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Abstract: The use of neural networks and reinforcement learning has become increasingly popular
in autonomous vehicle control. However, the opaqueness of the resulting control policies presents
a significant barrier to deploying neural network-based control in autonomous vehicles. In this
paper, we present a reinforcement learning based approach to autonomous vehicle longitudinal
control, where the rule-based safety cages provide enhanced safety for the vehicle as well as weak
supervision to the reinforcement learning agent. By guiding the agent to meaningful states and
actions, this weak supervision improves the convergence during training and enhances the safety of
the final trained policy. This rule-based supervisory controller has the further advantage of being
fully interpretable, thereby enabling traditional validation and verification approaches to ensure
the safety of the vehicle. We compare models with and without safety cages, as well as models
with optimal and constrained model parameters, and show that the weak supervision consistently
improves the safety of exploration, speed of convergence, and model performance. Additionally, we
show that when the model parameters are constrained or sub-optimal, the safety cages can enable
a model to learn a safe driving policy even when the model could not be trained to drive through
reinforcement learning alone.

Keywords: machine learning; neural networks; reinforcement learning; advanced driver assistance;
autonomous vehicles; vehicle control; safety

1. Introduction

Autonomous driving has gained significant attention within the automotive research
community in recent years [1–3]. The potential benefits in improved fuel efficiency, pas-
senger safety, traffic flow, and ride sharing mean self-driving cars could have a significant
impact on issues such as climate change, road safety, and passenger productivity [4–6].
Deep learning techniques have been demonstrated to be powerful tools for autonomous
vehicle control, due to their capability to learn complex behaviours from data and gener-
alise these learned rules to completely new scenarios [7]. These techniques can be divided
in two categories based on the modularity of the system. On one hand, modular systems
divide the driving task into multiple sub-tasks such as perception, planning, and control
and deploy a number of sub-systems and algorithms to solve each of these tasks. On
the other hand, end-to-end systems aim to learn the driving task directly from sensory
measurements (e.g., camera, radar) by predicting low-level control actions.

End-to-end approaches have recently risen in popularity, due to the ease of imple-
mentation and better leverage of the function approximation of Deep Neural Networks
(DNNs). However, the high level of opaqueness in DNNs is one of the main limiting factors
in the use of neural network-based control techniques in safety-critical applications, such
as autonomous vehicles [8–11]. As the DNNs used to control the autonomous vehicles
become deeper and more complex, their learned control policies and any potential safety
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issues within them become increasingly difficult to evaluate. This is made further chal-
lenging by the complex environment in which autonomous vehicles have to operate in, as
it is impossible to evaluate the safety of these systems in all possible scenarios they may
encounter once deployed [12–14]. One class of solutions to introduce safety in machine
learning enabled autonomous vehicles is to utilise a modular approach to autonomous
driving, where the machine learning systems are used mainly in the decision making
layer, whilst low-level control is handled by more interpretable rule-based systems [15–17].
Alternatively, safety can be guaranteed through redundancy for end-to-end approaches,
where machine learning can be used for vehicle motion control with an additional rule-
based virtual safety cage acting as a supervisory controller [18,19]. The purpose of the
rule-based virtual safety cage is to check the safety of the control actions of the machine
learning system, and to intervene in the control of the vehicle if the safety rules imposed
by the safety cages are breached. Therefore, during normal operation, the more intelligent
machine learning-based controller is in control of the vehicle. However, if the safety of the
vehicle is compromised the safety cages can step in and attempt to bring the vehicle back
to a safe state through a more conservative rule-based control policy.

This work extends our previously developed Reinforcement Learning (RL) based
vehicle following model [20] and virtual safety cages [21]. We make important extensions
to our previous works, by integrating our safety cages into the RL algorithm. The safety
cages not only act as a safety function enhancing the vehicle’s safety, but are also used
to provide weak supervision during training, by limiting the amount of unnecessary
exploration and providing penalties to the agent when breached. In this way, the vehicle
can be safe during training by avoiding collisions when the RL agent takes unsafe actions.
More importantly, the efficiency of the training process is improved, as the agent converges
to an optimal control policy with less samples. We also compare our proposed framework
on less safe agents with smaller neural networks, and show significant improvement in the
final learned policies when used to train these shallow models. Our contributions can be
summarised as follows:

• We combine the safety cages with reinforcement learning by intervening on unsafe
control actions, as well as providing an additional learning signal for the agent to
enable safe and efficient exploration.

• We compare the effect of the safety cages during training for both models with
optimised hyperparameters, as well as less optimised models which may require
additional safety considerations.

• We test all trained agents without safety cages enabled, in both naturalistic and
adversarial driving scenarios, showing that even if the safety cages are only used
during training, the models exhibit safer driving behaviour.

• We demonstrate that by using the weak supervision from the safety cages during
training, the shallow model which otherwise could not learn to drive can be enabled
to learn to drive without collisions.

The remainder of this paper is structured as follows. Section 2 discusses related work
and explains the novelty of our approach. Section 3 provides the necessary theoretical
background for the reader and describes the methodology used for the safety cages and re-
inforcement learning technique. The results from the simulated experiments are presented
and discussed in Section 4. Finally, the concluding remarks are presented in Section 5.

2. Related Work
2.1. Autonomous Driving

A brief overview of relevant works in this field is given in this Section. For a more in-
depth view of deep learning based autonomous driving techniques, we refer the interested
readers to the review in [7]. One of the earliest works in neural control for autonomous
driving was Pomerleau’s Autonomous Land Vehicle In a Neural Network (ALVINN) [22],
which learned to steer an autonomous vehicle by observing images from a front facing
camera, using the recorded steering commands of a human driver as training data. Among



Sensors 2021, 21, 2032 3 of 16

the first to adapt techniques such as ALVINN to use deep neural networks, was NVIDIA’s
PilotNet [23]. PilotNet was trained for lane keeping using supervised learning with a total
of 72 h of recorded human driving as training data.

Since then, these works have inspired a number of deep learning techniques, with imi-
tation learning often being the preferred learning technique. For instance, Zhang et al. [24]
and Pan et al. [25] extended the popular Dataset Aggregation (DAgger) [26] imitation
learning algorithm to the autonomous driving domain, demonstrating that autonomous
vehicle control can be learned from vision. While imitation learning based approaches
have shown important progress in autonomous driving [27–30], they present limitations
when deployed in environments beyond the training distribution [31]. These driving
models relying on supervised techniques are often evaluated on performance metrics on
pre-collected validation datasets [32], however low prediction error on offline testing is
not necessarily correlated with driving quality [33]. Even when demonstrating desirable
performance during closed-loop testing in naturalistic driving scenarios, imitation learning
models often degrade in performance due to distributional shift [26], unpredictable road
users [34], or causal confusion [35] when exposed to a variety of driving scenarios.

However, RL-based techniques have shown promising results for autonomous vehicle
applications [36–38]. These RL approaches are advantageous for autonomous vehicle
motion control, as they can learn general driving rules, which can also adapt to new
environments. Indeed, many recent works have utilised RL for longitudinal control in
autonomous vehicles with great success [39–43]. This is largely due to the fact that longitu-
dinal control can be learned from low-dimensional observations (e.g., relative distances,
velocities), which partially overcomes the sample-efficiency problem inherent in RL. More-
over, the reward function for RL is easier to define in the longitudinal control case (e.g.,
based on safety distances to vehicles in front). For these reasons, we focus on longitudinal
control and extend on our previous work on RL-based longitudinal control in a highway
driving environment [20].

2.2. Safety Cages

Virtual safety cages have been used in several cyber-physical systems to provide
safety guarantees when the controller is not interpretable. The most straightforward ap-
plication of such safety cages is to limit the possible actions of the controller to ensure the
system is bounded to a safe operational envelope. If the controller issues commands that
breach the safety cages, the safety cages step in and attempt to recover the system back
to a safe state. This type of approach has been used to guarantee the safety of complex
controllers in different domains such as robotics [44–47], aerospace [48], and automotive
applications [49–51]. Heckemann et al. [18] suggested that these safety cages could be
used to ensure the safety of black box systems in autonomous vehicles by utilising the
vehicle’s sensors to monitor the state of the environment, and then limiting the actions of
the vehicle in safety-critical scenarios. Demonstrating the effectiveness of this approach,
Adler et al. [49] proposed five safety cages based on the Automotive Safety Integrity Levels
(ASIL) defined by ISO26262 [52] to improve the safety of an autonomous vehicle with
machine learning based controllers. Focusing on path planning in urban environments,
Yurtsever et al. [53] combined RL with rule-based path planning to provide safety guaran-
tees in autonomous driving. Similar approaches have also been used for highway driving,
by combining rule-based systems with machine learning based controllers for enhanced
driving safety [54,55].

In our previous work [21], we developed two safety cages for highway driving,
and demonstrated these safety cages can be used to prevent collisions when the neural
network controllers make unpredictable decisions. Furthermore, we demonstrated that the
interventions by the safety cages can be used to re-train the neural networks in a supervised
learning approach, enabling the system to learn from its own mistakes and further making
the controller more robust. However, the main limitation of the safety cage approach was
that the re-training happened in an offline manner, where the learning was broken down
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into three stages: (i) supervised training, (ii) closed-loop evaluation with safety cages, and
(iii) re-training using the safety cage interventions as labels for supervised learning.

Here, we extend on this approach by utilising the safety cages to improve the safety
of a RL based vehicle motion controller, and using the interventions of the safety cages
as weak supervision which enables the system to learn to drive more safely in an online
manner. Weak supervision has been shown to improve the efficiency of exploration in
RL [56] by guiding the agent towards useful directions during exploration. Here, the weak
supervision enhances the exploration process in two ways; the safety cages stop the vehicle
from taking unsafe actions thereby eliminating the unsafe part of the action space from
the exploration, while also maintaining the vehicle in a safe state and thereby reducing
the amount of states that need to be explored. Reinforcement learning algorithms often
struggle to learn efficiently at the beginning of training, since initially the agent is taking
largely random actions, and it can take a significant amount of training before the agent
starts to take the correct actions which are needed to learn its task. Therefore, by utilising
weak supervision to guide the agent to the correct actions and states, the efficiency of
the early training stage can be improved. We show that eliminating the unsafe parts of
the exploration space improves convergence during training, which can be a significant
advantage considering the low sample efficiency of RL. Furthermore, we show that the
safety cages eliminate the collisions that would normally happen during training, which
could be a further advantage of our technique, should the training occur in a real-world
system where collisions are undesirable.

3. Materials and Methods
3.1. Reinforcement Learning

Reinforcement learning can be formally described as a Markov Decision Process
(MDP). The MDP is denoted by a tuple {S ,A,P ,R}, where S represents the state space, A
represents the the action space, P denotes the state transition probability model, and R
is the reward function [57]. As shown in Figure 1, at each time step t, the agent takes an
action at from the possible set of actions A, according to its policy π which is a mapping
from states st to actions at. Based on the action taken in the current state, the environment
then transitions to the next state st+1 according to the transition dynamics p(st+1|st, at) as
given by the transition probability model P . The agent then observes the new state st+1
and receives a scalar reward rt according to the reward functionR. The aim of the agent in
the RL setting is to maximise the total accumulated returns Rt:

Rt =
∞

∑
i=t

γ(i−t)r(si, ai) (1)

where γ ∈ [0, 1] is the discount factor used to prioritise immediate rewards over future rewards.

3.2. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [58] extends the Deterministic Policy
Gradient algorithm by Silver et al. [59] by utilising DNNs for function approximation.
It is an actor-critic based off-policy RL algorithm, which can scale to high-dimensional
and continuous state and action spaces. The DDPG uses the state-action value function,
or Q-function, Q(s, a), which estimates the expected returns after taking an action at in
state st under policy π. Therefore, given a state visitation distribution ρπ under policy π in
environment E the Q-function is denoted by:

Qπ(st, at) = Eri≥t ,si>t∼E,ai>t∼π [Rt|st, at] (2)

The Q-function can be estimated by the Bellman equation for deterministic policies as:

Qπ(st, at) = Ert ,st+1∼E[r(st, at) + γQπ(st+1, π(st+1))] (3)
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As the expectations depend only on the environment, the critic network can be trained
off-policy, using transitions from a different stochastic policy with the state visitation
distribution ρβ. The parameters of the critic network θQ can then be updated by minimising
the critic loss LQ:

LQ = Est∼ρβ ,rt∼E[(Q(st, at|θQ)− yt)
2] (4)

where
yt = r(st, at) + γQ(st+1, π(st+1)|θQ) (5)

The actor network parameters θπ are then updated using the policy gradient [59] from
the expected returns from a start distribution J with respect to the actor parameters θπ :

Oθπ J ≈ Est∼ρβ [Oθπ Q(s, a|θQ)|s=st ,a=π(st |θπ)]

= Est∼ρβ [OaQ(s, a|θQ)|s=st ,a=π(st)Oθπ π(s|θπ)|s=st ] (6)

For updating the networks, mini-batches are drawn from a replay memory D, which
is a finite sized buffer storing state transitions e = [st, at, rt, st+1]. To avoid divergence
and improve stability of training, DDPG utilises target networks [60], which copy the
parameters of the actor and critic networks. These target networks, target actor π′(s|θπ′)

and target critic network Q′(s, a|θQ′), are updated slowly based on the learned network
parameters to improve stability:

θ′ ← τθ + (1− τ)θ′ (7)

where τ � 1 is the mixing factor, a hyperparameter controlling the speed of target net-
work updates.

To encourage the agent to explore the possible actions for continuous action spaces,
noise is added to the actions of the deterministic policy π(st|θπ). This exploration policy
πe(st), samples noise from a noise process N which is added to the actor policy:

πe(st) = π(st|θπ
t ) +N (8)

Here, the chosen noise process N is the Ornstein-Uhlenbeck process [61], which generates
temporally correlated noise for efficient exploration in physical control problems.

Figure 1. Reinforcement learning process.
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3.3. Safety Cages

Virtual safety cages provide interpretable rule-based safety for complex cyber-physical
systems. The purpose of these safety cages is to limit the actions of the system to a safe
operational envelope. The simple way to achieve this, would be to limit the upper or lower
limits of the system’s action space. However, by using run-time monitoring to observe the
state of the environment, the safety cages can dynamically select the control limits based
on the current states. Therefore, the system can be limited in its possible courses of action
when faced with a safety-critical scenario, such as a near-accident situation on a highway.
We utilise our previously presented safety cages [21], which limit the longitudinal control
actions of a vehicle based on the Time Headway (TH) and Time-To-Collision (TTC) relative
to the vehicle in front. The TH and TTC metrics represent the risk of potential forward
collision with the vehicle in front, and are calculated as:

TH =
xrel
v

(9)

TTC =
xrel
vrel

(10)

where xrel is the distance between the two vehicles in m, v is the velocity of the host vehicle
in m/s, and vrel is the relative velocity between the two vehicles in m/s.

The TTC and TH metrics were chosen as the states monitored by the safety cages as
they represent the risk of potential collision with the vehicle in front, thereby providing
effective safety measurements for our vehicle following use-case. We utilise two metrics as
the TTC and TH provide complimentary information; the TTC measures time to a forward
collision assuming both vehicles continue at their current speeds, whilst TH measures
distance to the vehicle in front in time and makes no assumptions about the lead vehicle’s
actions. For example, when the host vehicle is driving significantly faster than the vehicle
in front, as the distance between the vehicles gets closer the TTC approaches zero and
correctly captures the risk of a forward collision. However, in a scenario where both
vehicles are driving close to each other but at the same speed, the TTC will not signal a
high risk of collision even though in this scenario if the lead vehicle begins to break, the
two vehicles would be in a likely collision. In such a scenario, the two vehicles will have a
low headway, therefore monitoring the TH will correctly inform the safety monitors of a
collision risk.

The risk levels for both safety cages are as defined in [21], where the aim was to identify
potential collisions in time to prevent them, whilst minimising unnecessary interventions
on the control of the vehicle. The different risk levels and associated minimum braking
values are illustrated in Figure 2. For each safety cage, there are three risk levels for which
the safety cages will enforce a minimum braking value on the vehicle, with higher risk
levels using increased rate of braking relative to the associated safety metric. When the
vehicle is in the low risk region, no minimum braking is necessary and the RL agent is in
full control of the vehicle. The minimum braking values enforced by the safety cages can
be formally defined as shown in (11)–(12). The braking value is normalised to the range
[0, 1] where 0 is no braking and 1 is maximum braking value. In this framework, both
safety cages provide a recommended braking value, which is then compared to the current
braking action from the RL agent. The final braking value used for the vehicle motion
control, b, is then chosen as the largest braking value between the two safety cages and the
RL agent as given by (13).

bTH =


0.0, for TH > 1.6
−0.5TH + 1.0, for 1.0 < TH ≤ 1.6
−1.0TH + 1.5, for 0.5 < TH ≤ 1.0
1.0, for TH ≤ 0.5

(11)
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bTTC =


0.0, for TTC > 2.5
−0.5TTC + 1.25, for 1.5 < TTC ≤ 2.5
−1.0TTC + 2.0, for 1.0 < TTC ≤ 1.5
1.0, for TTC ≤ 1.0

(12)

b = max(bTH , bTTC, bRL) (13)

where bTH is the minimum braking value from the TH safety cage, bTTC is the minimum
braking value from the TTC safety cage, and bRL is the current braking value from the
RL agent.

Figure 2. Risk-levels and minimum braking values for each safety cage.

3.4. Highway Vehicle Following Use-Case

The vehicle following use-case was framed as a scenario on a straight highway, with
two vehicles travelling in a single lane. The host vehicle controlled by RL is the follower
vehicle, and its aim is to maintain a 2 s headway from the lead vehicle. The lead vehi-
cle velocities were limited to vlead ∈ [17, 40] m/s, and coefficient of friction values were
chosen from the range [0.4, 1.0] for each episode. During training, the lead vehicle’s
acceleration was limited to v̇lead ∈ [−2, 2] m/s2, except for emergency braking manoeu-
vrers, which occurred on average once an hour, which used an acceleration in the range
v̇lead ∈ [−6, −3] m/s2. The output from the RL agent is the gas and brake pedal values,
which are continuous action values used to control the vehicle. As in [20], a neural network
is used to estimate the longitudinal vehicle dynamics, by inferring the vehicle response
to the pedal actions from the RL agent. This neural network acts as a type of World
Model [62], providing an estimation of the simulator environment. This has the advantage
that the neural network can be deployed on the same GPU as the RL network during
training, thereby speeding up training time significantly. The World Model was trained
with 2,364,041 time-steps from the IPG CarMaker simulator under different driving policies
combining a total of 45 h of simulated driving. This approach was shown in [20] to speed
up training by up to a factor of 20, compared to training with the IPG CarMaker simulator.
However, to ensure the accuracy of all results, we also evaluate all trained policies in IPG
CarMaker (Section 4.1).

3.5. Training

The DDPG model is trained in the vehicle following environment for 5000 episodes,
where each episode lasts up to 5 min or until a collision occurs. The simulation is sampled
at 25 Hz, therefore each time-step has a duration of 40 ms. The training parameters of
the DDPG were tuned heuristically, and the final values can be found in Table 1. The
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critic uses a single hidden layer, followed by the output layer estimating the Q value.
The actor network utilises 3 hidden feedforward layers, followed by a Long Short-Term
Memory (LSTM) [63] and then the action layer. The actor network outputs the vehicle
control action, for which the action space is represented by a single continuous value
at ∈ [−1, 1], where positive values represent the use of the gas pedal and negative values
represent the use of the brake pedal. The observations of the agent are composed of 4
continuous state-values, which are the host vehicle velocity v, host vehicle acceleration v̇,
relative velocity vrel , and time headway TH, such that st = [v, v̇, vrel , TH]T . To enable
the LSTM to learn temporal correlations, the mini-batches for training were sampled as
consecutive time-steps, with the LSTM cell state reset between each training update. To
encourage the agent to learn a safe vehicle following policy, a reward function based on its
current headway and headway derivative was defined in [20] based on the reward function
by Desjardins & Chaib-Draa [64], as shown in Figure 3. The agent gains the maximum
reward when it is close to the target headway of 2 s, whilst straying further from the target
headway results in smaller rewards. The headway derivative is used in the reward function
to encourage the vehicle to move towards the target headway, by giving small positive
rewards as it moves closer to the target and penalising the agent when it is moving further
away from the target region. For further comparison, we compare training the model with
an additional penalty for breaching the safety cages, such that the final reward is given
as follows:

rt = rth + rsc (14)

where rt is the reward for time-step t, rth is the headway based reward function as shown
in Figure 3, and rsc is the safety cages penalty equal to -0.1 if the safety cage is breached
and 0 otherwise.

Table 1. Network hyperparameters.

Parameter Value

Mini-batch size 64
Hidden neurons in feedforward layers 50

LSTM units 16
Discount factor γ 0.99

Actor learning rate ηπ 10−4

Critic learning rate ηq 10−2

Replay memory size 106

Mixing factor τ 10−3

Initial exploration noise scale 1.0
Max gradient norm for clipping 0.5

Exploration noise decay 0.997
Exploration mean µ 0.0

Exploration scale factor θ 0.15
Exploration variance σ 0.2

The episode rewards during training can be seen in Figure 4, where three models
are compared. The three models are DDPG only, DDPG+SC which is DDPG with safety
cages, and DDPG+SC (no penalty) which is the DDPG with safety cages but without the
rsc penalty. As can be seen, the DDPG+SC model has lower rewards at the beginning of
training as it receives additional penalties compared to the other two models. However,
after the initial exploration the DDPG+SC is the first model to reach the optimal rewards
per episode (∼7500 rewards), demonstrating improved convergence. Comparing the
DDPG+SC models with and without penalties from the safety cages shows the model with
the penalties converges to the optimal solution sooner, suggesting the penalty improves
convergence during training. An additional benefit of the safety cages here is the safety of
exploration, as the DDPG model collided 30 times during training, whilst the DDPG+SC
model had no collisions during training. However, it can be seen that all three models
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converge to the same level of performance, therefore no significant difference in the trained
policies can be concluded from the training rewards alone.

Figure 3. Time headway based reward function for vehicle following.

Figure 4. Episode rewards during DDPG training. Darker lines represent the moving average reward
plot, whilst the actual reward values are seen in the transparent region.

As an additional investigation of the effect of the safety cages on less safe control
policies, we train two further models utilising smaller neural networks with constrained
parameters. These models use the same parameters as in Table 1, except they only have
1 single hidden layer with 50 neurons and no LSTM layer. We refer to these models as
Shallow DDPG and Shallow DDPG+SC. It should be noted that the parameters of these
models were not tuned for better performance, and indeed sub-optimal parameters were
chosen on purpose to enable better insight into the effect of the safety cages in unsafe
systems. The episode rewards for the two shallow models during training are shown
in Figure 5. As can be seen, these two models have a more significant difference in training
performance. The Shallow DDPG struggles to learn a feasible training policy, whilst the
Shallow DDPG+SC learns to drive without collisions, although at a lower level of overall
performance compared to the deeper models.
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Figure 5. Episode rewards during DDPG training of shallow models. Darker lines represent the
moving average reward plot, whilst the actual reward values are seen in the transparent region.

4. Results

To investigate the performance of the learned control policies, we evaluate the vehicle
follower models in various highway driving scenarios. We utilise two types of testing for
this evaluation. Naturalistic testing tests the control policies in typical driving scenarios,
giving an idea of how the control policies perform in everyday driving. Adversarial testing
utilises an adversarial agent to create safety-critical scenarios, showing how the vehicle
performs in dangerous edge cases where collisions are likely to occur. The controller
performance in both types of scenario is important, since most driving scenarios on the
road fall into naturalistic driving the controller must be able to drive efficiently and safely
in these scenarios, however the controller must also be able remain safe in dangerous
edge cases in order to avoid collisions. To enable better analysis of the performance of the
RL-based control policies, no safety cages are used during testing so the vehicle follower
models must depend on their own learned knowledge to keep the vehicle safe. This also
enables better understanding on the effect of using the safety cages during training on the
final learned control policy.

4.1. Naturalistic Testing

For the naturalistic driving, similar lead vehicle behaviours were used to those during
training, with velocities in the range [17, 40] m/s and acceleration [−2, 2] m/s2. The
exception to this was the harsh braking manoeuvres which occurred, on average, once an
hour with deceleration [−6, −3] m/s2. At the start of the episode, the coefficient of friction
is randomly chosen in the range [0.4, 1.0] and each episode lasts until 5 min has passed or
a collision occurs. For each driving model, a total of 120 test scenarios were completed,
totalling up to 10 h of testing. All driving for these tests occurred in the IPG CarMaker
simulation environment to ensure accuracy of the results. Two types of baselines are
provided for comparison; the IPG Driver is the default driver in the CarMaker Simulator
and A2C is the Advantage Actor Critic [65] based vehicle follower model in [20].

The results from the naturalistic driving scenarios are summarised in Table 2. The
table shows the RL based models outperform the default IPG Driver, with the exception of
the shallow models. The results demonstrate that both DDPG based models outperform
the previous A2C-based vehicle follower model. However, comparing the DDPG and
DDPG+SC models shows the benefit of using the safety cages during RL training. While
in most scenarios the two models have similar performance (the mean values seen are
approximately equal), the minimum headway by the DDPG+SC during testing is higher,
showing it can maintain a safer distance from the lead vehicle. However, as both models
can maintain a safe distance without collisions this difference is not significant by itself.
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Therefore, investigating the difference between the Shallow DDPG and Shallow DDPG+SC
models provides further insight into the role the safety cages play in supervision during
RL training. Similar to the training rewards, the shallow models show a more extreme
difference between the two models. The results show the Shallow DDPG model without
safety cages fails to learn to drive safely, whilst the Shallow DDPG+SC model avoids
collisions safely, although it comes relatively close to collisions with a minimum time
headway at 0.79 s. This shows the benefit of the safety cages in guiding the model towards
a safe control policy during training.

Table 2. 10-hour driving test under naturalistic driving conditions in IPG CarMaker.

Parameter IPG Driver A2C [20] DDPG DDPG+SC Shallow
DDPG

Shallow
DDPG+SC

min. xrel [m] 10.737 7.780 15.252 13.403 0.000 5.840
mean xrel [m] 75.16 58.01 58.19 58.24 41.45 59.34

max. vrel [m/s] 13.90 7.89 10.74 9.33 13.43 6.97
mean vrel [m/s] 0.187 0.0289 0.0281 0.0271 4.59 0.0328

min. TH [s] 1.046 1.114 1.530 1.693 0.000 0.787
mean TH [s] 2.546 2.007 2.015 2.015 1.313 2.034

collisions 0 0 0 0 120 0

4.2. Adversarial Testing

Utilising machine learning to expose weaknesses in safety-critical cyber-physical sys-
tems has been shown to be an effective method for finding failure cases effectively [66,67].
We utilise the Adversarial Testing Framework (ATF) presented in [34], which utilised an
adversarial agent trained through RL to expose over 11,000 collision cases in machine learn-
ing based autonomous vehicle control systems. The adversarial agent is trained through
A2C [65] with a reward function rA based on the inverse headway:

rA = min
(

1
TH

, 100
)

(15)

This reward function encourages the adversarial agent to minimise the headway and make
collisions happen, while capping the reward at 100 ensures that the reward does not tend
to infinity as the headway reaches zero.

As this lead vehicle used in the adversarial testing can behave very differently to
those seen during training, this testing focuses on investigating the models’ generalisa-
tion capability as well as their response to hazardous scenarios. Each DDPG model is
tested under two different velocity ranges; the first limits the lead vehicle’s velocity to
the same as the training scenarios with vlead ∈ [17, 40] m/s, and the second uses a lower
velocity range which enables the ATF to expose collisions more easily at a velocity range of
vlead ∈ [12, 30] m/s. For each model, 3 different adversarial agents were trained, such that
results can be averaged between these 3 training runs. The minimum episode TH during
training can be seen for both deep models over the 2500 training episodes in Figures 6 and 7.
These tests show that both deep models can maintain a safe distance from the lead vehicle
even when the lead vehicle is attempting to cause collisions intentionally. Although a slight
difference in the two models can be seen, as the DDPG+SC model has a slightly higher
headway on average as well as significantly less variance. However as both deep models
remain at a safe distance from the adversarial agent, these models can be considered safe
even in safety-critical edge cases. Comparing the two shallow models in Figures 8 and 9,
a more significant difference can be seen. While both models are worse in performance
than the deep models, the Shallow DDPG is significantly easier to exploit than the Shallow
DDPG+SC model. The Shallow DDPG model continues to cause collisions during the
adversarial testing, whilst the Shallow DDPG+SC model remains at a safer distance. In
the training conditions, the Shallow DDPG+SC remains relatively safe, with no decrease
in the minimum headway during the training of the adversarial agent, although it can
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be seen that the variance increases as the training progresses. In the lower velocity case,
the Shallow DDPG+SC still avoids collisions, but the adversarial agent is able to reduce
the minimum headway significantly better. This shows that the safety cages have helped
the model learn a significantly more robust control policy, even when the model uses
sub-optimal parameters. Without the additional weak supervision from the safety cages,
it can be seen that these shallow models would not have been able to learn a reasonable
driving policy. Therefore, the weak-supervision by the safety cages can be used to train
models with sub-optimal parameters. In addition, for models with optimal parameters
they provide improved convergence during training and slightly improved safety in the
final trained policy.

Figure 6. Comparison of the deep vehicle following agents’ minimum TH per episode over adversar-
ial training runs with lead vehicle velocity limits vlead ∈ [17, 40] m/s. Averaged over 3 runs, with
standard deviation shown in shaded colour.

Figure 7. Comparison of the deep vehicle following agents’ minimum TH per episode over adversar-
ial training runs with lead vehicle velocity limits vlead ∈ [12, 30] m/s. Averaged over 3 runs, with
standard deviation shown in shaded colour.
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Figure 8. Comparison of the shallow vehicle following agents’ minimum TH per episode over
adversarial training runs with lead vehicle velocity limits vlead ∈ [17, 40] m/s. Averaged over 3 runs,
with standard deviation shown in shaded colour.

Figure 9. Comparison of the shallow vehicle following agents’ minimum TH per episode over
adversarial training runs with lead vehicle velocity limits vlead ∈ [12, 30] m/s. Averaged over 3 runs,
with standard deviation shown in shaded colour.

5. Conclusions

In this paper, a reinforcement learning technique combining rule-based safety cages
was presented. The safety cages provide a safety mechanism for the autonomous vehicle in
case the neural network-based controller makes unsafe decisions, thereby enhancing the
safety of the vehicle and providing interpretability in the vehicle motion control system. In
addition, the safety cages are used as weak supervision during training, by guiding the
agent towards useful actions and avoiding dangerous states.

We compared the model with safety cages to a model without them, and show im-
provements in safety of exploration, speed of convergence, and the safety of the final
control policy. In addition to improved training efficiency, simulated testing scenarios
demonstrated that even with the safety cages disabled, the model which used them during
training has learned a safer control policy by maintaining a minimum headway of 1.69 s
in a safety-critical scenario, compared to 1.53 s without safety cage training. We addi-
tionally tested the proposed approach on shallow models with constrained parameters,
and showed that the shallow model with safety cage training was able to drive without
collisions, whilst the shallow model without safety cage training collided in every test
scenario. These results demonstrate that the safety cages enabled the shallow models to
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learn a safe control policy while otherwise the shallow models were not able to learn a
feasible driving policy. This showed that the safety cages add beneficial supervision during
training, enabling the model to learn from the environment more effectively.

Therefore, this work provides an effective way to combine reinforcement learning
based control with rule-based safety mechanisms not only to improve the safety of the
vehicle, but also incorporating weak supervision in the training process for improved
convergence and performance.

This work opens up multiple potential avenues for future work. The use-case in this
study was a simplified vehicle following scenario. However, extending the safety cages to
consider both longitudinal and lateral control actions, as well as potential objects on other
lanes, would allow the technique to be applied to more complex use-cases such as urban
driving. Moreover, comparing the use of the weak supervision for different use-cases or
learning algorithms (e.g., on-policy vs. off-policy RL) would help with understanding the
most efficient use of weak supervision in reinforcement learning. Furthermore, extending
the reinforcement learning agent to use more high dimensional inputs, such as images,
would allow investigation into how the increased speed of convergence helps in cases
where the sample inefficient reinforcement learning algorithms struggle. Finally, using the
safety cages presented here in real-world training could better demonstrate the benefit in
both safety and efficiency of exploration, compared to the simulated scenario presented in
this work.
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