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Abstract: Fibrous scaffolds have been extensively used in three-dimensional (3D) cell culture systems to establish in vitro 
models in cell biology, tissue engineering, and drug screening. It is a common practice to characterize cell behaviors on such 
scaffolds using confocal laser scanning microscopy (CLSM). As a noninvasive technology, CLSM images can be utilized 
to describe cell-scaffold interaction under varied morphological features, biomaterial composition, and internal structure. 
Unfortunately, such information has not been fully translated and delivered to researchers due to the lack of effective cell 
segmentation methods. We developed herein an end-to-end model called Aligned Disentangled Generative Adversarial 
Network (AD-GAN) for 3D unsupervised nuclei segmentation of CLSM images. AD-GAN utilizes representation 
disentanglement to separate content representation (the underlying nuclei spatial structure) from style representation (the 
rendering of the structure) and align the disentangled content in the latent space. The CLSM images collected from fibrous 
scaffold-based culturing A549, 3T3, and HeLa cells were utilized for nuclei segmentation study. Compared with existing 
commercial methods such as Squassh and CellProfiler, our AD-GAN can effectively and efficiently distinguish nuclei with 
the preserved shape and location information. Building on such information, we can rapidly screen cell-scaffold interaction in 
terms of adhesion, migration and proliferation, so as to improve scaffold design.
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1. Introduction
Scaffold-based three-dimensional (3D) cell culture 
systems have gained great attention as a replacement 
of two-dimensional (2D) planar culture to mimic 
extracellular matrix environments[1]. Unlike the 2D 
environment, 3D cell culture makes cell-cell contacts 
in all dimensions to obtain oxygen and nutrition, all of 
which lead to more in vivo-like gene expression and cell 
behavior. Fibrous scaffolds have been extensively used 
in 3D cell culture systems to establish in vitro models in 
cell biology, tissue engineering, and drug screening[2]. It 
is a common practice to characterize cell behaviors on 

these scaffolds using confocal laser scanning microscopy 
(CLSM)[3]. This technology scans the whole models 
layer by layer to collect CLSM image volumes and 
then stack them together. As a noninvasive technology, 
CLSM images can not only visualize cell behaviors, 
but also reveal cell-scaffold interaction under varied 
morphological features, biomaterial composition and 
architectural structure. However, such information has 
not been fully translated and delivered to researchers, due 
to the complex nature of these images and the lack of 
effective analysis tools.

To quantitatively analyze the cell culture model in 
image-based cellular research, the first step is to extract 
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Figure  1. Principle of nuclei segmentation using aligned 
disentangled generative adversarial network. 
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individual cells or ellipsoids-like nuclei, that is, cell/nuclei 
segmentation[4]. As such, several rule-based methods have 
been developed, which commonly apply visual features 
to discriminate regions-of-interest on microscopy images. 
For example, a global threshold is utilized to determine 
if one individual image pixel is an object or not. This 
approach is easy to implement but fails to tackle noisy 
images or de-convolute clustered nuclei[5,6]. Meanwhile, 
how to extract and select features is always arguable[7]. 
Marker-based watershed segmentation is capable of 
separating cells, but the relevant marker detection highly 
depends on parameter selection[8,9]. Standard edge-
detection algorithms can only discriminate the lateral 
boundaries under low cell density[10]. Despite the great 
interest and expectation from the research community 
on these rule-based methods, they are not scalable when 
analyzing a large number of cells[11], or clustered cells 
with weak boundary gradients. To meet the growing 
demand from biological image analysis, some stand-alone 
commercial software has been developed to segment 
nuclei such as CellProfiler[12] and Squassh[13] in ImageJ. In 
general, they are convenient to use but lack of flexibility 
when dealing with 3D segmentation applications.

Over the past decade, machine learning (ML) 
has been introduced to segment CLSM images and 
has demonstrated state-of-the-art performance under 
varied image resolution, signal-to-noise ratio, contrast, 
and background[14,15]. Supervised ML-based nuclei 
segmentation methods consist of three key elements: 
derived staining patterns, extracted features of nuclei 
morphology, and annotated training data. The current 
bottleneck of applying such methods lies in the expensive 
and tedious process of appropriate annotating thousands 
of nuclei with irregular or deformed shapes as training 
data. Particularly, the poor Z axial resolution of CLSM 
images causes difficulties and defects when delineating 
the top and bottom boundaries of nuclei[16].

To deal with this dilemma, unsupervised ML 
methods have been introduced for nuclei segmentation. 
Unsupervised methods can learn relatively consistent 
pattern from large scale of data without expensive 
annotation and personal bias. They can make use of 
prior knowledge from human beings at abstract level, 
which may be closer to the essence of learning. Thus, 
unsupervised methods with appropriate prior knowledge 
can obviously minimize the influence from the poor Z-axis 
resolution, in comparison with supervised ML methods 
using concrete annotation. Liu et al.[17] took advantages 
of unsupervised domain adaptation (UDA) to transfer 
knowledge of nuclei segmentation from fluorescence 
microscopy images to histopathology images. However, 
this UDA requires labeled fluorescence microscopy 
images. Generative adversarial network (GAN) has also 
been introduced to label images, where a generator and a 

discriminator are trained to compete against each other. 
The former learns to create images that look real, and 
the latter learns to distinguish real or fake images. Hou 
et al.[18] proposed a GAN-based method to refine synthetic 
histopathology nuclei images. The pairs of the refined 
synthetic nuclei images and the corresponding masks 
were used to train a task-specific segmentation model, 
which is too complicated for practical applications. In 
most cases, translating images cross domains requires 
datasets with paired information, which may not be 
available in real-world applications. To enforce stronger 
cross-domain connection, Dunn et al.[16] proposed a cycle-
consistent adversarial network (CycleGAN) to translate 
the synthetic semantic label maps from mask style to 
fluorescence microscopy image style and use the pairs 
for training a segmentation model. Unfortunately, this 
CycleGAN cannot achieve one-to-one nuclei mapping 
between the images and corresponding masks.

Content and style are the two most inherent attributes 
to characterize nuclei visually. Recent achievement shows 
that disentangling content and style representations in 
image-to-image translation can significantly improve 
GAN’s performance. Yang et al.[19] applied this technology 
to attain cross-modality domain adaptation between 
computed tomography and magnetic resonance imaging 
images using a shared content space. Inspired by this idea, 
we apply this disentanglement technology to align the 
domains’ content representation under a novel end-to-end 
model, called Aligned Disentangling GAN (AD-GAN). As 
shown in Figure 1, two style representations are involved 
in this AD-GAN model with different structure rendering, 
that is, image and mask. This AD-GAN can extract content 
and style representation from CLSM image separately. As 
a result, CLSM images can be disentangled into content 
representation (underlying nuclei spatial structure) and 
image style (rendering of the structure). As shown on the 
right side of Figure 1, the same content representation can 
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be entangled with mask style as the output of this AD-GAN 
model, that is, nuclei segmentation results. Meanwhile, 
spatial structure (the shape and position information of 
nuclei) is preserved with content consistency during this 
image-to-mask translation.

The overall flow of this paper is organized as follows. 
The relevant methods are discussed in Section 2, including 
CLSM image collection in fibrous scaffold-based cell 
culture, overview of AD-GAN, its training strategy 
and loss function. Section 3 covers the performance 
comparison of the segmentation methods including AD-
GAN, CycleGAN, Squassh, and CellProfiler under low/
high cell density or cross cell lines. Cell adhesion and 
proliferation analysis based on the segmentation results 
are reported in Section 4. Finally, the conclusion and 
future work are set out in Section 5.

2. Methods
The workflow of cell-scaffold interaction analysis 
through nuclei segmentation is shown in Figure 2. The 
six-step procedure includes: (A-F): Scaffold-based cell 
culture process; (B) CLSM image collection in the cell 
culture process; (C) AD-GAN model training; (D) 3D 
nuclei segmentation results with position, size and shape 
information; (E) cell-scaffold interaction analysis using 
heat map produced by segmented nuclei; (F) scaffold 
design revision. Figure 2(E) is obtained by projecting all 
the center point of segmented nuclei from step (D) on the 
XY plane, and demonstrates nuclei density distribution 
using the brightness of red color. To further clarify the 

procedure, two key steps, i.e., CLSM image collection and 
nuclei segmentation are described as follows.

2.1. CLSM image collection from fibrous 
scaffold-based cell culture
CLSM images collected from three types of fibrous 
scaffolds are utilized for cell segmentation study: 
Poly-E-caprolactone (PCL) scaffolds and two types 
of surface engineered nanoporous scaffolds, namely, 
PCL-10-D and PCL-20-D[21]. The schematic diagram 
of scaffold with fiber stacking structure is shown in 
(Figure  3A), the scanning electron microscope (SEM) 
image of the overall fibrous PCL scaffold structure is 
shown in (Figure  3B), and the cross-section of fiber 
stacking is shown in (Figure  3C). It can be seen that 
the pores of the scaffold are uniformly distributed within 
the structure, and fibers are well oriented and orderly 
stacked in a layer-by-layer manner. The SEM images 
of PCL-10-D and PCL-20-D are almost the same as 
those of PCL scaffolds. The overall thickness of these 
12-layer scaffolds is between 110 µm and 127 µm, with 
an average fiber diameter of around 10 µm. Meanwhile, 
they have varied surface morphology. The fiber surface 
of the PCL scaffolds is smooth (Figure 3D), the PCL-
10-D scaffold surface is covered by nanopits with an 
average size of	 133.1 ± 47.4 nm (Figure 3E), and the 
PCL-20-D scaffold surface is covered by much larger 
nanopits and nanogrooves with lengths ranging from a 
few hundred nanometers to a few microns (Figure 3F).

Figure 2. (A-F) Schematic diagram of cell-scaffold interaction analysis using nuclei segmentation.
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These scaffolds are used to culture NIH-3T3 mouse 
embryonic fibroblast cells, A549 human non-small 
cell lung cancer cells and HeLa cells. The nuclei and 
membrane of the three cell lines are stained with Hoechst 
33342 (blue) and DiI (red) for CLSM imaging. The living-
image of cell-seeded scaffolds after fluorescent staining 
are taken by CLSM (LSM-880, ZEISS, Germany) with 
an EC Plan-Neofluar 20X/0.5 air immersion objective. 
The CLSM images are compiled using Z-stack mode by 
ZEN software, and reconstructed using Imaris software 
(Bitplane Inc). The collected CLSM images have been 
resized to 512×512×64 voxels by spatial normalization to 
remove redundant information (data available at: https://
github.com/Kaiseem/Scaffold-A549). The processed 
images are split into 16 image patches with the size of 
128×128×64 voxels as the inputs of AD-GAN model.

2.2. AD-GAN method and training strategy
Unsupervised nuclei segmentation can be considered an 
image-to-image translation task as shown in Figure  4, 
where the inputs are the grayscale CLSM images, and 
the output images are the segmentation results. Our AD-
GAN model is essentially designed to deal with two 
domains: domain A with image style including input 
image, reconstructed image and cyclic image, and domain 
B with mask style including input mask, reconstructed 
mask and fake mask. The synthetic mask is generated 
by non-overlapping ellipsoid structures with random 
rotations and translations, which would stimulate the 

developed AD-GAN model to output non-overlapping 
3D nuclei. The probability of rotating directions of 
ellipsoids is assumed the same in all directions to mimic 
real nuclei, which encourages the AD-GAN model to 
map Z-axis elongated nuclei caused by light diffraction 
and scattering in real CLSM images to the ellipsoids in 
the synthetic masks. To achieve one-to-one mapping 
between real images and synthetic masks, the proposed 
AD-GAN training includes both same-domain translation 
(image-to-image and mask-to-mask) and cross-domain 
translation (image-to-mask and mask-to-image) as shown 
in (Figure  4B). A  single GAN-based auto-encoder is 
designed to build a bidirectional mapping between each 
real image and the corresponding content representation 
in the shared content space.

Our proposed AD-GAN model consists of a unified 
conditional generator and a PatchGAN discriminator Ɗ, 
both of which use 3D convolutional layers. As shown 
in (Figure 4A), the designed generator in each domain 
contains two parts: an encoder (ꞔenc) which encodes the 
input volume to content representation, and a decoder 
(ꞔdec) which reconstructs the content representation to 
the output volume. In the same-domain translation, the 
generator is trained to extract useful information by auto-
encoding. In the cross-domain translation, the decoder ꞔdec 
is frozen and the encoder ꞔenc is trained to generate fake 
images to fool the discriminator by aligning the content for 
each domain. The encoder contains two down-sampling 
modules and four ResNet blocks, and the decoder has a 

Figure 3. (A) Schematic diagram of scaffold with fiber stacking structure. (B) scanning electron microscope images of overall fibrous 
scaffold structure. (C) Cross-section of fiber stacking. (D-F) Fiber surface morphology of poly-E-caprolactone (PCL), PCL-10-D and PCL-
20-D scaffold, respectively. Figure 3(A)-(D) are original images, and Figure 3(E) and (F) are adapted from ref.[20] licensed under Creative 
Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), https://creativecommons.org/licenses/by-
nc-nd/4.0.
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symmetric architecture with four ResNet blocks and two 
up-sampling modules. Both the encoder and decoder are 
equipped with Adaptive Instance Normalization layers to 
integrate the style representations, which are generated 
from domain labels through a multilayer perceptron. 
A  single style representation is assigned for each 
domain using one-hot domain labels. Therefore, we can 
disentangle content representations (underlying spatial 
structure) from styles (rendering of the structure) under 
specific domain.

The PatchGAN discriminator in this AD-GAN model 
can identify the inputs’ domain and their verisimilitude, 
that is, the reconstructed images (microscopy images or 
synthetic masks) or generated fake images. Rather than 
defining a global discriminator network, this discriminator 
can classify local image patches and force the generator 
to learn local properties in real CLSM images or synthetic 
masks. ADAM solver[22] is used to train the model from 
scratch with a learning rate of 0.0002. As empirically tuned 
in the experiments, the learning rate keeps consistent for 
the first 100 epochs and linearly decays to zero over the 
next 100 epochs. Common data augmentation, including 
random crop, random rotations are applied to avoid 
overfitting.

The loss function in AD-GAN contains four terms: 
reconstructed loss rec , cycle-consistency loss cyc , 
semantic consistency loss sc , and adversarial loss adv . 
rec  measures the difference between the original inputs 
and reconstructed outputs in the same-domain translation 
so as to extract useful features. cyc  measures the 

consistency between the original inputs and cycled 
outputs so as to keep the transferred content in unpaired 
image-to-image translation. sc  measures the difference 
of the disentangled features between the original inputs 
and transferred images in the content space. To keep more 
low frequency details, Mean Absolute Error is used to 
calculate the above three losses. The domain discriminator 
loss adv  is to measure the verisimilitude of the 
reconstructed images/masks and generated fake images/
masks. The loss function is defined as Equation 1.

min max
,G G D

L L L L L
enc dec

total adv sc sc cyc cyc rec rec= + + +λ λ λ ,� (1)

where λsc, λcyc and λrec are used to adjust the importance of 
each term.

During training, we followed the setting in 
CycleGAN[23] and used LSGANs[24] to stabilize the 
training. We randomly cropped the original volumes with 
size of 64 × 64 × 64, and train the model with the batch 
size of 4. With this novel training strategy, the proposed 
AD-GAN model can readily align the disentangled 
content representation of the two domains in one latent 
space.

3. Segmentation results and discussion
Several commercial software with numerous tutorials is 
available to segment/analyze nuclei in cell aggregation, 
spheroids and organoids. The most well-known 3D nuclei 
segmentation tools are Cellprofiler 3.0, and Squassh in 
ImageJ. Their specific image processing pipeline/steps/

Figure 4. (A and B) Our Aligned Disentangled Generative Adversarial Network model consists of same-domain translation (top and bottom) 
and cross-domain translation (middle). The content representation ( ) is a tensor with spatial dimensions, while the style representation ( ) is 
a learned vector by multilayer perceptron from domain label. During same-domain translation, the encoder genc embeds an input into the shared 
content space and the decoder gdec reconstructs the content to image. Cross-domain translation is performed by swapping content representation.
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approach can be incorporated into 3D segmentation 
workflows based on user needs. Accordingly, we have 
decided to include them for both visual and quantitative 
comparison in this study. The relevant parameters were 
set either using default or optimal settings to the best 
of our ability. The direct output from CellProfiler and 
Squassh were the segmented nuclei instances.

3.1. Segmentation methods in comparison
To benchmark the nuclei segmentation performance, the 
AD-GAN was compared with CycleGAN, and Squassh 
in ImageJ and CellProfiler 3.0. In CellProfiler, functional 
modules were arranged into specific “pipelines” to identify 
cells and their morphological features. We corrected the 
illumination of CLSM images by a sliding window, and 
then applied the “MedianFilter” to remove artifacts within 
the images, the “RescaleIntensity” to reduce the image 
variation among batches, and the “Erosion” to generate 
markers for the “Watershed” module.

Squassh can globally segment 3D objects with 
constant internal intensity by regulating three parameters 
“Rolling ball window size,” “Regularization parameter,” 
and “Minimum object intensity.” To produce visually 
optimal segmentation results, these parameters were 
adjusted independently to subtract an object within the 
window from the background, avoid segmenting noise-
induced small intensity peaks and force object separation.

CycleGAN was adapted from the official code 2 by 
replacing 2D convolutional layers with 3D convolutional 
layers for this task. Half of the default channels in the 
intermediate layers were kept for memory saving and 
redundancy reduction. The ResNet with 9 blocks was 
chosen as the generator architecture and the receptive 
field of the discriminator was reduced to 16 × 16 × 16 to 
improve translation performance.

Our AD-GAN model (code is available at: https://
github.com/Kaiseem/AD-GAN) was built with open-
source software library PyTorch 1.4.0 on a workstation 
with one NVIDIA GeForce RTX 2080Ti GPU. The 
training process took 9 – 11  min per epoch, and the 
segmentation of an unseen image took <1 s. The direct 
outputs of CycleGAN or AD-GAN were semantic 
segmentation results, thus a post-process using OpenCV 
library was applied to obtain segmented nuclei instances. 
Specifically, the morphological erosion with a cube of 3 × 
3 × 3 voxel could filter noises or very small instances. The 
erosion results could serve as markers for the watershed 
algorithm to separate the clustered nuclei into instances, 
and the binarized outputs were the segmented nuclei.

(1) Comparison of performance under low cell density

An original CLSM image with low cell density is shown in 
(Figure 5A) and its grayscale image is shown in Figure S1, 
which demonstrates the initial stage of scaffold-based cell 

culture. Both of them were generated using Mayavi2 by 
maximum intensity projection. In (Figure 5A), it is hard to 
identify nuclei boundaries for cells adhered on the scaffold 
fibers. The corresponding 2D slices at the depth of 8 µm, 
24 µm and 40 µm below the surface of the scaffold are 
shown in the first column of Figure 6.

As indicated by the white rectangle box, cells were 
observed to adhere on top of the fibers at 8 µm, and on 
the fiber side walls at 24 µm. This indicates that cells can 
attach to the varied fiber surface. Only a small amount of 
blurred nuclei could be observed at the depth of 40 µm 
since the laser scanning capability of CLSM was seriously 
blocked by non-transparent fiber and cell cluster[25]. 
Obviously, most of existing imaging technologies and 
protocols originally designed for 2D culture systems 
are insufficient to visualize 3D cell culture model at 
deeper depth, and technologies with more powerful 3D 
visualization capabilities are expected.

To demonstrate the 3D segmentation results more 
comprehensively, the outputs of the AD-GAN model with 
volume renderings are shown in (Figure  5B), and the 
corresponding results from CellProfiler, CycleGAN, and 
Squassh are shown in Figure S2-S4, respectively. The 
slices of these results at the depth of 8 µm, 24 µm, and 
40 µm are shown in Figure 6. A demonstration about the 
nuclei segmentation process using AD-GAN is shown in 
the supplementary video, which consists of an original 
CLSM image with low cell density,  its grayscale image 
and the segmented 3D nuclei results.

The segmentation results obtained from CellProfiler 
and CycleGAN at 8  µm and 24  µm look similar in two 
dimensions. In 3D visualization as shown in Figure S2 and 
S4, CellProfiler tended to identify elongated nuclei. This is 
probably attributed to Otsu threshold used in CellProfiler, 
which can only distinguish nuclei from the foreground and 
background, but not the shadow above or below. Using 
Squassh, adjacent nuclei were found to be segmented as one 
object at the depth of 8 µm. Therefore, the size of segmented 
nuclei was obviously larger than those identified by the other 
methods. More often, cells adhered on the scaffold fibers 
led to more geometrically complex scenarios. As indicated 
by the white rectangle box under the third column, Squassh 

Figure 5. (A and B) Confocal laser scanning microscopy image and 
3D nuclei segmentation under lower cell density when culturing at 
day 1 using A549.
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Figure 6. Comparison of segmentation performance from Squassh, Cellprofiler, CycleGAN and AD-GAN under low cell density when 
culturing at day 1 using A549. Grayscale CLSM images with low cell density collected from different depths of the volume are shown in the 
first column. Segmentation results from the four methods are shown in column. Different colors are used to discriminate individual nuclei.
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could not identify nuclei along the fiber edge at the depth 
of 24 µm. Indeed, the existence of fibers had significantly 
lowered the nuclei segmentation performance. CycleGAN 
tended to learn one-to-one mapping at image-level instead 
of object-level. Consequently, nuclei addition/deletion, 
position offset and unmatched shape could be widely found 
in its segmentation results as shown in Figure S4 and the 
fourth column in Figure 6.

Compared with the grayscale image in Figure S1, 
the proposed AD-GAN could retrieve most of the nuclei 
with the correct positions and shapes. It also outperformd 
when identifying multiple nuclei shapes within an image, 
which are difficult to define using mathematical models.

(2) Comparison of performance under high cell density

With the increase of cell culture time, cells migrate, 
proliferate and form some kind of sheet or circular 
structure within the cavity of the scaffolds, indicating an 
improved cell-scaffold interaction. The 3D CLSM image 
under high cell density is shown in (Figure 7A) and its 
grayscale image is shown in Figure S5. Under higher cell 
densities, the outputs of the AD-GAN model with volume 
renderings are shown in (Figure 7B). Their 2D slices at 
the depth of 8 µm, 24 µm and 40 µm below the surface 
of the scaffold are shown in the first column of Figure 8. 
Similar to the situation under low cell density, only a 

very small amount of nuclei was captured at the depth 
of 40 µm. The segmented nuclei in (Figure 7B) looked 
visually close to those in Figure S5. Moreover, AD-GAN 
could identify multiple nuclei which are spatially close 
in dense cell regions. The corresponding segmentation 
results from CellProfiler, Squassh and CycleGAN are 
shown in Figure S6-S8.

Different from the results under low cell density, 
Cellprofiler identified some portion of fibers as nuclei at 
the depth of 8  µm and 24  µm under high cell density. 
The segmentation results became even worse when using 
Squassh. A large portion of straight fibers were identified 
as nuclei indicated by blue curves. On the other hand, 

Figure 7. (A and B) Confocal laser scanning microscopy image and 
3D nuclei segmentation under higher cell density when culturing at 
day 3 using A549.
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Figure  8. Comparison of segmentation performance from Squassh, Cellprofiler, cycle-consistent adversarial network and Aligned 
Disentangled Generative Adversarial Network under high cell density when culturing at day 1 using A549. Grayscale confocal laser 
scanning microscopy images with low cell density collected from different depths of the volume are shown in the left column. Segmentation 
results from the four methods are shown in column 2 to 5. Different colors are used to discriminate individual nuclei.
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CycleGAN led to a large amount of nuclei addition/
deletion, position offset and unmatched shapes at all 
depths as shown in the fourth column of Figure 8 and 
Figure S8. Under the higher cell density, the AD-GAN 
could retrieve nuclei from the CLSM images, even in the 
corner region as indicated by the white rectangle box. It 
seems that the inhomogeneity of microscopy images does 
not cause obvious negative effects in nuclei segmentation. 
Even at the depth of 40 µm, the captured nuclei could be 
segmented as shown in the last column of Figure 8.

(3) Evaluation of AD-GAN segmentation model across 
cell lines

Nuclei shape and cellular morphology vary among cell 
types. The majority of attached epithelial A549 cancer 
cells were prone to gather together and formed cell clusters 
that were partially adhered on the fiber surface, and 
then elongated along the fiber directions. When seeding 
fibroblast cell NIH-3T3, some of them partially adhered on 
fibers and their cellular skeleton assembled into an annular 
structure and interwove within the pores[21]. NIH-3T3 cells 
could grow indefinitely and show spindle-shaped and 
multilayered during transformation. In addition, different 
cell experiment protocols may generate morphological 

characteristics with varied noise, background, contrast 
and resolution. A generic segmentation method is capable 
of coping with such scenario. To verify the proposed AD-
GAN method, the model was trained and tested using 
CLSM images from the same cell lines or different cell 
lines. We also tested the generic performance of this 
method using unseen data from the HeLa cell line.

(Figure 9A-C) are grayscale CLSM images of A549, 
NIH-3T3 and HeLa cell line cultured on fibrous scaffolds, 
respectively, and (Figure 9D-F) are their enlarged volume 
patch. (Figure 9G) and (Figure 9J) show the segmentation 
performance of A549 in (Figure  9D), when the model 
was trained using A549 or NIH-3T3 cell line. To test the 
generalization performance of AD-GAN method cross 
cell lines, (Figure 9G and J) were paired for comparison. 
Similarly, (Figure 9H and K), the segmentation results 
of (Figure  9E) were paired for comparison, where the 
model was trained using A549 and NIH-3T3 cell line 
correspondingly. (Figure  9I and L), the segmentation 
results of (Figure 9F), were also paired for comparison.

A high visual similarity was reported between 
(Figure 9G and J), between (Figure 9H) and (K), and 
between (Figure 9I and L). This indicates that the AD-
GAN performed well in segmenting nuclei in CLSM 
images from unseen cell lines, when the nuclei had similar 



Yao, et al.�

	 International Journal of Bioprinting (2022)–Volume 8, Issue 1� 175

visual properties on distribution, size and morphology. 
In other words, this method can capture nuclei based on 
general properties rather than specifics.

3.2. Quantitative measurement of segmentation 
performance
To quantitatively measure segmentation performance, a 
testing dataset was prepared by manually labeling a full 
volume of CLSM image (512 × 512 × 64 voxel). This 
volume with a relatively smaller number of nuclei was 
annotated slice-by-slice from axial, sagittal and coronal 
views by three expert users. The final annotation was 
determined by comparing the average of the manual-
labeled annotations with a threshold of 0.5. In general, 
the three expert users achieved similar accuracy in their 
manual annotation.

To prepare a training dataset, 20 CLSM images 
from culturing A549 cells were collected and each image 

was divided into 16 patches. This generated 320 cropped 
images in total for training. Most voxels in CLSM images 
were background and its numbers were much more than 
that of the voxels of foreground, which caused imbalanced 
data distribution. Thus, the commonly used voxel-based 
metrics such as voxel-based accuracy, Type-I and Type-
II become distorted in training and testing[3,4]. To better 
reflect the classification accuracy, the segmentation 
performance was measured using precision, recall and 
DICE[26,27]. In this study, the segmentation performance 
was measured using precision, recall and DICE, which 
are defined as Equation (2).
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DICE

= =

=

+ +

+

N
N N

N
N N

N
N N

TP

TP FP

TP

TP FN

TP

TP FP

, ,

2

2

×
× ++ NFN

,

� (2)

Figure 9. Segmentation performance comparison cross cell lines. (A-C) Grayscale confocal laser scanning microscopy images of A549, 
NIH-3T3 and HeLa cells cultured on scaffolds, respectively. (D-F) 3D nuclei of A549, NIH-3T3 and HeLa. (G-I) Segmentation results of 
(D), (E) and (F) using the Aligned Disentangled Generative Adversarial Network (AD-GAN) model trained with A549 cell lines. (J-L): 
Segmentation results of (D), (E) and (F) using the AD-GAN model trained with NIH-3T3.

D

H

C

G

B

F

A

E

L

K

J

I



� Analyzing Cell-Scaffold Interaction through Unsupervised 3D Nuclei Segmentation

176	 International Journal of Bioprinting (2022)–Volume 8, Issue 1�

where NTP, NFP, and NFN are defined as the number of true-
positive segmented samples, false-positive segmented 
samples (voxels wrongly detected as nuclei), and false-
negative segmented samples (voxels wrongly detected 
as background), respectively. For example, wrongly 
identified nuclei may increase NFP, and nuclei with poor 
staining may lead to the increase of NFN. In general, larger 
precision and recall indicate accurate segmentation, 
and larger DICE indicates better similarity between the 
ground truth and the segmentation results.

The quantitative evaluation results among the 
different segmentation methods are listed in Table  1 
based on the fully annotated testing dataset. We believe 
the size and diversity of this dataset is sufficient to reflect 
the performance of different segmentation models. As 
shown in Table  1, CellProfiler achieved the highest 
recall (91.3%), but the poorest precision (37.5%). This is 
because the shadow regions along Z axis were detected 
as the nuclei. Squassh also achieved good recall but 
low precision, since the segmented objects consisted 
of connected nuclei or fibers. A  takeaway from this is 
that Squassh or CellProfiler generally suffers from low 
performance in analyzing CLSM images consisting 
of scaffold fibers. Besides, hours of effort in image 
preprocessing and parameter setting cannot improve their 
global segmentation performance.

The DICE of CycleGAN was only 47.0%, due to 
the inconsistent mapping of nuclei between the CLSM 
image and synthetic mask. With the minimum effort 
on parameter tuning, our AD-GAN method performed 
well with precision (89%), accuracy (78.2%) and DICE 
(83.3%), reflecting its better capability in identifying 
nuclei in CLSM images. Moreover, the majority of the 
identified nuclei are true-positive samples.

3.3. Segmentation performance in 2D CLSM 
images
Our AD-GAN method can also be applied to segment 
nuclei in 2D CLSM images by replacing the 3D 
convolutional layers with 2D. This is tested using the 
recently released public dataset HaCaT[28]. This dataset 
with highly over-lapping nuclei and partially invisible 
borders had been annotated by biological and annotation 
experts. It consists of 26 training images and 15 test 
images with human keratinocyte cell line.

The visualization of a HaCaT raw image, the 
corresponding ground truth and the prediction of AD-
GAN are shown in Figure  10. As reported by Kromp 
et al.[28], the biological experts obtained DICE 93.2% 
and annotation experts obtained DICE (89.2%) when 
annotating this dataset. As an unsupervised method, 
our AD-GAN achieved precision 85.4%, recall 95.2% 
and DICE 89.3%, which are close to the human expert 
recognition capability. Hence, we can conclude the 
proposed AD-GAN can replace manual annotation with 
performance similar to human experts.

4. Cell adhesion and proliferation analysis 
using segmented nuclei
Researchers have reported that the cell adhesion, 
proliferation and migration heavily depend on scaffold 
pore size, surface morphology, biomaterials and internal 
structure[29]. The cell attachment rate lowers with 
increasing pore size, while relatively larger pore size may 
improve cell migration and proliferation[30]. Meanwhile, 
the preferred pore size is highly cell-dependent. 
Pore sizes of 30 – 80  µm were reported as an optimal 
choice for endothelial cell adhesion in porous silicon 
nitride scaffolds, but fibroblasts usually preferred larger 
pores[31]. In an effort to reconcile the conflicting reports, 
it is important to evaluate cell-scaffold interaction with 
convincing evidence.

Besides, multiple factors are involved in scaffold 
design such as material composition, surface roughness 
and internal structures. To clarify their influences on cell 
culture, automated nuclei segmentation is a prerequisite, 
which is particularly pronounced in the stage of scaffold 
design. Consequently, the information of nuclei number, 
size and position can be collected to analyze scaffold 
design. In this study, we used segmented nuclei from 3D 
CLSM images to explore how scaffold properties can 
modulate cell adhesion, proliferation and migration in a 
computational manner. This provides a rapid screening 
method to analyze cell-scaffold interaction.

4.1. A549 cell adhesion and proliferation analysis
Figure 11A and B demonstrate CLSM images of A549 
cell cultured on PCL-10-D scaffold on day 1 and 3. 
The positions and size information were identified and 
plotted using black dots as the heatmap, as shown in 
(Figure  11C  and D). The nuclei density distribution 
provides visual cues about cell proliferation over time 
within the scaffold structure. As expected, a very low 
nuclei density was identified on day 1 and most of the 
nuclei gathered close to fiber structures. In (Figure 11D), 
higher nuclei density was observed after 3 days’ culture 
and many nuclei were identified close to fiber surface. 
Besides, the majority of nuclei were closely packed 

Table 1. Segmentation results comparison on A549 scaffold‑based 
cell culture images

Methods Precision (%) Recall (%) DICE (%)
CellProfiler 37.5 91.3 53.1
Squassh 51.7 78.6 62.3
CycleGAN 53.9 41.7 47.0
AD‑GAN 89.0 78.2 83.3



Figure 10. Visualization of (A) HaCaT raw image, (B) the corresponding ground truth, and (C) the prediction of Aligned Disentangled 
Generative Adversarial Network.
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Figure  11. A549 cell adhesion and proliferation analysis on poly-E-caprolactone-10-D scaffold. (A and B) confocal laser scanning 
microscopy images of cell culture A549 on day 1 and 3. (C and D) Heat map of cell distribution on day 1 and 3.
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Figure 12. Nuclei size and number of A549 under varied surface nanotopography on day 1 and 3. (A) poly-E-caprolactone (PCL)-10-D 
scaffold. (B) PCL-20-D scaffold.
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together, which means strong cell-cell interaction within 
this scaffold. The number of nuclei under varied size on 
PCL-10-D on day 1 and day 3 is plotted in (Figure 12A) 
using blue and orange column. The area below the orange 
or blue dot line represents the overall number of nuclei 
on day 1 and day 3, respectively. In total, 522 nuclei were 
identified on the PCL-10-D scaffold on day 1, and this 
number increased to 1439 on day 3. This result indicates 
that nanoporous fiber surface on PCL-10-D can facilitate 
the adhesion, migration and proliferation of A549  cells 
efficiently.

To study cell adhesion under varied morphology, 
CLSM images collected from two types of surfaces 
engineered nanoporous scaffolds (PCL-10-D and PCL-
20-D) were compared. The number of nuclei on PCL-20-D 
on day 1 and day 3 is plotted in (Figure 12B) according to 

their size. For the PCL-20-D scaffold with larger nanopits 
and nanogrooves, 710 nuclei were identified on day 1 and 
1623 on day 3. Indeed, more cells could to adhere PCL-
20- D scaffold than that to PCL-10-D scaffold under the 
same cell seeding condition on day 1. It is also noticeable 
that the cell proliferation rate on PCL-10-D was almost 
20% faster than that on PCL-20-D scaffold. These 
results are slightly different from the reported living 
cells analysis using the colorimetric method[32]. This is 
probably because the CLSM images used in the current 
analysis only come from part of the scaffold. More CLSM 
images reflecting the whole scaffold-based cell culture 
status are expected for comprehensive analysis.

This nuclei size in Figure  12 was estimated by 
transforming the voxel value within the 3D segmented 
nuclei to a spheroid volume. Note that the nuclei with the 



Figure 13. NIH-3T3 cell proliferation analysis on poly-E-caprolactone scaffold with pore size of 100 µm. (A and B) confocal laser scanning 
microscopy images of cell culture on days 3 and 6. (C and D) Heatmap of cell distribution in (A) and (B).
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size around 2−3 µm mostly likely are fragment, and should 
be clipped to prevent further analysis from becoming 
skewed by such outliers. Under 95% confidence, the 
average nuclei size on day 1 is about 9.22 µm on PCL-10-D 
and 9.18 µm on PCL-20-D scaffolds. This corresponds to 
the reported cell diameter of A459 which is about 10.59 µm 
from transmission electron microscopy images[33]. Besides, 
no obvious size difference was identified under varied 
surface morphology during cell adhesion on day 1.

On day 3, the difference of the average nuclei size 
was less than 4% when culturing on the PCL-10-D and 
PCL-20-D scaffolds. It is worth mentioning that more 
nuclei with the size of 10 µm were observed on the PCL-
20-D scaffold, and more nuclei with the size of 9 µm were 
observed on the PCL-10-D scaffold. The slightly larger 
nuclei size found on PCL-20-D scaffold may be induced 
by rougher surface. Overall, this quick screening method 
would facilitate scaffold design modification for better 
cell culture performance. Of course, further studies and 
more data are expected for detailed analysis.

4.2. NIH-3T3 cell proliferation analysis
CLSM images from culturing NIH-3T3  cells on PCL 
scaffold on days 3 and 6 as shown in (Figure  13A 
and  B) were collected to study cell proliferation. 
Building on the segmentation results, the corresponding 
heat maps with nuclei density distribution are shown in 
(Figure 13C and D), respectively. Cells exhibited different 
proliferation and migration characteristics in the porous 
network with the pore size of 100 µm. On day 3, NIH-3T3 
nuclei had proliferated along fibers and clustered in some 
pores. On day 6, the pores were fully filled with nuclei and 
there were no clear migration directions as in (Figure 13D), 
since NIH-3T3 cells used neighboring cells as support to 
cross pores. The number of nuclei under varied size is 
plotted in Figure  14. Although NIH-3T3  cells were of 
irregular size and difficult to count[34], the majority of nuclei 
were found ellipsoid with the size ranging 9-10 µm and the 
number of nuclei doubled from day 3 to day 6.

Fibrous scaffolds can be designed in terms of size, 
morphology, surface roughness and complexity. These 

factors can directly impact cell adhesion, proliferation 
and migration. A  good balance between the diffusion 
of nutrients and removal of waste within the scaffold 
construct can lead to ideal cell proliferation and migration. 
The above analysis method provides an intuitive tool 
to optimize scaffold design for specific cell types and 
develop appropriate cell culture protocols.

5. Ongoing research issues and future 
perspectives
With the aid of the unsupervised ML method AD-GAN, 
we have successfully segmented nuclei and  performed 
cell-scaffold interaction analysis using CLSM images 
from scaffold-based cell culture. Nevertheless, some 
ongoing issues need to be further researched.

5.1. CLSM image quality
The effective laser penetration in scaffolds is the key to 
obtaining high-quality CLSM images. To a large extent, 
the quality of collected CLSM images is determined 
by the level of the scaffolds’ transparency and optical 
uniform. The fabricated scaffolds’ porosity is usually 
around 80 – 90% with  interconnected pores, while 
most of biopolymer materials used for fibrous scaffold 
fabrication such as PCL, are nontransparent. In addition, 
most of the scaffolds collected from the cell culture 
process have closely packed cell clusters. Thus, the 
CLSM technology can only visualize scaffold regions 
within a smaller depth and subsurface which are not 
obstructed by fibers or cell clusters. Cells in deeper pores 
of the scaffolds or below fibers are not visible. This may 
lower the effectiveness of nuclei segmentation and cell-
scaffold interaction analysis. A  possible solution is to 
develop transparent biopolymer scaffold materials for 
better CLSM visualization capability.

In addition, confocal microscopes have anisotropic 
spatial sampling frequency, which has particularly low 
resolution along Z-axis. One common workaround 
is to apply a simple trilinear interpolation for spatial 
normalization to ensure the same resolution of each axis. 



Figure 14. Nuclei size and number analysis of culturing NIH-3T3 
on poly-E-caprolactone scaffold with pore size of 100 µm on days 
3 and 6.
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However, the normalized images more or less become 
blurry. More seriously, nuclei elongated along Z-axis by 
light diffraction and scattering, leading to an unexpected 
position offset in 3D voxels. Although the influence of 
biological components under the light scattering and 
refractive indexes has been studied[35], their impact on nuclei 
segmentation performance has not been fully explored.

5.2. Generalization performance of AD-GAN
Segmenting nuclei is typically the first step of any 
quantitative analysis in cell culture tasks. However, 
extracting subjective and quantitative nuclei information 
embedded in the enormous volume of CLSM images 
is challenging, particularly in scaffold-based cell 
culture. This study clarifies the capabilities and 
realistic expectations of different nuclei segmentation 
methods. For example, supervised ML models typically 
face a critical issue coming from insufficient training 
data and difficulties related to data annotation[36]. Our 
proposed unsupervised ML method has outperformed 
the available methods and demonstrated comparable 
capabilities to identify nuclei similar to that of human 
professionals. The method should also be tested using a 
larger database covering diverse cell lines and scaffold 
types.

The generalization of the AD-GAN model 
across different cell lines is limited by the nature of 
GAN, since GAN tends to overfit on training data 
distribution. When the properties of the testing data 
vary significantly, AD-GAN may fail to generate decent 
segmentation results. To improve the generalization 
performance under diverse cell lines, one way is to 
develop a multi-modal AD-GAN structure with a 

series model and each model can be directly trained 
under specific cell lines. Another possible way is 
to train multiple AD-GANs on different cell lines 
independently. When testing on an unseen cell line, 
the output of multiple AD-GANs shall be merged or 
fused. Moreover, a few aspects of our method should 
be further improved, such as network architecture, loss 
function design, and data augmentation strategies in 
synthetic mask generation. Last but not least, the very 
practical dilemma to most researchers is that they may 
not be familiar with ML or image processing methods. 
It is essential to develop a user-friendly interface so 
that researchers without expertise in image analysis 
and ML can incorporate 3D nuclei segmentation flow 
to perform nuclei classification and cell culture model 
analysis.

6. Conclusions and future perspectives
The desire to assess 3D culture models in a low-cost 
and rapid way is the driving force to investigate nuclei 
segmentation. In this study, we presented an unsupervised 
learning method AD-GAN to segment 3D nuclei labeled 
with fluorescent in CLSM images, which utilizes both 
same-domain translation and cross-domain translation to 
achieve one-to-one mapping between real nuclei images 
and synthetic masks (segmented nuclei). This method 
has been compared with some general-purpose image 
analysis software, such as Cellprofiler and Squassh for 
3D nuclei segmentation, and achieves better performance 
in both visual and quantitative comparison. Of course, 
our purpose is not to rank these segmentation methods 
but to evaluate their suitability in cell segmentation using 
CLSM images with fiber structures. The segmented 
nuclei could help us to bridge the knowledge gap about 
cell activities within fibrous scaffolds. Building on the 
segmentation results, we can use the identified the nuclei 
number, size and position to assess cell adhesion and 
proliferation, and address cell-scaffold interaction in 
high-throughput 3D cell culture model. The segmented 
nuclei can serve as seeds to outline the entire cellular 
structure, and possibly associate with the locations 
of genomic and proteomic products for morphometry 
analysis of biological structures.

We would like to extend our method to analyze 
cell behaviors in spheroid, tumoroid, hydrogel scaffolds, 
organoids which can better recapitulate in vivo 
morphology, cell connectivity, polarity, gene expression 
and tissue architecture. This may open up new avenues 
to study cell behaviors in disease progression and drug 
release. Besides, we would explore segmentation tasks 
using complex image data derived from the microscopic 
imaging technology such as electron, light and X-ray to 
obtain more nuclei information in the near future.
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