GDNF/VEGF

(40, 41)

mBM I.S.P and I.M mdf/ocd mice (6 weeks) MP+ (42, 43)

mASC I.V SOD1G93A mice (76–77 d) MP+, S– (44)

hASC I.V and I.C.V SOD1G93A mice (70 d) MP+, DDO+, S+ (45)

hUCBC I.V SOD1G93A mice (56 d, 66 d) DDO+, S+21 d, +38.5 d, +23.8 d (46–48)

SOD1G93A mice (60 and 90 d) MP+, S+10 d (49)

I.T SOD1G93A mice No effect (50)

I.S.P SOD1G93A mice (40 and 90 d) MP+, S+6 d for 40 d mice (51)

I.C.V SOD1G93A (70 d)

Wobbler mice (28 d)

MP+, S+18 d

MP+

(52)

gm hUCBC (VEGF, GDNF, and/or NCAM) I.V SOD1(G93A)dl mice MP+, S+ (53, 54)

I.P, intraperitoneal; I.M, intramuscular; I.V, intravenous; I.C.V, intracerebrovascular; I.S.P, intraspinal; I.T, intrathecal; S.C, subcutaneous; DCN, deep cerebellar nuclei; gm, genetically

modified for expression of NTFs in brackets; hSC-NSC: human spinal cord-neural stem cell; m/hBM-MSC, murine/human bonemarrow-mesenchymal stem cell; m/hASC, murine/human

adipose derived MSC; hUCBC, human umbilical cord blood cells. Main results are summarized as follow: MP, motor performance; DDO, delay of disease onset; S, survival. The age of

the model at the treatment is noted in brackets (d, days old; w, weeks). +, improvement; –, deterioration. ♂, male; ♀, female.
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survival increased by rescuing motoneurons. Similar results were
obtained with subcutaneous injection of pegfilgrastim, a more
stable analog of G-CSF (19).

As protein infusion has known drawbacks (invasive method
of delivery, protein stability over time, short half-life) others
strategies, such as viral vector-based gene therapy and stem cell-
based therapy have been developed to express NTFs of interest
and avoid chronic injection.

NTFs Delivery by Viral Vector-Based Gene
Therapy
Many studies focused on IGF-1. The intramuscular injection
of adeno-associated viral (AAV)-IGF-1 in SOD1G93A mice
before or at the time of disease symptoms delayed disease
onset and increased lifespan (20). Intraparenchymal spinal cord
delivery was also tested, showing higher expression of IGF-1
but partial rescue (21), whereas a stereotaxic injection into the
deep cerebellar nuclei significantly extended mice lifespan (22).
Recently the injection of self-complementary adeno-associated
viral vector 9 (scAAV9), a more efficient transducing agent for
IGF-1, extended survival, and motor performance of SOD1G93A

mice when injected either intramuscularly (23) or intravenously
(24). Also, the intracerebroventricular injection of AAV4-VEGF
was studied and gave similar results than AAV4-IGF-1 by slowing
disease progression. No combined effect of these 2 constructions
was observed in SOD1G93A mice (25). Similarly the intrathecal
injection of scAAV9-VEGF showed positive impact on lifespan
and motor performance in mice (26). The AAV-GDNF, injected
intramuscularly in SOD1G93A allowed expression of the protein
at the sites of injection, a retrograde transport in anterior horn
neurons, and was associated with a delay in the onset and the
progression of the disease (27). However, the systemic injection
of AAV9-GDNF in SOD1G93A rats showed limited functional
improvement and no survival extension (28). Finally the efficacy
of intraspinal delivery was showed for AAV-G-CSF in SOD1G93A

mice with minimal systemic effects (29).

NTFs Delivery by Stem Cell-Based Therapy
Different types of stem cells exist—based on their source,
clonogenic capacity, differentiation potential and availability—
and exert a paracrine effect, suitable for therapy in
neurodegenerative disease such the ALS (62–65). We mainly
focus here on stem cells with potential clinical application,
engineered or used as such, e.g., a mix of NTFs.

Neuroprotection With Neural Stem Cells (NSC) and

Neural Progenitor Cells (NPC)
Human NSC graft into lumbar protuberance of SOD1G93A

rats was shown to delay the onset and the progression of the
disease, with their integration into the spinal cord (30, 31).
Similarly, the intraspinal administration of human NPC delayed
the progression of the disease in SOD1G93A mice (33).

NSC were also engineered to secrete specific one. Intrathecal
transplantation of human NSC overexpressing VEGF in
SOD1G93A mice delayed the onset of the disease and increased
survival with an integration and differentiation of NSC-VEGF
into the spinal cord (32). Human neural progenitor cells NPC

(hNPC) were also genetically modified to secrete GDNF. The
transplantation of such engineered cells in SOD1 rats were
integrated into the spinal cord, limitedmotoneuron degeneration
but failed to improve motor function (34, 35). However, the
transplantation of hPNC-GDNF into the cortex extended the
survival of SOD1G93A rats and was safe for primates (36).

Mesenchymal Stromal Cells (MSC)
Bonemarrow (BM)MSC (BM-MSC), when injected intraspinally
(37, 38) or intravenously (39) in SOD1G93A mice, allowed
decreased motoneurons degeneration, improved survival
and motor function, prevented pro-inflammatory factors.
Indeed, MSC display immunomodulatory properties by
secreting anti-inflammatory cytokines such as TGF-β or IL-
10 (66) Since neuroinflammatory markers were detected in
neural tissues of ALS patients (67) promising results can be
expected with MSC based therapy. Moreover, intramuscular
transplantation of human BM-MSC genetically modified
to secrete GDNF in SOD1G93A rats, showed a decrease in
motoneuron loss and an overall increased lifespan (40). In
addition they demonstrated a synergic effect of the combined
intramuscular delivery of hMSC-GDNF and hMSC-VEGF
with an increased survival, protection of neuromuscular
junction and motoneuron degeneration, greater than either
growth factor delivered individually (41). Even though
human BM-MSC injections have positive effects on the
disease progression, it should be noted that the whole BM
intraspinally transplanted showed a greater improvement
of motor functions than BM-MSC in mdf/ocd mice (42)
and increased motoneurons survival when intramuscularly
transplanted (43).

Others reported positive results with adipose derived MSC
when administrated by systemic (44), or intracerebroventricular
administration (45).

Human Umbilical Cord Blood (hUCB)
The first study performed on SOD1G93A mice irradiated
and transplanted intravenously with hUBC mononuclear cells
(MNC), showed a delay in the onset of symptoms and increased
the survival (46, 47). Transplanted cells integrated regions of
motoneuron degeneration and expressed neural markers (48).
Recently, the efficiency of chronic intravenous injections of
UCB MNC in symptomatic SOD1G93A mice was demonstrated,
with increased lifespan and reduced inflammatory effectors (49).
Similarly, the intraspinal as the intracerebroventricular injection
of hUCB in pre-symptomatic SOD1G93A or wobbler mice
increased survival and motor performance (51, 52). However,
intrathecal administration of hUCB did not affect the lifespan of
motor function of ALS mice (50).

Some authors engineered hUCB MNC to secrete some NTFs
or to enhance homing at the site of degeneration (68, 69).
Recently, transplanted hUCB transduced with AAV encoding
VEGF, GDNF and/or neural cell adhesionmolecule (NCAM), led
to a high rate of SOD1G93A mice survival and improved motor
function. Moreover, transplanted cells were detected 1 month
after grafting into the lumbar spinal cord (53, 54).
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CLINICAL TRIALS WITH GROWTH
FACTORS: EVIDENCE AND HYPOTHESIS
FOR THE FAILURE

Regarding the promising effects obtained in ALS animal models,
clinical trials were conducted to examine the neuroprotective
effects of these growth factors therapies in ALS patients (Table 2).

Trials Involving NTFs Protein Systemic
Injections
CNTF
In 90’s the ALS CNTF Treatment study group published results
obtained in phase I (70) and phase II/III (72) clinical trials
where enrolled patients received subcutaneous administration of
recombinant human CNTF (rHCNTF) at different doses, 15 or
30 µg/kg, three times a week for 9 months. The phase II/III
randomized, placebo-controlled evaluated the safety, tolerability,
and efficacy. No statistically difference between rHCNTF-treated
patients and placebo-treated patients were observed and side
effects were sufficiently severe to limit dosing in many patients.
A second trial, same year, did not show any positive effect
either (71).

One year later, Penn et al. published results of a phase I
clinical trial with intrathecal pump delivery (73). The disease
progression was not modified either but no systemic side effects
were observed. Thus, intrathecal administration may be the
preferred route of administration. To our knowledge, no further
clinical study are under investigation.

BDNF
Due to a promising phase I/II clinical trial showing the
safety and efficacy of subcutaneous administration of BDNF
in 1995, a phase III was designed (74). Results failed to
demonstrate an effect on survival but post-hoc analyses showed
that those ALS patients with early respiratory impairment
showed benefit (75). One year later a phase I trial showed
the feasibility of intrathecal method of delivery (76) but two
other trials conducted in 2003 and 2005 felt to detect any
efficacy (77, 78).

IGF-1
In the late 90’s, two clinical trials used IGF-1 at a dose of 0.1
mg/kg/d by subcutaneous delivery and found contradictory and
opposite results (79, 80). In 2008, a phase III showed no benefit
of this route of delivery in 2 years of trials (82). In a pilot study
conducted in 2005, intrathecal administration had beneficial
effect using high doses of IGF-1 (3 µg/kg every 2 weeks) but it
was not placebo-controlled (81).

G-CSF
Ten years ago, two pilot clinical trials with subcutaneous G-CSF
administration at a dose of 5µg/kg/d reported a trend for slowing
down the disease progression (84) and a delay in motor decline
(83). A Phase II clinical trial is under investigation but results are
not yet available.

VEGF
Three clinical trials assessed the safety, tolerability, and the
possible motor function improvement as well as survival time of
the intracerebroventricular administration of 4 µg/d VEGF. To
our knowledge, no results are published.

6- Failure Hypothesis
Most of the clinical trials based on direct protein administration
gave disappointing outcomes in view of the promising preclinical
results. Different hypotheses can be raised to explain those
failures (70–84):

- The route of administration: subcutaneous injection seems less
efficient than the intrathecal one

- The minimal ability of these growth factors to cross the blood
brain barrier

- The dose: highest safe dose in humans can be lower than
those determined in animals, as the clinical trial with
CNTF demonstrated

- The treatment start time: in animals, treatment start before
the onset of the disease whereas in humans the diagnosis is
performed at later stage

- The need of synergic association of numerous
neurotrophic factors

Trials Involving Adeno-Associated Viral
Gene Therapy
To our knowledge, there is no reported clinical trial using
adeno-associated viral gene therapy despite promising results
obtained with SOD1G93A mice. AAV2 and AAV9 are vectors
having the greatest potential, one specific for neuron tissue, one
passing the blood brain barrier and exhibiting neuronal tropisms,
respectively. One of the drawbacks of genes therapies for ALS can
be the safety. Indeed to stop delivery will not be possible if serious
adverse events occur during the treatment.

Trials Involving Stem Cell Therapy
Twenty-two trials involving stem cells-based therapy are
registered on ClinicalTrials.gov. Most of them use MSC from
different origins and few have results available. This section is an
overview of all the known clinical trials.

Neural Stem Cells
In 2012, two trials sponsored by Neuralstem used NSC by
intraspinal injection. The phase I did not show any adverse
events (85, 86), but the phase II has an unknown status on the
ClinicalTrials.gov website.

Recently, published results of a phase I trial, proposing
transplantation of human NSCs into the lumbar spinal
cord, demonstrated the safety and reproducibility of this cell
therapy. Moreover, because the brain tissue used was from
natural miscarriages, ethical concerns may be eliminated (87).
An ongoing clinical trial concern neuronal progenitor cells
engineered to produce GDNF. This is a phase I/IIA trial, active
but not recruiting. No results are available for now.
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TABLE 2 | Clinical trials with growth factors.

NCT number NTF Delivery

method

Phase and status of

the trial

Cohort

size

Outcomes References Year

PROTEIN INFUSION

Not provided CNTF SC Phase I, terminated 57 No adverse neurologic effects, safe,

and tolerated

(70) 1995

Not provided SC Phase I, terminated 570 No beneficial effect, adverse events

dose related, increased number of

death at the highest dose, no

beneficial effect on ALS progression

(71) 1996

Not provided SC Phase II/III 730 Disease progression not modified,

minor adverse side effects

(72) 1996

Not provided IT Phase I 4 Pain syndromes dose-related, no

systemic side effect, no improvement,

or worsen of motor function

(73) 1997

Not provided BDNF SC Phase I/II, terminated 283 Tolerated, Trend of improved survival,

less deterioration of predicted FVC

(74) 1995

Not provided BDNF SC Phase III 1 135 Disease progression not modified,

Patients with early respiratory

impairment and with altered bowel

function showed benefit

(75) 1999

Not provided BDNF IT Phase I/II, terminated 25 Well tolerated, feasible (76) 2000

Not provided BDNF IT Phase III, terminated 17 No adverse events, no effect (77) 2003

Not provided BDNF IT Phase II/III, terminated 13 No effect (78) 2005

Not provided IGF-1 SC Not specify 266 Slowed the progression of functional

impairment, slow the decline in

health-related quality of life

(79) 1997

Not provided SC Not specify 183 Safe and well-tolerated, no effect (80) 1998

Not provided IT Not specify 9 No serious adverse effect, modest

beneficial effect

(81) 2005

NCT00035815 SC Phase III, completed 330 No benefit (82) 2008

Not provided G-CSF SC Phase I, terminated 13 Safe, less decline of ALSFRS score (83) 2009

Not provided SC Phase I, terminated 39 Safe, no significative effect on

ALSFRS score

(84) 2010

NCT00397423 Not

specify

Phase II, completed 40 Not available

NCT01999803 VEGF ICV Phase I, terminated 15 Not available

NCT02269436 ICV Phase I, terminated 11 Not available

NCT01384162 ICV Phase I/II, terminated 15 Not available

STEM CELLS

NCT number Type of stem

cells

Delivery

method

Phase and status of

the trial

Cohort

size

Results References Year

NCT01348451 NSC ISP Phase I 12 No major adverse events (85, 86) 2012

NCT01730716 NSC ISP Phase II, unknown

status

18 Not available

NCT02943850 NPC ISP Phase I/IIa, active, not

recruiting

18 Not available

NCT01640067 NSC ISP Phase I, completed 6 Safe approach, no increase of

disease progression

(87) 2015

NCT00781872 MSC IT, IV Phase I/II, terminated 19 Safe and feasible, ALS-FRS score

stable the first 6 months

(88) 2010

NCT03085706 PBMC ISP Phase NA, completed 14 Not available

NCT01933321 HSC IT Phase II/III, completed 14 Not available

NCT01609283 MSC IT Phase I, active, not

recruiting

27 Not available

NCT01142856 MSC IT Phase I, completed 1 Not available

(Continued)
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TABLE 2 | Continued

NCT number NTF Delivery

method

Phase and status of

the trial

Cohort

size

Outcomes References Year

NCT00855400 MSC ISP Phase I/II completed 11 No severe adverse event, no

acceleration in the rate of decline,

possible neurotrophic activity

(89) 2012

NCT02286011 MC IM Phase I, active, not

recruiting

20 Not available

NCT00855400 MC ISP Phase I, completed 11 Safe approach, no worsening of the

disease

(90) 2016

NCT03268603 MSC IT Phase II, recruiting 60 Not available

NCT01254539 MSC ISP, IT Phase I/II, completed 63 Infusion of MSC produces spinal

changes unrelated with clinical events

and disease worsening

(91) 2013

NCT01363401 MSC IT Phase I/II, completed 64 Possible benefit lasting at least 6

months with safety

(92) 2018

NCT02917681 MSC IT Phase I/II, recruiting 28 Not available

NCT02987413 MSC IT Phase I, completed 3 Not available

NCT02290886 MSC IV Phase I/II, active, not

recruiting

52 Not available

NCT01051882 MSC IM or IT Phase I/II, completed 12 Safe and tolerated, no serious

adverse event, possible benefits on

ALS-FRS score, and percentage of

FVC

(93) 2016

NCT01777646 MSC IM + IT Phase IIa, completed 14

NCT03280056 MSC IT Phase III, Recruiting 200 Not available

NCT02017912 MSC IM, IT Phase II, completed 48 Not available

NCT01759797 MSC IV Phase I/II, completed 6 No adverse events, ALS-FRS score

reduced, FVC percentage reduced

(94) 2019

NCT01771640 MSC IT Phase I, completed 8

FVC, force vital capacity; HSC, hematopoietic stem cells; I, intramuscular; ISP, intraspinal; IT, intrathecal; IV, intravenous; MC, mononuclear cell; MSC, mesenchymal stem cells; NPC,

neuronal progenitor cells; NSC, neural stem cells; NTF, neurotrophic factor, PBMC, peripheral blood mononuclear cell; SC, subcutaneous.

Blood Cells
Two clinical trials, one using autologous peripheral blood
mononuclear cell for intraspinal transplantation and one in phase
II/III using hematopoietic stem cells for intrathecal injection
were conducted and completed but no results were reported
to our knowledge. One trial using autologous bone marrow
mononuclear cells (90) for intraspinal injection showed the safety
of the procedure.

Mesenchymal Stromal Cells
Among 14 clinical trials using MSCs from diverse origin
such as bone marrow, adipose tissue or engineered to secrete
particular NTFs, through diverse types of delivery (intrathecal,
intraspinal, intramuscular, intravenous, or intraventricular), 5
have no published results, 4 are ongoing, and 5 are completed
with published results. All of them are listed in the Table 2 and
the last 5 are detailed below and involved the use of the bone
marrow derived MSCs.

In 2012, a phase I/II, using autologous bone marrow MSCs
administered by intraspinal delivery, was conducted. No severe
adverse event were observed, no acceleration of the disease
progression noticed and an increase of the motoneurons in the
treated segments compared with the untreated segments for

patients who died for unrelated reasons to the procedure. Thus,
this trial demonstrates the safety of intraspinal infusion of MSCs
and suggests their neurotrophic activity (89). In 2013, a phase I/II
confirmed the safety of BM-MSC infusion (91).

In 2016, two clinical trials in small groups of patients,
phase I/II, used bone marrow MSCs engineered to secrete
NTFs. Intramuscular transplantation for early ALS patients and
intrathecal transplantation for progressive ALS patients were
evaluated. They concluded that both route of administration are
safe and provide indications of possible clinical benefits that need
to be confirmed on a bigger cohort (93).

In 2018, a phase I/II trial was initiated to evaluate the safety
and efficacy of these cells through intrathecal delivery. A possible
benefit seems to last at least 6 months with apparent safety (92).
A phase II is required to evaluate long-term efficacy and safety.

Finally, recent phase I/II trials showed safety and feasibility of
intravenous and intrathecal transplantation of autologous bone
marrow MSCs (94). Indeed, no adverse events were reported
and the ALS-FRS score and the force vital capacity percentage
were significantly reduced. Additional trials with bigger cohort
are needed.

To conclude, stem cells-based therapy as a future therapy to
treat ALS patients is premature due to the lack of results. As for
the protein infusion, some questions need to be considered:
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- The delivery method
- The timing of intervention
- The number of cells to transplant to obtain a

therapeutic efficacy
- The capacity of transplanted cells to migrate to the area of

interest and to mature in the hostile environment
- The evaluation of the long-term efficacy

Nevertheless, trophic factors remain essential for neuronal
maintenance and survival and remain a promising candidate
to treat ALS patients. Another source of those factors
can be the natural healing system, namely the platelet
lysate, and a continuous infusion into the brain by
intracerebroventricular (ICV) injection can be a route of
administration, avoiding the potential problem with the blood
brain barrier crossing.

HOW TO IMPROVE GROWTH FACTORS
THERAPEUTICS IN ALS: A NEW
THERAPEUTIC APPROACH BASED
ON THE HUMAN PLATELET LYSATE

The lack of clinical efficacy of single NTF infusion, despite a
good diffusion, required increasing the dose to a point where
they finally induced poor tolerance (i.e., µg). A single NTF
was therefore unable to induce the complex set of signaling
pathways required to promote efficient neuroprotection. Platelets
constitute abundant, natural sources of physiological balanced
mixtures of many growth factors [e.g., Platelet Derived Growth
Factor (PDGF), VEGF, IGF-1, EGF, or TGFβ) (95) and are used to
enhance wound healing and tissue repair (96). In addition, they
express adhesion molecules, secret chemokines (97) giving thus
neuroinflammatory property to the platelate lysate that could
be of an additional interest in ALS therapy. Interestingly, it
was demonstrated that ICV injection of human platelet lysates
significantly reduced infarct volumes in rats with permanent

middle cerebral artery occlusion, improved motor function
and promoted endogenous neural stem cells proliferation (98).
Similar results were obtained with platelet rich plasma in
ischemic rats (99). Moreover, intranasal (IN) administration
of platelet lysates was demonstrated to be neuroprotective in
Alzheimer and Parkinson’s disease animal models (100, 101). To
pursue with the neuroprotective potential of platelets lysate in
neurodegenerative diseases, we developed a heated low protein
human purified platelet lysate (HPPL) preparation, compatible
with ICV and IN intermittent administration, to deplete
fibrinogen, avoid thrombogenic, and proteolytic activities. We
demonstrated its neuroprotective effect in in vitro and in
vivo model of Parkinson’s disease and its anti-inflammatory
properties (102). To extend the concept to ALS, HPPL was
tested on a motoneuron-like model and strongly protected from
apoptosis and oxidative stress (103). Higher neuroprotection
was obtained with HPPL compare to single growth factor or
combination of 4 (PDGF, BDNF, BFGF, VEGF) and involved
specific signaling pathway such as Akt and MEK (103). These
results give a real hope for neuroprotective therapy and need to be
confirmed in in vivo ALS model with ICV or IN administration
of HPPL.
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