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Recent industrial developments in autonomous systems, or agents, which assume that

humans and the agents share the same space or even work in close proximity, open for

new challenges in robotics, especially in motion planning and control. In these settings,

the control system should be able to provide these agents a reliable path following control

when they are working in a group or in collaboration with one or several humans in

complex and dynamic environments. In such scenarios, these agents are not only moving

to reach their goals, i.e., locations, they are also aware of the movements of other entities

to find a collision-free path. Thus, this paper proposes a dependable, i.e., safe, reliable

and effective, path planning algorithm for a group of agents that share their working space

with humans. Firstly, the method employs the Theta* algorithm to initialize the paths from

a starting point to a goal for a set of agents. As Theta* algorithm is computationally

heavy, it only reruns when there is a significant change of the environment. To deal with

the movements of the agents, a static flow field along the configured path is defined.

This field is used by the agents to navigate and reach their goals even if the planned

trajectories are changed. Secondly, a dipole field is calculated to avoid the collision of

agents with other agents and human subjects. In this approach, each agent is assumed

to be a source of a magnetic dipole field in which the magnetic moment is aligned with

the moving direction of the agent. The magnetic dipole-dipole interactions between these

agents generate repulsive forces to help them to avoid collision. The effectiveness of the

proposed approach has been evaluated with extensive simulations. The results show

that the static flow field is able to drive agents to the goals with a small number of

requirements to update the path of agents. Meanwhile, the dipole flow field plays an

important role to prevent collisions. The combination of these two fields results in a safe

path planning algorithm, with a deterministic outcome, to navigate agents to their desired

goals.

Keywords: navigation field, Theta star algorithm, dependability, multiple agents, path planning, dynamic

environment
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1. INTRODUCTION

Until recently, robots have played a critical role in the
manufacturing industry where the automatic robots perform
repetitive and sometimes heavy tasks. The majority of these
solutions assume high precision with respect to movements and
positioning of the robots, without relying on sensors, or at least
extensive sensor feedback. However, technological advancements
in recent years have resulted in a shift of attention from pre-
programmed automatic solutions to (semi)-autonomous systems
that can operate in unstructured environments, and even co-
exist with humans. As a result of this shift, robots will be
more involved in our daily activities. Thus, they will be allowed
to have more interactions with humans, share working space
with humans as well as make their own decisions with some
accepted levels of uncertain information collected from the
surrounding environment. For instance, there is a rise of interest
in self-driving cars where the fully autonomous mode has been
investigated to help drive the car in city centers, substandard
roads or busy highways without causing accidents. In the health
care domain, robots are assumed to assist elderly people in their
daily activities. In this context, different levels of safety need to
be taken into account, e.g., develop an autonomous control to
avoid executing any movements that the users do not expect and
also to prevent accident caused by a person being hit by the
robot. The challenges, and the opportunities, in the health care
domain becomes more evident considering care at home. Going
back to the main application domain, i.e., industrial robotics, it
is evident that the next generation solutions assume high degree
of interaction and collaboration between mixed teams of humans
and robots. Obviously, the approach taken by these solutions will
not exclude today’s standard solutions. Thus, it is most likely that
different solutions will exist side by side in the near future.

Nevertheless, the developments in autonomous robots that
co-existence of humans and robots, have opened new challenges
in research areas of robotics, e.g., inmotion planning and control.
In particular, the control system should be able to provide
the robots a reliable motion planning and control ability when
the robots are working in a group or in collaboration with
one or several humans in complex and dynamic environments.
This means that the robots must meet certain requirements on
trustworthiness/dependability in order to be allowed to work
with humans. The dependability of a robotic agent is presented
by main attributes including availability, i.e., the continuous
operations of the system over a time interval, reliability, i.e.,
the ability of the system to provide correct services, and safety,
i.e., the robotic agent must ensure safe controls to avoid any
catastrophic consequences on users, other robots, and finally the
environment. In order to implement a dependable robotic agent,
important efforts have been attempted in several directions.
Firstly, level of robot autonomy is automatically adaptive to
the working context in order to address alternative complexities
of environments. Secondly, the robot is willing to share the
control with humans and other robots to optimize the working
performance as well as to deal with complicated tasks that the
robot cannot complete by itself. Lastly, to some extent, the robot
must be able to handle the dynamic changes that occur in the

environment, and to operate in accordance with the presence of
other robots and humans in the same working space. This work
mainly focuses on the last approach to enhance the robustness
and dependability of the agents while working together with
others and humans to complete a task.

Note also that, the high-level specification of a complicated
movement of robots can be constructed through a sequence of
lower level motion and path planning. A common problem is the
movement of a robot arm, which can be composed of a sequence
of trajectory planning and collision detection steps (Rubio et al.,
2012, 2018). Therefore, motion and path planning are concerned
as the basic, and separate, constructions for plans of robotic
actions. Path planning is the process which is utilized to construct
a collision-free path from a starting point to a destination given a
full, partial or dynamic map. Motion planning, meanwhile, is the
progress in which a series of actions are needed to be defined to
follow the planned path. Themost common practice in robotics is
to address the navigation problem using path planning, i.e., pure
geometric planning from point to point, then motion planning
is to realize the feasibility of the path. As the output of path
planning will later determine the way to plan robots’ motion,
the path planning algorithm is better incorporated with motion
planning to optimize the movement of the robot. This means
that the path planning could be realized at every locations within
the form of navigation field to make transformation from path
to motion planning easier. Besides, the moving path must be
estimated to avoid many changes of moving directions to save
energy used to perform movements.

With regard to above mentioned issues, this paper addresses
path planning of robotic agents in the context of shared
working space of humans and agents. The aim is to develop
a path planning algorithm to deal with the dynamic changes
of environments and complicated maps with multiple static
obstacles having a wide range of shapes. The algorithm also
helps agents avoid collisions with humans and others in the
shared environment, in which a group of agents are designed
to collaborate with each in order to plan their optimal paths, in
real-time. Finally, how to combine the aforementioned factors of
motion planning into the developed path planning algorithm is
investigated.

So far, numerous path planning approaches have been
proposed to address control movement of robots. Most of
them have been focused on searching to find a path from
a starting point to a destination in either static or dynamic
map. Meanwhile, a family of path planning algorithms address
the problem of avoiding moving obstacles with field-based
approaches. Regarding search-based algorithms, one of the most
conventional yet still effective approaches for the navigation of
an agent in a large map is related to Dijkstra and its extension
of A* searching algorithm (Cormen et al., 2009; Yershov and
LaValle, 2011), and incremental search (Koenig et al., 2004b).
In detail, the A* algorithm improves the Dijkstra’s algorithm by
approximating the cost-to-go function with heuristic knowledge
to reduce the searching space to the goal. Meanwhile, incremental
search algorithms seek for the shortest paths by utilizing the
results of similar searches to make the search faster, instead of
solving each search problem separately. By applying incremental
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search on top of the A*, Koenig et al. (2004a) developed lifelong
planning A* (LPA*) as an initial variant of A*, in order to address
path planning for dynamic graphs with changing edge costs. In
the D* algorithm (Stentz, 1994), incremental search is applied to
repeatedly update the shortest paths between the current position
of a robot and a goal, during the robot’s approach to the goal.
Koenig and Likhachev (2005) improved the D* by LPA* and
alternatively Sun et al. (2009) developed dynamic fringe saving A*
to reuse the OPEN and CLOSED lists from previous A* searches.
Although different variants of A* are able to address a graph
change due to the moving of a robot to a new vertex, or the
updates of edge costs, those algorithms still face difficulties to
deal with moving obstacles. In addition, as stated by Hu and
Brady (1997), a probabilistic approach is necessary to model the
uncertainties of mobile obstacles in the environment. However,
the complexity of path planning will be significantly increased if
either the cost of the edges, or the links of the graph are presented
by random variables.

In order to handle the uncertainties of observed obstacles,
a field-based approach is another way to find the path for the
agents. The field is calculated for each location, in time and
space, and determines the directions of movement of an agent
to reach the destination. The field consists of a repulsive field to
push the agent away from the obstacles, and an attractive field
to pull the agent toward the goal. For instance, Ok et al. (2013)
proposed Voronoi uncertainty field which is build from Voronoi
diagram from the start to the goal to create the attractive field
and the repulsive field from the robot to the obstacles. The works
of Wang and Chirikjian (2000) and later Golan et al. (2017)
presented an artificial potential field based on the exchanges of
heat flow. If obstacles are visualized as hot objects, the target is
then presented as the cold one and the temperature is discretized
at each location on the grid. The temperature gradient solved
by partial differential equation generates the appropriate forces
to drive the robot. One of the big issues of using the potential
field is that the repulsive field may push the agent to reach
other obstacles or statures with the attractive field. Due to these
problems, the agent may be trapped into a local optimum or
loose its way toward the goal. To mitigate the local converge
to a local optimal, some additions to the potential field have
been introduced. Valbuena and Tanner (2012) proposed the
way of adding velocity constraints, meanwhile García-Delgado
et al. (2015) extended the repulsive function with the change of
magnitude dependent on the angle between the attractive force
and the obstacle. The main aim is to avoid the cancellation
of the repulsive and attractive forces when applied in opposite
orientations. However, the interactions of the agents with the
environment, especially changes in the map, were not clearly
addressed in abovementionedworks. Besides, most of field-based
navigation approaches lack the global information of a feasible
path to the destination that could actually help avoid a trap that
would lead to a local optimum.

Controlling the speed and directions of a robot are also key
factors, which plays a role to provide the robot a collision free
path. Owen and Montano (2005, 2006) defined velocity space
to estimate the arrival time of moving objects to a region of
potential collisions and thereby potential solutions to avoid these

collisions. The velocity space in which the motion of the robot, as
well as static andmoving objects are mapped, is applied to predict
when the collision may happen and when the robot may escape
from the collision. Damas and Santos-Victor (2009) developed a
map of forbidden velocity zones which is constructed as a limit
on the velocity of the robot to avoid collision with obstacles.
When the robot moves into the forbidden zones, it may adjust
its speed to avoid the obstacles. Berg et al. (2008), Wilkie et al.
(2009), and Berg et al. (2011) further integrated the acceleration
while Lee et al. (2017) concerned the shape of the robots as an
ellipse for obstacle avoidance. Yoo and Kim (2010) proposed
a modified uni-vector field to present obstacles with respect to
relative their velocities and positions where the gaze control
which concerned the error of localization and the distances to
surrounding obstacles was also combined into the system to find
the best moving trajectory. Belkhouche. (2009) introduced virtual
plane to present moving objects with information of velocity into
stationary ones. As a consequence, path finding in a dynamic
environments is converted to a simpler problem of navigation
in a static environment. However, it is noted that, it is not
always optimal to use velocity planning when to drive the robot.
Using only velocity control for path planning usually results
in oscillatory motion. Given a typical differential drive mobile
robot, there are a number of constraints on the linear and angular
velocities, as well as the acceleration, in order to save energy for
extending operation time, and finding the path to the goals with
few turns. To the best of our knowledge, these concerns have
not been investigated extensively in combination with obstacle
avoidance in dynamic environment.

In order to address the above mentioned issues, in this paper,
a novel method for path planning of mobile agents, in the shared
working environment of human and agents, called as the dipole
flow field, is proposed. The dipole flow field combines both
global and local path planning in a unique framework. For global
planning, the method applies any-angle path planning algorithm
of Theta* (Nash et al., 2010) to generate smooth paths with
few turns, from a starting point to a goal for a pool of agents.
Although different A* variants of any-angle path planning haven
been proposed, such as A* post-smoothing, block A* (Yap et al.,
2011) and field D* (Ferguson and Stentz, 2006), the Theta* is
able to provide the most optimal path with simple and effective
implementation (Uras and Koenig, 2015). As the computations
of the Theta* algorithm is costly for a big map, the algorithm
is updated when there is a significant change on the static map
of the environment. To cope with dynamic movements of the
agents, a static flow field along the planned path is defined to
attract the agent back to continue reaching the goal even when
the agents may be deviated from the planned path. In addition, a
dipole field is used to avoid the collision of the agents with others
and human within shared working space. To the best of our
knowledge, most conventional approaches attempt to generate
the pushing forces based only on the location of the agents,
whereas in this work, it is assumed that, those should be better
aligned with both moving directions and velocity magnitudes of
different agents. The generated dipole field is able to push other
agents far away based on their respective moving directions and
the velocity magnitude of the agents. Static flow field and dipole
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field are combined to assure a dependable path of each agent from
the starting point to the goal without colliding with each other.

The rest of paper is organized as follows. The methodology
of the proposed path planning based on dipole flow field is
presented in section 2. The evaluation of the proposed method
through the experimental results is described in section 3. Finally,
the paper is concluded with discussion in section 4.

2. METHODOLOGY

In this section the agent architecture together with the different
modules used for path planning are described in section 2.1.
Meanwhile the core path planning algorithm is presented in
section 2.2.

2.1. Autonomous Agent Architecture
The overall architecture of the autonomous agent to support
the proposed planning algorithm is presented in Figure 1.
The core algorithm includes the following five modules, Map
Generation, Path Initialization, Static Flow Field Configuration,
Collision Avoidance and Velocity Planning. In addition, there are
four external modules including Sensor Data Collection, Update,
Object Classification, and Movement Management to help the
planning algorithm collect information from the surrounding
environment and update control.

2.1.1. Path Planning Architecture
After that the global information of the environment is acquired
from the external modules, a 2-D map is generated. The 2-D
map is presented as a binary map in which static objects and
obstacles are shown as black areas whereas the allowed moving
areas are illustrated with white color. Global path planning with
Theta* algorithm is applied in the Path Initialization module to
initiate a path from the starting point to the destination for the
agents. While moving to the goal, the agent may deviate from the
original path due to obstacle avoidance, or accumulated errors
related to velocity and pose estimating. As a result, a static flow
field generated in the Static Flow Field Configuration module
will drive the agent back to the designed path. Only when the
agent moves far away from the region covered by the static flow
field, Theta* is activated to renew the path from the current
position to the goal. After the static flow field is configured,
the agents start moving to reach their individual goals, while
checking for collision with other moving objects. The dipole field
is calculated in the Collision Avoidancemodule to avoid collision
with the agents. Finally, the motions of the agents are controlled
by the superposition of the static flow field, and dynamic dipole
field to generate the dipole-flow force. The dipole-flow force is
presented by the adjustments of the agents’ heading angles. A
velocity function is established to help the agent well adapt its
moving velocity according to two factors, energy consumption
and obstacle avoidance. If there is no collision, the agent will

FIGURE 1 | The Architecture of Autonomous agent. The backbone of the path planning algorithm consists of the Map Generation module, Global Planning including

the Path Initialization module and the Static Flow Field Configuration module, and Local Planning including the Collision Avoidance module and the Velocity Planning

module.

Frontiers in Neurorobotics | www.frontiersin.org 4 June 2018 | Volume 12 | Article 28

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Trinh et al. Dependable Dipole Field Path Planning

move with a stable speed along the configured path. Meanwhile,
if there is a dynamic obstacle, the agent needs to adjust its moving
direction to avoid the obstacle while still maintaining, or at least
minimizing, the deviation from the time to goal.

2.1.2. External Modules to Support Path Planning

Algorithm
The Sensor Data Collection module is designed to continuously
collect information of the environment. For instance, the visual
data obtained from a camera, together with the data from the
other sensors, is used to build the map of the environment and to
recognize different objects. The pose of the robot is collected from
the inertial measurement unit (IMU). Similarly, the positioning
tracking system registers the position of the robot within the
map. The Object Classificationmodule receives the data from the
Sensor Data Collectionmodule to determine which objects in the
environment that are static objects and which ones are moving
objects. In this work, the proposed path planning algorithm
deals with two types of moving objects. Firstly, autonomous
agents, which share information about their locations, and
velocities, with the other agents. Secondly, uncontrolled moving
object, e.g., a human, who can suddenly appear in the working
space of the agents. Especially when the human subjects are
present, the agents need to adjust their movement to avoid
them. The Movement Management module plays a central role
in managing the location, and moving trajectories of all agents
and human(s) found in the environment. The data from the
Movement Management module is sent to the path planning
algorithm for velocity estimation. The Update module updates
the internal model based on the changes in the environment,
and applies the control commands from the Velocity Planning
module to move the agents accordingly.

2.2. Path Planning With Dipole Flow Field
In this section, the dipole flow field is firstly formulated by the
combination of the static flow field and the dynamic dipole field.
Later, the direction of the dipole flow field at every point is turned
into velocity planning to control the linear and angular velocities
of agents.

2.2.1. Static Flow Field for Global Path Planning
The global path consists of a sequence of line segments from the
start to the goal, and is configured using the Theta* algorithm.
Within the neighborhood of the found path, a navigation field
parallel to the path segment, is defined, as the static flow field.

2.2.1.1. Path initialization
To initialize the path from a starting point to an ending point,
the Theta* algorithm is applied. This algorithm improves A* by
adding a line-of-sight (LOS) detection to each search iteration
to find a less zigzaggy path than those generated by A* and its
other variants. The primary difference between the Theta* and
the others is that the Theta* algorithm determines the parent
of a node to be any node in the searching space. Thence, the
LOS detection feature is purposed to help decrease the undesired
expanding by checking for whether the offspring node and the
parent are in a straight line, i.e., line-of-sight. By this means, the

Algorithm 1. Theta* algorithm

1: procedure THETA*(sstart , sgoal)⊲ Find the shortest path from
start to goal location

2: open← ∅ ⊲ To speed up Theta*, open is implemented
with a priority queue

3: closed← ∅
4: g[sstart]← 0
5: parent[sstart]← sstart
6: open.insert(sstart , g[sstart]+ h[sstart])
7: while open 6= ∅ do
8: s← open.pop()
9: if s = sgoal then
10: return “path found” ⊲ The found path is stored

in parent[]
11: end if

12: closed← closed ∪ {s}
13: for s′ ∈ neighbor(s) do
14: if s′ 6∈ closed then
15: g[s′]←∞
16: parent[s′]← NULL
17: end if

18: gold ← g[s′]
19: COSTEVALUATION(s, s′)
20: if g[s′] < gold then
21: if s′ ∈ open then

22: open.remove(s′)
23: end if

24: open.insert(s′, g[s′]+ h[s′])
25: end if

26: end for

27: end while

28: return “no path found”
29: end procedure

30:

31: procedure COSTEVALUATION(s, s′)
32: if LOS(parent[s], s′) then ⊲ LOS check between parent[s]

and s′

33: if f (parent[s])+ h(parent[s], s′) < f [s′] then
34: parent[s′]← parent[s]
35: f [s′]← f (parent[s]+ h(parent[s], s′)
36: end if

37: else

38: if f [s]+ h(s, s′) < f [s′] then
39: parent[s′]← s
40: f [s′]← f [s]+ h(s, s′)
41: end if

42: end if

43: end procedure

path found by Theta* is not a connection of adjacent nodes but a
connection of line-of-sight ones. The pseudo codes of the Theta*
is described in Algorithm 1.

As a heuristic-based search algorithm, Theta* approximates
the length of the shortest path based on cost evaluation. The cost
evaluation is conducted from the f -value, i.e., the lowest cost
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from the starting node to the last node, s, in a path, referred
to as f (s), and a heuristic value called h-value which is the cost
estimation from the node s the goal. The estimated cost of the
cheapest node through node s is, thus expressed by:

f (s′) = f (s)+ h(s, s′). (1)

In this work, the heuristic function is simply defined as the
Euclidean distance i.e., h(s, s′) = w.Euclidean(s, s′) where w is
a weight that determines the size of the area to search for the
optimal path around the straight-line between s and s′. With
w > 1, Theta* is able to reduce the searching area but may return
a longer path, therefore the value w = 1 is used in this work
to search for the shortest path. It is assumed that the straight line
distance between two nodes would be never longer than any other
path connecting them. However, the shortest path generated by
the A* algorithm is connected by the neighboring grid nodes, and
thus entails many turning points to the robot. The path found by
Theta* is a sequence of LOS nodes so that it is smoother with
few turns and closer to a straight-line path between the start and
the goal. The algorithm for LOS function is implemented with a
drawing-line algorithm in graphics to optimize processing time
and is referred to approach proposed by Nash et al. (2010).

As mentioned in section 2.1.1, the input to the Theta*
algorithm is the binary map of the environment (Figure 2A).
However, to avoid searching the path on a dense graph, a grid-
based graph is used (as visualized in Figure 2B). The obstacle
areas are also dilated corresponding to the size of agents so that
the path found by Theta* will not cause the boundary of the agent
touching the edges of the map while the agent is moving.

2.2.1.2. Path configuration with static flow field
Searching for a global path from a start to a goal in a big map is a
computationally heavy task, thus it is not desired to re-calculate
the path for small updates of the map, or small deviations from
the configured path. The static flow field is to draw the agents
back to their moving paths in those situations. In the form of
force interaction, the static flow field is also easily combined with
a dynamic field for obstacle avoidance. As the shortest path found
by Theta* is the connection of several line segments, the static

flow field is created within the neighbor of the line segments.
For each path, it is assumed that there are n line segments from
the start to the end points. Each line segment i is presented in a
vector form of x(t) = ai + tni where ai is the starting of the line
segment and ni is the unit vector of the line. To ensure that the
static flow field will draw the agent to its goal, those line segments
also include the last line segment with ai is set to the goal and ni
to a zero vector. The flow field force at the point p close to the
provided path found by Theta* is calculated by

Fflow(p) = Fa(p)+ Fr(p) (2)

where Fa(p) is the attractive force to draw an agent back to the
configured path, and Fr(p) is the repulsive force from nearby
static obstacles. The configuration of the global path and the
formulation of the flow force are described in Figure 3.

Let Fai (p) be the attractive force of a point to each line segment
and expressed by:

Fai (p) = (1−e−k1d(p,ai))((ai−p)−((ai−p)·ni)ni)+k2e
−k1d(p,ai)ni

(3)
where d(p, ai) is the distance from the point p to the line segment
i-th, k1, k2 are constants, and “ · ” denotes the inner product of
two vectors. As ni is a unit vector, the vector (ai − p) − ((ai −

FIGURE 3 | The configuration of the global path.

FIGURE 2 | Binary map for static flow field and derived information, (A) the original binary map in which the white pixel presents available regions of agents, (B) the

grid-based graph derived from the binary map, and (C) the corresponding repulsive field in which the amplitude of the field from the lowest to the highest is mapped

into colors from blue to red respectively.
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p) · ni)ni is normalized before Equation (3) is calculated. Two
constants k1 = 0.01 and k2 = 1 are selected to control the impact
of the first and second terms of Equation (3). The attractive force
Fa(p) is set equal to the attractive force Fa∗i of the line segment
a∗i closest to the point p, a∗i = argmin

ai

d(p, ai). Meanwhile, the

repulsive force Fr(p) = −∇Urep(p) is the negative gradient of the
repulsive field:

Urep(p) =

{

η

(

1
d(p,p0)

− 1
d0

)2
d(p, p0) ≤ d0

0 d(p, p0) > d0
(4)

in which d(p, p0) = ‖p − p0‖ is the Euclidean distance from the
agent’s position p to the closest obstacle’s position p0, d0 is the
influence distance of the force, and η is a positive constant. To
avoid singularities of Equation (4) when d(p, p0) = 0, a linear
transformation f (d) = κd + 1 is applied to map d(p, p0) and
d0 to non-zero values f (d(p, p0)) and f (d0) in Equation (4). The
influence distance of the force, d0, is selected based on the size of
agents (the diameter of agents) to prevent touching the agents to
static obstacles. With respect to 0 < d0 < 100, κ = 0.01 and
η = 104 are chosen. An example of repulsive field of the binary
map given in Figures 2A,B is shown in Figure 2C. The static flow
fields without and with added repulsive forces are presented in
Figures 4A,B respectively.

The affecting area of the static flow field is determined by the
window size (W). This means that the static flow field remains
influence on the agent if the distance from the agent to the
designed path is less than W. Once the agent moves out of the
affecting area, the Theta* algorithm needs to be recalculated to
update a new static flow field.

2.2.2. Dynamic Dipole Field
To cope with the problem of collision avoidance, the dipole field
for each dynamic object is generated. The development of the
dipole field is inspired by the way that humans naturally avoid
moving obstacles: When facing an obstacle that is approaching,
the humanmay turn, and continue to move, to avoid the obstacle
instead of going backwards. Such a movement shows a moving
trajectory similar to that of a dipole magnetic field line. This
method is also amore skillful obstacle avoidance strategy than the

conventional method of using radial potential field. Munasinghe
et al. (2005) introduced an implementation of this obstacle
avoidance method by designing a force to drive a robot through
an elliptical trajectory to go around and then behind obstacles.
In the work of Igarashi et al. (2010) the dipole characteristics
is expressed as a vector field to push an object to a goal. In
this work, to model the moving behavior of agents, instead of
developing dipole-like vector field the theory of dipole magnetic
field in physics is directly applied. Each agent can be seen as a
source of a magnetic dipole field, in which the magnetic moment
is proportional to the velocity vector of the agent. This means
that the orientation of the moment is aligned with the moving
direction of the agent and the magnitude of the moment is
equal to the speed of the agent. The aim of having the moment
proportional to the speed is to ensure that among different
obstacles having the same distance to the agent, the one with the
larger speed will contribute a stronger effect on driving the agent.

In physics, the magnetic field M of the dipole moment vector
m is expressed by:

M(m, d) = ρ(3(m · d̂)d̂−m)/d3 (5)

where d is the distance vector, d = ‖d‖ is distance between two
agents, and d̂ = d/‖d‖ is a unit vector. The magnetic constant
ρ = 1/3 (3ρ = 1) is applied in this work instead of using ρ = µ0

4π
in electromagnetic theory (µ0 is the permeability of free space).
An agent with the magnetic momentmj within the magnetic field
Mk generated by the other magnetic sourcemk would be affected
by the force:

F = ∇mj ·Mk (6)

where the gradient∇ presents the changes of the quantitymj ·Mk

per unit distance. Hereby, the repulsive force of an agent k on an
agent j can be formulated by:

Fdipole(mj,mk, d) = ρ∇
(

mj ·
3(mk · d̂)d̂−mk

d3

)

= ρ∇
(3(mj · d)(mk · d)

d5
−

(mj ·mk)

d3

)

= ρ

(

3(mj · d)(mk · d)∇
1

d5
+

3(mj · d)

d5
∇(mk · d)

FIGURE 4 | The representation of the static flow field (unity vectors), (A) the initial path with the configured static attractive field, (B) the static flow field with added

repulsive force to the obstacles.
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+
3(mk · d)

d5
∇(mj · d)− (mj ·mk)∇

1

d3

)

(7)

=
3ρ

d4

(

(mj · d̂)mk + (mk · d̂)mj

+ (mj ·mk)d̂ − 5(mj · d̂)(mk · d̂)d̂
)

wheremj, andmk are the dipole moments of the agents. To lead

to Equation (7), the gradients of two functions, ∇ 1
dn
= −n d

dn+2

and ∇(m · d) = m, are used.
The magnetic force Fdipole(mj,mk, d) is aligned with the

direction of from mk to mj to generate repulsive forces. This
means Fdipole(mj,mk, d) will be reversed (turn about 180 degrees
around the origin at an agent) if it has an opposite direction of a
vector pointing from an agent k to an agent j. In order to increase
the interaction range of dipole field, an adjustment factor γ ,
0 < γ ≤ 1 and close to one (γ ≈ 1), is added as follows:

Fdipole(mj,mk, d) =
3ρ

d4γ

(

(mj · d̂)mk + (mk · d̂)mj

+ (mj ·mk)d̂ − 5(mj · d̂)(mk · d̂)d̂
)

. (8)

The smaller value γ is, the further distance the dipole field of
one agent has influence on the others. In addition, a small term
ǫ = 10−12 is added into d in the denominator of Equation (8) to
avoid singularities.

2.2.3. Dipole Flow Field
An agent needs to adjust its moving path according to its
relative locations and orientations to other agents. Also, the
agent concerns the possible collisions with uncontrolled moving
objects, i.e., humans, which does not share information about
their locations, and intentions regarding how they will move.
Assume that there are a set of N agents, i.e., robots A = {j|j ∈
1, 2, ...,N} in the working space. All agents are designed using
the same architecture to cooperate with each other to plan global
movements so that each of them transmits location information
to the other agents in A. Let Oj = {oj|oj ∈ 1, 2, ...,Nj} be
a set of Nj human subjects recognized by the agent j within
its detecting range. In this context, the relative location and
velocity information about human subjects are estimations from
observations over time. The dipole flow field for an agent j is
formulated by integration of the static flow field, and the dynamic
dipole field as:

F
(j)

df
= αF

(j)

flow
/‖F

(j)

flow
‖ + βA

∑

k∈A,k 6=j

Fdipole(mj,mk, djk)

+βO

∑

l∈Oj

Fdipole(mj,ml, djl) (9)

where ||F
(j)

flow
|| =

√

(F
(j)x
flow

)2 + (F
(j)y
flow

)2 is the magnitude of the

flow force F
(j)

flow
= [F

(j)x
flow

, F
(j)y
flow

]T , here α, βA, and βO are

constants. Those constants determine the impact of dipole flow
forces over static flow forces to control the moving of agents.
Since the static flow force is normalized in Equation (9), the

coefficient α > 0 represents for the magnitude of the static flow
field term. To simply reflect the effective area of the static flow
field, α = 10 is chosen (correspondent to the agents’ diameter of
1m, or 10 pixels, in all experiments). Meanwhile, the dipole field
coefficients, βA and βO, determine the effecting area of the dipole
field. It is able to define this area of influence of the agent (k) on
(j) by a circle Cjk that has a center at the agent (k) and a radius rjk
to ensure that if djk < rjk then βA||Fdipole(mj,mk, djk)|| > α. As

the magnitude of ||Fdipole(mj,mk, djk)|| is proportional to 1/d
4γ
jk
,

the dipole forces have strong influence on the agent (j) when the
agent is inside Cjk. On the contrary this influence is significantly
decreased outside Cjk. In this work, the two constants βA and
βO are set to be equal (βA = βO) and defined to control the
desired effective area of the dipole field. This area has a radius
that is proportional to (βA/α)−1/4γ and to the magnitude of
dipole moments of agents. It is also noted that two agents (j) and
(k) receive the dipole forces with the same amplitude but with
opposite directions. Only agents are affected by the dipole forces
generated by human subjects. Thus, in the model human subjects
are not subject to these forces.

2.2.4. Velocity Planning
In this work, an autonomous agent is presented by the kinematics
model of a unicycle-type mobile robot (Morin and Samson,
2008). This model is chosen because despite its unicycle name,
it approximates many widely used differential drive robots and
can be easily extended to car-like mobile robots with two parallel
driven wheels. The state of a robot (Figure 5) is described by
a set of triple parameters s(t) = [x(t), y(t), θ(t)]T , and r(t) =
[x(t), y(t)]T are the coordinates, θ(t) is the orientation with
respect to the x−axis of the robot, and t is time. The state s(t)
is updated for every interval 1t as:

x(t +1t) = x(t)+ u(t)1t cos θ(t)

y(t +1t) = y(t)+ u(t)1t sin θ(t)

θ(t +1t) = θ(t)+ ω(t)1t (10)

where u(t) and ω(t) are the linear and angular velocities of
the agent respectively. Those velocities are computed by the
following equation:

u(t) = ku tanh(||r(t)− rgoal||)

ω(t) = −kω

(

θ(t)− arctan

(F
y

df

Fx
df

))

, (11)

where ku > 0 and kω > 0 are two constant control gains. From
this definition, the linear velocity u(t) is about ku while an agent is
moving on its ways and decays to zero when it is closer to the goal.
Therefore, ku is set to the expected speed of agent. Meanwhile, the
angular velocityω(t) is used to adjust the heading angle θ(t) of the
agent to make the agent’s orientation aligned with the direction
of dipole field force Fdf . By this, the dipole flow field mainly
affects the angular velocity ω(t) of the agent to drive it to the goal
and to avoid the static obstacles, and moving objects when they
are close. The second coefficient, kω, controls how smooth the
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FIGURE 5 | Visualization of an agent with kinematic parameters and human from (A) a real world space in (B) a 2D mapping space, and (C) a simplified visualization

used in the proposed work.

moving trajectory of the agent is and how fast the agent is able to
adapt to the changes of the dipole field force.

3. EXPERIMENTS

A number of experiments are conducted to validate the
effectiveness of the proposed path planning algorithm. Different
with most of existing approaches which have focused on
alternative aspects of local or global path planning for a single
agent, this work has developed a new promising framework
to address the navigation problems of multiple agents sharing
working space with human. This also adds a new dimension
to existing solutions of robotics navigation with the definition
of dynamic dipole field inspired from electromagnetic physics
and of the static flow field based on Theta* algorithm. Thus, the
main aim of this section is to investigate on the characteristics of
the proposed approach through various scenarios. The starting
point is an experiment with static flow field. This experiment
shows how this field is able to navigate agents to goals within the
map of complicated static obstacles. The next experiment exploits
the benefit of dipole field to help agents avoid moving obstacles
coming from different directions. Finally, a set of experiments
are conducted in order to evaluate how well the proposed path
planning algorithm with the combination of flow and dipole
flow fields, i.e., dipole-flow field, both drive agents toward the
goals, and at the same time avoid collisions with moving objects.
Data showing the agent-agent and human-agent distances in the
presence of the dipole-flow field is also shown as part of the last
experiment.

3.1. Static Flow Field
The aim of the static flow field is to convert the path found
by Theta* into a navigation field to avoid the needs of running
Theta* for every update of the agent position, and also to
allow a more robust integration of the path planning with
obstacle avoidance and velocity controls. Thus, only when the
agent deviates from its designated path, due to slow adaptation

to follow the navigation field, the path is required to be
renewed using the Theta* algorithm. Different examples of
agent movements with static flow field are shown (Figure 6). In
most situations, like examples given in Figures 6A,B, the agent
approaches the goals without the needs of renewing the shortest
path to the goal. However, in a particular case where the agent
deviates from the designed path, Theta* is reused to update the
path to the goal (Figure 6C).

Different windows of the static flow field are evaluated. One
hundred trials are attempted for each specific value of the
window. In this experiment, a binary map of 50 × 50 m with a
resolution of 10 pixels per meter is used. Each agent is presented
by a bounding circle with a radius of 0.5 m and has the speed
of 0.5m/s with kω = 1.2 (ku is set to the speed of agents in all
experiments). The influence distance d0 is set to 10 pixels (or one
meter). For each trial, an agent moves from a starting point to
a goal using only static flow field with velocity control. Pairs of
starting and ending locations are selected randomly in the map.
The results reveal that the bigger window is, the less number
of running Theta* the static flow field needs (Table 1). For the
following experiments in sections 3.2 and 3.3, the window of two
times of the agent size (W = 2S) is applied.

3.2. Dipole Flow Field for Crossing
Scenarios of Two Agents
To analyse the behavior of dipole flow field for obstacle
avoidance, two simple scenarios, in which two agents are crossing
each other are chosen (Figure 7). In Scenario 1, one of the agent
moves from left to right and the other agentmoves in the opposite
direction. In Scenario 2, the first agent moves as previously,
whereas the other agent starts in a position approximately 90o

to the first agent and moves from the left-hand to the right-
hand side similar to the first agent. The variation of the moving
directions of the two agents is also evaluated by validating
different values of the heading angle of the second agent (φ =
0,φ > 0 and φ < 0, as seen in Figure 7). The size of the agents
is set to a bounding circle with a radius of 0.5 m while the ratio
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FIGURE 6 | Agent moves from start to goal with static flow field where the window of static flow field is set as two times as the size of the agent. (A,B) an agent

approaches the goal without the needs of re-estimating a new path, and (C) Theta* is reactivated when the agent gets close to the second obstacle along its path (the

location for activation is shown by the arrow symbol).

TABLE 1 | Relationship between an average number of Theta* used for static flow field to successfully drive an agent to its goal and window size (W).

Window size W = S/4 W = S/2 W = S W = 3S/2 W = 2S W = 5S/2

Average number of Theta* 10.85 4.57 1.53 0.73 0.43 0.23

The size of an agent is S

FIGURE 7 | Crossing scenarios of two agents (A) Scenario 1: Two agents move toward each other with opposite directions and (B) Scenario 2: Two agents move

toward each other with the heading angles of around 90◦.

βA/α = 5 and the coefficient γ = 1 are used. In both scenarios,
the two agents moves at the same speed of 0.5m/s (with kω = 4)
so that their path intersects in the middle of their way. However,
with the help of repulsive forces generated by dipole field, the two

agents are able to avoid the collisions (Figure 8). Besides, after a
small deviation from the path, due to the dipole field interaction
the agents turn back directly to their original paths to continue

their routes toward their goals. The distance plots show that the
minimum distance of two agents are remained above the agent’s
diameter (marked with the green line at 1.0m, in Figure 9), thus
there are no collisions present in the presented cases.

3.3. Dipole Flow Field for Multi-Agent and
Human-Agent Interaction
In the first part of this section, the behaviors of multiple
agents within dipole-flow field are analysed. In the second part,
the comprehensive evaluation of the dipole-flow field with the
appearances of both agents and humans are preformed. Also, in
the second part, the concluding experiment, which demonstrates
the behavior of the agents in presence of human in a large and
realistic area, is presented.

Four agents, positioned at different orientations with the
same distance to the center of the map, take part in the first
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FIGURE 8 | Trajectories of two agents in two scenarios. The first rows visualize the moving behaviors in dipole field of agents in Scenario 1 with different value of φ,

(A) φ = 0, (B) φ > 0, and (C) φ < 0. Similarly, the second rows show the results of Scenario 2 with (D) φ = 0, (E) φ > 0, and (F) φ < 0. The time indices are used to

show the location of agents at every 10 seconds.

FIGURE 9 | Distance of two agents over time in (A) Scenario 1 and (B) Scenario 2. The green baseline depicts the minimum distance between agents to avoid

collisions.

testing scenario (Figure 10). All agents are planned to cross the
center, and move toward their goals symmetrical to their starting
positions. The agents travel within a binary map of a size of
50 × 50 m with a resolution of 10 pixels per meter and with
static obstacles so that the free-space of moving and avoiding
other moving objects is limited. Also, the way to reach the goal
is narrowed down and there is a traffic circle in the center of
the map. Each agent has a radius of 0.5 m and a moving speed
of 0.5m/s (with kω = 4). The quantitative measurement of

obstacle avoidance (with βA/α = 5 and d0 = 25) is given by
measuring the minimum distance among agents over time. The
closest distance of two agents when they are moving if smaller
than their size will reveal a collision between them.

As depicted in Figure 10A, using flow-field navigation all
agents are able to reach their goals. However there are
existing collisions between agents (1)-(4), (2)-(4), and (3)-
(4) (Figure 12A) with regards to the agent’s radius of 0.5 m.
With dipole-flow-field navigation, agents show ability to avoid

Frontiers in Neurorobotics | www.frontiersin.org 11 June 2018 | Volume 12 | Article 28

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Trinh et al. Dependable Dipole Field Path Planning

FIGURE 10 | Trajectories of multiple agents moving (A) without dipole field, (B) with dipole field γ = 1, and (C) with dipole field γ = 0.95.

FIGURE 11 | Trajectories of multiple agents moving and interacting with human (A) without dipole field, (B) with dipole field γ = 1, and (C) with dipole field γ = 0.95.

FIGURE 12 | Minimum distance of agents over time in (A) multi-agent, and (B) human-agent interactions within dipole-flow field.
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possible collisions. Finally, the control factor (γ ) in dipole-
flow field is evaluated to show its effects on the trajectories
of agents in Figure 10C and the results in Figure 12A. When
γ < 1 is used, the collisions are prevent in a better way
by keeping the minimum distances among agents bigger. It is
important to note that the trajectories of moving agents are

visualized to not interfering with any static obstacles from the
binary map.

In order to evaluate dipole-flow-field for human-agent
interaction, Agents 2 and 4 are replaced by two human subjects,
which move as their agent counterparts, without caring the
conflicts with agents. The moving trajectories of Agents 1 and 3

FIGURE 13 | Dipole-flow field to control movements of multiple agents with the presence of three human in a 200 × 200 m large map which is visualized from a real

working space. All agents are able to reach their goals with different speeds. While moving to goals, the two agents with indices 2 and 3 try to avoid the collision with

human with index 6. Meanwhile, two agents with indices 1 and 4 also change directions to avoid collision with each other. In the case of the agent with index 3, the

goal G3 is very close to the moving trajectory of human, therefore its way to the goal seems to be blocked until human with index 6 passes through G3. In

consequence, the agent 3 must go back and later turn around to reach its goal. This behavior of moving is quite different with the scenario described in Figure 10B.
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TABLE 2 | Evaluation of the minimum, and average, of agent-agent and human-agent distances over all 100 trials.

Minimum of agent-agent Minimum of agent-human Average of minimum Average of minimum

distances distances agent-agent distances agent-human distances

(m) (m) (m) (m)

2.4 1.0 10.0 8.8

are described in Figure 11. Again, the collisions between agents
are eliminated when agents are routed by the forces generated by
dipole-flow field (Figure 12B).

Finally, a general assessment of the dipole flow field for agent-
agent and human-agent interactions within a large and complex
binary map of variations of static obstacles drawn from a real
building is presented. There are five moving agents and three
human subjects in this evaluation. The map represents a part
of the floor of a real building (width and length = 200 ×
200 m with the same resolution of 10 pixels per meter). All
agents have a bounding circle with a radius of 0.5 m, while
βA/α = 50, d0 = 25, and γ = 0.95 are applied with
bigger values than those of the previous experiments to help
agents prevent collision from a further distance. An example of
moving trajectories of different agents with human is shown in
Figure 13. The experiments were repeated 100 times, and for
each trial start and goal positions of both agents and humans
were randomized. The requirement for finding the start position
and goals was that the pairwise distances among them should
be at least 2.0 m. The speed of the agents and human during
the experiment is randomly assigned within a range of 0.5 − 1.5
m/s using a uniform distribution (with kω = 4). For each
trial, agent-agent and human-agent the distances are recorded
for the evaluation purposes. The overall result is summarized in
Table 2.

4. CONCLUSION AND DISCUSSION

This paper has introduced a novel path planning algorithm
for agents surrounded by static and multiple moving objects,
including other robotic agents as well as humans subjects,
all populating a realistic working space. The algorithm is
able to process path planning in real-time by developing a
navigation field so that the movements of agents is just simply
controlled by the forces generated from this field. The attractive
forces that drive the agents toward their desired goals are
created by a static flow field. Simultaneously, the repulsive
forces that prevent agent-agent, and human-agent, collisions
are generated by a magnetic field of dipoles. The combination
of the static flow field and dipole field forms a force to
determine the moving directions of the agents at a specific time
instance.

The evaluation of the proposed approach with the static
flow field, dipole field and their combinations are conducted
with distinctive experiments. With static flow field, it is obvious
that an agent is able to move to its goals in a binary map
of static obstacles with a minimum number of re-initializing

the global path using the Theta* algorithm. As can be seen
in Table 1, the number of running Theta* instances except the
first initiation is less than one time in average (if the window
effects of the static flow field is set to at least twice the size of
the agents, W ≥ 2S). However, an unnecessary large window
may cover otiose areas that affect the static flow field, leading
to the trap of agent into a corner of the map. Therefore, the
window sizeW = 2S is recommended to increase the robustness
of the static flow field and to avoid the possibility of local
traps.

Within the combined dipole-flow field, the robotic agents
are well routed to their destinations, while possible collisions
with other agents and human are taken into account. Regarding
overall evaluation of the dipole-flow field to navigate agents
in a complex scenario, the average minimum distance between
any two agents remains at least double the radius of bounding
circle, which indicates that there are no collisions (Table 2).
The minimum human-agent distance is 1.0 m. However, such
a recorded observation in which the human-agent distance is
close to 1.0 m is only one case in 1, 500 obtained distance pairs
(there is a group of five agents and three human subjects in the
experiment so that the obtained pairs of human-agent is 1, 500
over 100 trials). Regarding the size of the human subjects, the
bounding circle radius can be configured even less than 0.5 m,
therefore it can be concluded that no occlusions happen in any of
the simulation runs.

Recently, the aim of this work has moved toward holistic
navigation solutions in real-world problems more specifically,
mobile robots in densely populated areas such as, offices, and
heavy vehicles in restricted spaces. Thus, by adding a control
mechanism for the velocity, e.g., decreasing the speed to avoid
possible collisions, as well as other measures will be investigated.
Besides controlling the agents’ velocity, the configuration of
global paths with regards to multiple agents is also an important
factor to ensure the reachability of all agents to their goals.
In the current approach, only one optimal path to the goal
is configured for each agent, without considering the conflicts
with others. If any two agents enter into a very narrow area on
opposite directions, as described by Kimmel and Berris (2016),
the dipole forces mainly push them away to avoid collisions but
not help them build new paths to their goals. Therefore, the
two agents tend to follow the same planned paths again and
again, leading to a deadlock situation. The proposed approach
could be improved by setting multiple paths for each agent.
Upon evaluating the location information of others and the
binary map of environment, an agent is able to decide which
path, even not optimal, it should follow to reach its goal. The
aforementioned problem could be also addressed by exchanging
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information of planned paths among agents. All agents will
negotiate to optimize the flow field on a global scale to avoid
any deadlock situation. However, in this case the communication
protocol will become more complicated and extra processing
is needed at each agent side to optimize the global path with
respect to the presence of other agents. Finally, the work will
be extended with different classes of agents (Panagou, 2017),
and with multiple heuristics of A* (Aine et al., 2016) to allow
more thoroughly investigation of the dependability factors, and
constraints on the path planning problems. The intention is
also to validate the algorithm using robots and humans in
outdoor settings, that resemble the qualities of construction
sites.
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