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Abstract

Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the
conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work
presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV)
that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without
affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD) that are deficient in p53 and lack the G1 cell
cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died
through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was
independent of caspases, apoptosis-inducing factor (AIF), autophagy and necroptosis. These findings were confirmed by
time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other
cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint,
mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by
centrosome overduplication, and not as a consequence of a suicide signal.
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Introduction

Apoptosis is a crucial mechanism in eliminating cells with

unrepaired DNA damage and preventing carcinogenesis. It is

characterized by a p53-dependent induction of pro-apoptotic

proteins, leading to permeabilization of the outer mitochondrial

membrane, release of apoptogenic factors into the cytoplasm,

activation of caspases and subsequent cleavage of various cellular

proteins. Apoptogenic effects include chromatin condensation and

exposure of phosphatidylserine on membrane surfaces of the cell [1].

Caspases have a major role in executing apoptosis. They are

synthesized as inactive proenzymes that become activated by

cleavage [2]. Caspase-3 is the most important protease in the

caspase-dependent apoptosis pathway, as it is required for

chromatin condensation and fragmentation [3,4]. Poly-ADP

ribose polymerase (PARP-1) is a major target of caspase-3, since

cleavage-mediated inactivation of PARP-1 preserves cellular ATP

that is required for apoptosis [4,5]. Although caspases constitute a

substantial component of the apoptotic pathway, there is evidence

that a caspase-independent apoptosis pathway also exists [6]. This

pathway involves the apoptosis-inducing factor (AIF), which

translocates from the mitochondria to the nucleus to cause

chromatin condensation [7,8,9].

Cell death can also occur in the absence of apoptosis, by

alternative non-apoptotic killing pathways, including autophagy

and necrosis [10,11]. Autophagy is a lysosomal mechanism

of self-digesting cytosolic components, characterized by the

conversion of the protein marker LC3A to LC3B [12,13].

Non-apoptotically mediated death is occasionally named necrosis,

to indicate cell death that is uncontrolled [14]. When necrosis

occurs under regulation, it is called necroptosis [15]. Necrosis is

mediated by DNA degradation, membrane distortion and cellular

swelling [11].

Cell death in mitosis, also known as mitotic catastrophe, occurs

as a consequence of failure to complete mitosis. In that case, cells

proceed into mitosis after a transient cell cycle arrest and fail to

separate, leading to catastrophic cell division [16]. Catastrophic

mitosis can also take place as a result of centrosome over-

duplication and consequent entry into mitosis with multiple

spindle poles [17]. The G2 checkpoint is crucial for preventing

mitotic cell death and when it is aborted, mitotic catastrophe is

potentiated [11,18]. Mitotic catastrophe is often characterized by

the formation of giant micronucleated cells, which reflects the

abnormal segregation of chromosomes.

Although there are a number of studies linking apoptosis to

mitotic catastrophe in one way or another, the relationship

between mitotic catastrophe and apoptosis remains unclear.

Several studies have shown that mitotic cell death involves

activation of caspases, cytochrome c release, chromatin conden-

sation and DNA degradation [16,19–22]. On the other hand,

other studies have concluded that death in mitosis is an apoptosis-

independent event that may be followed independently by

apoptosis [23,24]. A recent review of mitotic catastrophe

concluded that there is no broad consensus on the use of this

term, and that mitotic catastrophe can lead either to an apoptotic

morphology or to necrosis [25].
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In this work we have probed cell death in mitosis by using a

virus, adeno-associated virus (AAV), which is a replication-

defective parvovirus containing a 4.7 kb single-stranded DNA

genome [26]. AAV can induce a DNA damage response in the

host cell that is attributable to the inability of the virus to complete

its replication [27]. The DNA damage signaling pathway, induced

by stalled replication forks on the viral replication origins, has been

shown to lead to significant cell death in mitosis in different types

of p53-deficient cancer cells [28,29]. This effect of the virus has

been demonstrated not to be caused by the viral protein products,

since UV-inactivated AAV leads to a stronger DNA damage

response than the untreated virus [30].

It has been suggested that p53-independent mechanisms of

killing tumor cells may not involve apoptosis and could be a result

of induced mechanical damage, rather than programmed cell

death [31]. The aim of the study reported here was to investigate

whether cell death in mitosis requires apoptosis or can be a

consequence of mechanical collapse of cells undergoing aberrant

mitosis. To induce mitotic cell death, we used UV-inactivated

AAV, an agent that activates a cellular DNA damage signaling

pathway without causing DNA damage on the host genome [32].

Infection of p53-deficient osteosarcoma U2OS cells (U2OSp53DD

cells, which contain a dominant-negative p53 mutation [30] led to

significant levels of mitotic cell death that we show to be caspase-

independent. Infected U2OSp53DD cells did not show signs of

chromatin condensation or DNA fragmentation and were negative

for other apoptotic markers. Consistent with these findings, time-

lapse microscopy studies indicated cell death due to mechanical

damage. In comparison, as a control for the apoptotic markers,

MO59K glioblastoma cells tested in parallel responded to the

infection by entering a cell death program with all the hallmarks of

apoptosis.

Results

AAV-infected p53-deficient U2OS cell death is associated
with aberrant mitosis

We have previously shown that infection of U2OS cells with

UV-inactivated AAV leads to cell cycle arrest at G2 [30]. Cells

that lack the p53 pathway however respond differently to the virus.

When U2OSp53DD cells were infected, then stained with

propidium iodide (PI) and analyzed by fluorescence-activated cell

sorting (FACS), the infection was seen to cause cell death; dead

cells are indicated by the presence of a subG1 cell population

[28,30]. In Figure 1a, 37% of the cells were in the subG1 region

following the AAV infection, while this proportion was 6% in the

uninfected control. To further confirm and characterize this cell

death, infected cells were analyzed by immuno-fluorescence (IF)

and time-lapse microscopy.

Infected U2OSp53DD cells were stained for a-tubulin, which is

a component of microtubules and therefore of the mitotic spindle

poles. The cells were counterstained with DAPI and analyzed by

IF microscopy. The images obtained showed frequent multipolar

mitoses, indicative of abnormal mitosis (Figure 1b) and very clear

at higher magnification (Figure 1c). These results were confirmed

by experiments showing that over 70% of the infected cells

contained multiple (.2) centrosomes, and that 58% of infected cell

mitoses showed evidence of multipolar spindles, both values

compared to less than 10% in uninfected controls [29]. The

overall mitotic index of attached cells changes relatively little (less

than 2-fold) following AAV infection [28,29]. Interestingly, the

response of the cells to the virus was similar to that induced by the

topoisomerase-II inhibitor doxorubicin, which has been reported

to induce mitotic cell death [33], although less accumulation of G2

cells was seen, possibly because in this case the analysis was done 4

days post-treatment and the G2-arrested cells died.

Staining of attached infected U2OSp53DD cells with 4,6-

diamidino-2-phenylindole (DAPI) also revealed significant numbers

of micro-nucleated cells (Figure 1d); in a series of experiments the

average number of micro-nucleated cells ranged from 8% to 14% (see

also Figures 2 and 5), whereas they were not seen in controls. The

way the cells die was examined by time-lapse microscopy.

U2OSp53DD cells were infected and analyzed under a light

microscope, with images acquired every 5 min during 16 h. Live-

imaging showed that the infected cells are blocked in mitosis for a

prolonged period (12.5 h on average). During this time they appear

to be repeatedly distorted by internal forces, unsuccessfully try to

divide and finally die without detectably exiting mitosis (Figure 1e and

the time-lapse images in Movie S1). In untreated cells, in contrast,

mitosis was completed in about 1.5 h (Movie S2). We therefore

conclude from the results of FACS, IF and time-lapse microscopy

experiments that death of the AAV-infected p53-deficient U2OS cells

is for the most part associated with aberrant mitosis.

AAV-induced mitotic cell death is caspase-independent
To investigate whether mitotic cell death induced by AAV

involves apoptosis, U2OSp53DD cells were infected with AAV and

treated with the pan-caspase inhibitor carbobenzoxy-vanyl-ala-nyl-

aspartyl-[O-methyl]-fluoromethyl-ketone (zVAD-fmk). Cells were

then stained with PI and analyzed by flow cytometry (Figure 2a). In

the AAV-infected sample 48% of the cells were in the subG1

population, while with uninfected cells this population was almost

undetectable. In the zVAD-fmk-treated AAV-infected sample the

subG1 population was still prominent, comprising 34% of the cells.

Thus inhibition of caspases did not prevent cell death, as indicated

by the continued presence of the subG1 population in the zVAD-

fmk-treated AAV-infected cells. However, the proportion of subG1

cells was reduced following zVAD-fmk treatment. We therefore

conclude that the major part of AAV-induced mitotic cell death is

caspase-independent, although a minority of cells may die by a

caspase-dependent pathway, presumably apoptotic. This duality

will be discussed below. In actinomycin D (ActD) -treated cells, on

the other hand, zVAD-fmk essentially abolished cell death. ActD,

by inhibiting transcription, acts as a potent inducer of caspase-

dependent apoptosis and was used as a positive control for

apoptosis. Infected U2OSp53DD cells treated with zVAD-fmk

were also analyzed by DAPI staining and IF to identify

micronucleated cells (Figure 2b). This experiment confirmed that

caspase inhibition does not prevent the appearance of micronu-

cleated cells, since the zVAD-fmk-treated AAV-infected sample

showed a comparable number of micronucleated cells (11%) to that

of the AAV-infected one (8%). It is also apparent in Figure 2b that

the AAV-infected nuclei are vastly enlarged compared to uninfected

controls. This is a very reproducible finding though the enlargement

factor is variable, presumably depending on time, cell-type or MOI.

Cell size can thus be a useful marker of AAV infection.

The involvement of caspases in the AAV-induced death of

U2OSp53DD cells was further examined by staining infected cells

for cleaved caspase-3 and cleaved poly-ADP-ribose polymerase

(PARP) -1, which are markers of caspase-dependent apoptosis

(Figure 2c). AAV-infected cells did not show condensed chromatin

or stain positively for cleaved caspase-3 and cleaved PARP-1. On

the other hand, a significant number of the control ActD-treated

apoptotic cells did have condensed and fragmented chromatin and,

at the same time, were positive for both apoptotic markers. The

numbers of cleaved caspase-3 and cleaved PARP-1–positive cells

were counted in the AAV –infected and ActD-treated samples and

the percentage of positive cells in each sample was calculated. As

Mitotic Catastrophe in the Absence of Apoptosis
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shown in Figure 2d, only a small population of AAV-infected cells

showed signs of caspase-dependent apoptosis (2%), whereas 18% (as

indicated by cleaved PARP-1) and 15% (as indicated by cleaved

caspase-3) of ActD-treated cells were dying of caspase-dependent

apoptosis. The levels of cleaved PARP-1 were also examined in

AAV-infected and ActD-treated U2OSp53DD cells by total protein

extraction and western blotting (Figure 2e). Cleaved PARP-1 levels

did not rise after infection with AAV, whereas they increased

significantly after ActD-mediated apoptosis. Treatment with

zVAD-fmk diminished the amount of cleaved PARP-1 in both

cases. Taken together, these data indicate that the way the

U2OSp53DD cells die after infection with AAV is largely

independent of caspases, although we do not exclude that a

minority of cells may die in a caspase-dependent manner.

AAV-induced mitotic cell death is independent of
apoptosis and autophagy

The next step in our study was to investigate whether

AAV-infected U2OSp53DD cells show signs of chromosome

fragmentation that would imply apoptosis. For this purpose, a

Figure 1. U2OSp53DD cells infected with AAV die by mitotic catastrophe. (a) U2OSp53DD cells die 4 days after infection. Cells were infected
with AAV and analyzed by PI staining and FACS 4 days post-infection (x-axis: DNA content; y-axis: cell count). Doxorubicin (Doxo) leads to cell death in
mitosis and was used as a control. (b) AAV-infected cells show multiple spindle poles. U2OSp53DD cells were infected and then stained for a-tubulin
4 days post-infection. Bar: 30 mm. (c) Infected and control uninfected cells were stained for DNA with DAPI, for a-tubulin (red) and for centrin3 (green).
Merged red and green give yellow. (d) U2OSp53DD cells were infected with AAV and then stained with DAPI 4 days post-infection. The arrows
highlight micronucleated cells. Bar: 15 mm. (e) Prolonged mitosis can lead to cell death. Cells were infected with AAV and analyzed by time-lapse
brightfield-microscopy 2 days post-infection. Images were acquired using the 206objective and phase-contrast was used for the infected cells. The
arrows indicate a normally-dividing cell.
doi:10.1371/journal.pone.0022946.g001

Mitotic Catastrophe in the Absence of Apoptosis

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e22946



Figure 2. Mitotic cell death induced by AAV is caspase-independent. (a) FACS analysis showing that inhibition of caspases does not prevent
cell death. U2OSp53DD cells were infected with AAV and then treated with zVAD-fmk 2 days post-infection. The cells were analyzed by PI staining
and FACS, 4 days post-infection (x-axis: DNA content; y-axis: cell count). Treatment with zVAD-fmk prevented the ActD-induced cell death that was
used as a control. Treatment with zVAD-fmk alone did not have an effect on the cell cycle. (b) Caspase inhibition does not prevent micronucleation.
AAV-infected U2OSp53DD cells were treated with zVAD-fmk 2 days post-infection and analyzed by DAPI staining and IF 4 days after infection. Arrows
indicate micronucleated cells. Images were acquired using a 106 objective. Bar: 215 mm. The inserts show cells at higher magnification. (c) AAV-
infected U2OSp53DD cells are negative for cleaved caspase-3 (casp3) and cleaved PARP-1. Cells were infected and stained for the two markers of
caspase-dependent apoptosis and DAPI, 4 days after infection. Bar: 25 mm. (d) The percentage of cleaved caspase-3 and cleaved PARP-1 –positive
cells from the experiment described in (c). Error bars represent standard deviations from two independent experiments. The asterisk denotes
statistically significant difference (2-tailed t-test) (e) Western blotting showing low levels of cleaved PARP-1 in AAV-infected U2OSp53DD cells.
Treatment with zVAD-fmk decreased the levels of cleaved PARP-1. a-tubulin was used as a loading control. The relative levels of cleaved PARP-1
normalized using the loading controls are shown below. Un: untreated.
doi:10.1371/journal.pone.0022946.g002

Mitotic Catastrophe in the Absence of Apoptosis

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e22946



tunel assay was performed and the results (Figure 3) demonstrated

that AAV-infected cells do not incorporate DNA breaks, unlike the

positive control ActD- treated cells, which were tunel-positive.

Consistent with the tunel result, genomic DNA extracted from the

AAV-infected cells was not seen to be degraded on gel

electrophoresis (data not shown). To investigate further whether

apoptosis is involved in the mitotic cell death induced by AAV,

infected U2OSp53DD cells were stained for membrane-exposed

phosphatidylserine, using annexin-V conjugated to fluorescein.

Cells infected with AAV and analyzed for fluorescence showed no

staining for annexin-V, while the positive controls showed clear

staining, indicating that AAV-infected U2OSp53DD cells die in

an apoptosis-independent manner (Figure 4a). Absence of

apoptotic signaling was further confirmed in AAV-infected cells

by assaying for the levels of a pro-apoptotic protein marker, Bax

(Figure 4b). Quantification showed that AAV-infection did not

lead to elevated levels of Bax that would come as a result of

apoptosis. On the other hand, treatment with ActD resulted in an

increase in Bax levels. Finally, to examine if caspase-independent

apoptosis is activated in U2OSp53DD cells after infection with

AAV, infected cells were analyzed for nuclear localization of the

apoptosis-inducing factor (AIF) by IF (Figure 4c). Nuclear staining

of AIF was only observed in control staurosporin-treated cells but

in none of the AAV-infected cells.

In order to investigate whether autophagy is induced after

infection of U2OSp53DD cells with AAV, infected cells were

stained for the protein marker LC3B, which is produced only

when autophagy is initiated. The infected cells, analyzed by IF

microscopy, were negative for LC3B, indicating that they do not

die of autophagy (Figure 4d). On the other hand, cells treated with

chloroquine, a known inducer of autophagy, exhibited elevated

levels of LC3B. These data thus suggest that the way the

U2OSp53DD cells die after AAV infection is independent of

autophagy.

AAV-infected cells do not die by necroptosis
We then asked the question whether the U2OSp53DD cells die

by programmed necrosis, also known as necroptosis. To

investigate this hypothesis we used a potent inhibitor of

necroptosis, called necrostatin-1 [15]. Cells were infected and, at

the same time, treated with necrostatin-1. DAPI staining and

microscopic analysis were performed 4 days post-infection, and

showed that the formation of large numbers of micronucleated

cells still occurred despite the necrostatin-1 treatment (Figure 5a).

The experiment was replicated and the average percentage of

micronucleated cells was calculated (Figure 5b). The effect of

necrostatin-1 on the viability of the infected cells was then

examined by cell cycle analysis using flow cytometry. Cells were

infected with AAV with or without necrostatin-1 and analyzed 4

days post-infection by PI staining and FACS. As shown in

Figure 5c, necrostatin-1 did not affect the cell death-inducing

potential of AAV, indicated by the continued presence of the

subG1 peak in addition to the broad G2 peak, demonstrating that

the U2OSp53DD cells do not die of necroptosis after infection

with AAV. To control for the effectiveness of necrostatin-1,

NIH3T3 cells were treated with tumor necrosis factor alpha

(TNFa) and zVAD-fmk, so as to specifically induce necroptosis.

The cells were then treated, or not, with necrostatin-1, to inhibit

necroptosis, and were analyzed 3 days post-treatment by flow

cytometry (Figure 5d). Necrostatin-1 indeed inhibited cell death

induced by TNFa and zVAD-fmk. Taken together, these data

clearly suggest that, by the criterion of sensitivity to necrostatin-1,

U2OSp53DD cell death after AAV infection does not depend on

necroptosis.

The absence of apoptosis, autophagy and necroptosis in AAV-

infected U2OSp53DD cells led us to consider the hypothesis that

these cells collapse during cell division, due to crucial mechanical

problems caused by the presence of the overduplicated centro-

somes. To examine this, U2OSp53DD cells were infected and

treated with nocodazole, to prevent microtubule polymerization

and so to relax the pulling forces that we considered may

contribute to the mitotic death in these cells. The results (Figure

S1) showed that the number of micronucleated cells decreased

significantly in AAV-infected cells after nocodazole treatment. We

therefore conclude that relaxation of the microtubule pulling

forces during mitosis can suppress at least the role of micronuclea-

tion in infected U2OSp53DD cell death.

Mitotic catastrophe or apoptosis following AAV infection
is cell-dependent

Can these conclusions of mitotic cell death following AAV

infection be generalized to other cancer cell types? Are the tests we

have used to detect apoptosis after AAV infection reliable? To

answer these questions, different cancer cell types have been

examined for their response to AAV. We have shown that p53-

deficient colon cancer cells (HCT116 p532/2), but not the

homologous cells containing p53, also die predominantly in

mitosis, similarly to U2OSp53DD [28], thus demonstrating that

our conclusions are not limited to this cell-type. Infected Saos-2

cells, on the other hand, can undergo rapid apoptosis following

Figure 3. AAV-infected U2OSp53DD cells show no signs of
DNA fragmentation. Tunel assay showing absence of DNA fragmen-
tation in U2OSp53DD cells infected with AAV. Cell nuclei were
counterstained with DAPI. ActD was used as a control for apoptotic
DNA breaks. Cells were analyzed 4 days after infection or ActD-
treatment. Cells were also treated with DNaseI for 30 min after fixation
and used as controls. Bar: 75 mm (206 images) or 150 mm (106 images).
doi:10.1371/journal.pone.0022946.g003
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infection [30]. We therefore tested, in parallel with the

experiments on U2OSpp53DD cells, the effects of AAV infection

on the glioblastoma cells, MO59K. These cells were found to

respond to AAV infection by displaying all the hallmarks of

apoptosis, so establishing the validity of the apoptosis assays we

used. Thus, staining with PI followed by FACS analysis showed

that M059K cells die after infection with AAV, as indicated by the

presence of a subG1 DNA peak (44% of cells, Figure 6a).

Inhibition of caspases by treatment with zVAD-fmk markedly

reduced the killing capacity of the virus, as indicated by the

diminished subG1 population (8% of cells) in the AAV-infected

zVAD-fmk-treated samples. To further investigate how the

glioblastoma cells are killed by AAV, infected cells were stained

with DAPI and examined by microscopy 4 days later (Figure 6b).

IF analysis did not show a significant number of micro-nucleated

cells in the AAV-infected sample, confirming that these cells differ

from U2OSp53DD cells in their response to AAV infection.

Further examination of the infected M059K samples revealed

cells with condensed chromatin, consistent with these cells dying of

apoptosis. To confirm this, M059K cells were infected and stained

for the presence of cleaved caspase-3 and cleaved PARP-1. IF

analyses (Figure 6c) showed that many of the infected and ActD-

treated cells, but none of the control untreated cells, were positive

for these markers. The levels of PARP-1 were further studied by

extracting total protein and performing a western blot (Figure 6d).

Infected M059K cells showed elevated levels of cleaved PARP-1,

similar to those of ActD-treated cells. Treatment with zVAD-fmk

diminished the levels of cleaved PARP-1, slightly in the case of

AAV and to a greater extent with ActD. Finally, M059K cells

were stained for annexin-V-fluorescein binding and analyzed by

IF microscopy. The infected cells were positive for this apoptotic

marker, as were the ActD-treated cells. Therefore, taken together

these data clearly indicate that the glioblastoma cells die 4 days

after infection by undergoing caspase-dependent apoptosis.

In order to look further into the different behavior of glioblastoma

and osteosarcoma cells in response to AAV, we examined the cell

cycle checkpoints in these two types of cell. Cells from both lines

were infected and then analyzed by PI staining and FACS analysis,

1 day post-infection. M059K cells showed a G1 peak, whereas

U2OSp53DD cells arrested strongly at G2 (Figure 7a). Both cell

types underwent cell death 4 days post-infection. To test whether

the G1 peak of M059K infected cells corresponded to a G1 arrest,

cells were infected and analyzed by bright field microscopy 2 days

after the infection, to directly examine if infected cells proliferate.

As shown in Figure 7b, M059K cells did not propagate 2 days

post-infection, indicating that the G1 population of M059K infected

cells includes G1-arrested cells.

Figure 4. AAV-induced cell death is independent of apoptosis
and autophagy. (a) IF analysis of apoptotic cells (4 days post-
infection) using an annexin-V-fluorescein conjugate. The AAV-infected
U2OSp53DD cells are negative for this staining, unlike the ActD-treated
cells that were used as positive controls. DNA was stained with DAPI.
Bar: 30 mm. (b) AAV-infection in U2OSp53DD cells does not increase the
levels of Bax. Total protein was extracted from infected cells 4 days
post-infection and examined for Bax levels by western blotting. Mcm3
was used as a loading control. Un: untreated. Quantification of the Bax
signal relative to the loading control is shown below. (c) AAV-infected
U2OSp53DD cells are negative for AIF. Cells were infected and analyzed
by IF 4 days post-infection. DAPI was used to stain the nuclei.
Staurosporin-treated cells were used as a positive control. Bar: 85 mm.
(d) U2OSp53DD cells infected with AAV are negative for the autophagy
marker LC3B. Nuclei were visualized by DAPI-staining. Cells were
analyzed by IF analysis 4 days after infection. Chloroquine was used as a
positive control. Bar: 35 mm.
doi:10.1371/journal.pone.0022946.g004
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To study the functionality of the G1 checkpoint in AAV-

infected M059K cells, protein analysis was performed. The G1

checkpoint is mainly dependent on two pathways: the p53/p21

and the p16/pRb, with the latter being important in p53-deficient

cells [34–36]. M059K cells have a mutation in p53 and therefore a

compromised p53/p21 pathway [37], which was confirmed by

assaying for the levels of p21 after infection and showing that they

are low (Figure 7c). To investigate if the p16/pRb pathway is

functional, the levels of cyclin E were examined. Cyclin E

expression is inhibited after binding of pRb to E2F, preventing

cells from proceeding to S-phase [38]. Infected M059K cells

showed a decrease in the levels of cyclin E, which would suggest

that the cells are arrested at G1 through the p16/pRb pathway.

This was further confirmed by assaying Cdc25A and showing that

the levels of this protein also dropped 1 day after infection. On the

other hand, U2OSp53DD cells do not have an operational p53/

p21 pathway due to the expression of a defective p53 protein that

acts in a dominant-negative way [30]. This was checked by

assaying for p21 levels and showing that this pathway is indeed

non-functional (Figure 7d). The p16/pRb pathway was then

examined by investigating the levels of phosphorylated pRb. We

found that this pathway is also compromised, as pRb was

phosphorylated 1 day post-infection, indicating that the cells were

not arrested at G1. This result is in line with a study showing that

p16 expression is inhibited in U2OS cells [39]. The increase in the

levels of Chk1 that we observed 1 day post-infection may explain

the G2 arrest established in infected U2OSp53DD cells. These

results thus confirm that M059K cells have a functional G1

checkpoint, while the U2OSp53DD cells do not and arrest in G2

after AAV infection.

To check that AAV infection of M059K cells is efficient, cells

were infected with untreated wild type AAV and then stained for

AAV capsid proteins (Figure 7e). The data show that the

glioblastoma cells are as well-infected as the U2OSp53DD cells.

Figure 5. AAV-induced cell death is independent of necroptosis. (a) DAPI staining showing micronucleated cells among infected
U2OSp53DD cells treated with necrostatin-1 (necro). Necrostatin-1 treatment alone did not have a significant effect on the viability of the cells.
Images were acquired using the 106objective. Arrows indicate micronucleated cells. The inserts show cells at a higher magnification. Bar: 230 mm. (b)
The experiment described in (a) was replicated and the average percentage of micronucleated cells was calculated in infected cells with or without
necrostatin-1 treatment. Error bars represent standard deviations from two independent experiments. Un: untreated. (c) PI staining and FACS analysis
showing that AAV-induced cell death in U2OSp53DD cells is not sensitive to necrostatin-1 (x-axis: DNA content; y-axis: cell count). Necrostatin-1
treatment alone did not have an effect on the cell cycle. (d) Control FACS experiment to test the effectiveness of necrostatin-1. NIH3T3 cells were
treated with TNFa and zVAD-fmk to induce necroptosis, which was then successfully inhibited by necrostatin-1. These experiments were performed
with the DAKO flow cytometer (see Materials and Methods) and so have a slightly different presentation from the other FACS analyses.
doi:10.1371/journal.pone.0022946.g005
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Finally, to confirm that AAV induces a DNA damage response in

M059K similar to that seen in U2OSp53DD cells, M059K cells

were infected with AAV and analyzed for the presence of DNA

damage response foci. Cells were stained for phospho-RPA32, a

marker of the DNA damage response provoked by AAV-induced

stalled replication forks [40]. As shown in Figure 7f, the infection

induced formation of DNA repair foci in M059K cells, similar to

those seen in U2OSp53DD cells. Taking our results together, we

conclude firstly that, although we found no expression of apoptotic

markers during mitotic catastrophe in U2OSp53DD cells, the

assays used readily revealed apoptosis when it was indeed

occurring. Secondly, the specific response of cancer cells to AAV

infection is not only cell-type-dependent, but also can vary within a

single cell population.

Discussion

Mitotic cell death by multipolar spindle-induced cell
disruption

Mitotic catastrophe is a type of cell death that occurs in cells

with defective checkpoints and may have several causes, one of

which is centrosome overduplication. In the experiments we report

here we have tackled the question of the relation between mitotic

catastrophe and programmed cell death. To do this, we used a

unique reagent - a UV-inactivated version of the virus AAV. This

virus is particularly informative for this study because it can initiate

a strong and clearly defined DNA damage signal, while not

causing damage to the DNA of the host cell [27,32]. It is the viral

DNA itself that is sensed by the cell as a stalled replication fork,

Figure 6. AAV induces apoptosis in M059K cells. (a) Inhibition of caspases leads to a decrease in the SubG1 population induced by AAV. M059K
cells were infected, treated with zVAD-fmk and then stained with PI and analyzed by flow cytometry 4 days after infection (x-axis: DNA content; y-axis:
cell count). Treatment with zVAD-fmk alone did not have a significant effect on the cells. (b) Infection with AAV does not lead to micronucleation in
M059K cells. Infected cells were stained with DAPI 4 days post-infection. ActD was used as a control with no micronucleation and positive for
apoptosis. Bar: 115 mm. (c) AAV-infected M059K cells have condensed or fragmented chromatin and are positive for cleaved caspase-3 and cleaved
PARP-1. Cells were infected and analyzed by IF 4 days post-infection. DAPI was used to stain the nuclei. Bar: 35 mm. (d) Western analysis showing that
glioblastoma cells are positive for cleaved PARP-1 after infection with AAV. Protein levels were assayed 4 days after infection. a-tubulin was used as a
loading control. (e) AAV-infected M059K cells are positive for annexin-V staining. Cells were analyzed by IF 4 days post-infection, as in Figure 4. DNA
was stained with DAPI. Bar: 30 mm.
doi:10.1371/journal.pone.0022946.g006
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Figure 7. M059K cells have, unlike U2OSp53DD cells, a functional G1 checkpoint. (a) PI staining and FACS analysis of AAV-infected M059K
and U2OSp53DD cells (x-axis: DNA content; y-axis: cell count). U2OSp53DD cells arrest at G2 1 day post-infection, whereas M059K cells do not. Both
cell types proceed to death 4 days after infection. (b) Brightfield-microscopy images of untreated and AAV-infected M059K cells showing that
infected cells arrest up to 2 days after infection. Images were acquired using the 106objective. Bar: 230 mm. (c) M059K cells arrest in G1 after AAV-
infection. Cells were infected and total protein was extracted 1 day post-infection. Western blotting showed low levels of cyclin E and cdc25A in
infected cells, which is indicative of a functional G1 checkpoint. Mcm3 was used as a loading control. The numerical values below the bands are the
relative protein amounts normalized to the loading control. Un: untreated. (d) The same experiment was performed in U2OSp53DD cells. High levels
of phosphorylated pRb (ppRb) and of chk1 1 day post-infection indicate that these cells have a weak G1 checkpoint and arrest in G2. (e) Control
experiment showing that M059K cells are efficiently infected with AAV. Cells were infected with untreated-AAV and stained using an AAV-capsid
antibody, 1 day after infection. U2OSp53DD cells were used as a control. DAPI was used to stain nuclei. Bar: 35 mm. (f) Control IF experiment showing
that AAV induces a similar DNA damage response in M059K cells to that induced in U2OSp53DD cells. Induction of phospo-RPA32 (pRPA32) foci was
used as a marker for DNA damage response. DNA was stained using DAPI. The experiment was performed 1 day post-infection. Bar: 35 mm.
doi:10.1371/journal.pone.0022946.g007
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due to its inability to complete replication. The use of wild type or

inactivated AAV is interesting as a potential tool against cancer, as

it has been shown to kill p53-deficient cells and prevent tumo-

rigenesis in mice [30].

Our results show that mitotic cell death is induced by AAV in

p53-deficient U2OS cells and that this can take place in the absence

of apoptosis. In these cells, AAV infection leads to prolonged mitosis,

overduplication of centrosomes, multipolar spindles and formation

of micronucleated cells. To investigate further the way the AAV-

infected cells die, we looked for markers of caspase-dependent

apoptosis and found that the infected U2OSp53DD cells die

independently of caspase activity. The cells were further shown not

to have fragmented chromatin or to show signs of caspase-

independent apoptosis. The processes of autophagy and necroptosis

were also found not to be activated. Together with time-lapse

microscopy of infected cells, these data suggest that the infected p53-

deficient osteosarcoma cells die in mitosis due to mechanical collapse

rather than apoptosis. Although in this work we concentrated on the

well-defined DNA damage signal due to AAV infection, we have

also shown that doxorubicin can elicit a similar response. Note that

the parental U2OS cells are not a good control for U2OSp53DD

because, due to p14 (ARF) promoter methylation, they have a p53

pathway that is already partly defective [39].

In contrast to U2OSp53DD cells, M059K glioblastoma cells that

were infected with AAV responded differently. These cells arrested

in the G1 phase of the cell cycle soon after infection and died 4 days

post-infection. Death of these cells was caspase-dependent and was

characterized by various hallmarks of apoptosis. M059K cells have a

compromised p53/p21 pathway, due to the absence of functional

p53 [37]. On the other hand, they appear to have a functional p16/

pRb pathway, since cyclin E levels dropped 1 day after infection.

Moreover, Cdc25A levels diminished 1 day post-infection. Given

that the p16/pRb pathway is a p53-independent activator of G1-

arrest [41–43], these results indicate that the glioblastoma cells

activated their G1 checkpoint after AAV infection. It is therefore

possible that activation of apoptosis in M059K glioblastoma cells is

related to the G1 checkpoint activation and subsequent G1 arrest

that is seen in these cells, so that abrogating this checkpoint would

affect the frequency of apoptosis (Figure 8). G1 checkpoint-

competent NIH3T3 cells also could undergo apoptosis, in line with

studies showing G1-phase-dependent activation of apoptosis [44,45].

Nevertheless, since U2OS and M059K are not isogenic, more work

is needed to define with certainty the determinants of apoptosis.

The details of how AAV-triggered DNA damage signaling may

lead to apoptosis remain to be clarified. A model for Saos-2 cells has

recently been proposed [46]. These cells are deficient in both p53 and

pRb, and die through caspase-dependent apoptosis rapidly after

AAV infection, with no signs of mitotic catastrophe being reported.

Saos-2 cells have been shown to be more sensitive to AAV infection

when compared to U2OSp53DD cells, with death pathways being

activated soon after infection [30]. We propose that complete absence

of pRb in Saos-2 cells renders them susceptible to apoptosis, which is

triggered immediately after infection. Indeed, there are several studies

showing that the absence or degradation of pRb is linked to

immediate apoptosis induction [47,48]. We therefore attribute the

different responses of Saos-2 and U2OSp53DD cells to the different

pRb status of the two cell lines. To know whether the Saos-2 model

applies by analogy to other cell types will need further testing.

U2OSp53DD cells were unable to activate apoptosis and died due

to cellular collapse in mitosis. These cells are defective in the p53/p21

pathway, as well as in the p16/pRb pathway [39]. This was confirmed

by assaying for the levels of p21 and phosphorylated pRb.

U2OSp53DD cells are therefore unable to activate the G1 checkpoint

and sustain a G1 arrest. Nevertheless, these cells were able to arrest in

the G2 phase 1 day post-infection, mainly due to a transient increase in

the levels of activated Chk1 that prevented them from entering mitosis

[27,49]. We have previously shown that Chk1 levels decrease in

U2OSp53DD cells 4 days after infection, releasing them into

catastrophic mitosis [28]. Since the majority of the infected cells

display amplified centrosome numbers, we propose that the Chk1-

mediated G2 arrest gives time to centrosomes to reduplicate, causing

the multiplicity of spindle poles observed in infected U2OSp53DD cells

[17,50]. The absence of p21 activation, which is normally required for

regulating centrosome amplification and preventing mitotic entry,

supports this conclusion [24,51]. The time-lapse microscopic images in

Movies S1 and S2, see also [29], showing the contents of rounded-up

AAV-infected mitotic cells being tugged repeatedly back and forth,

together with the absence of any signs of programmed cell death, lead

us to propose that these cells enter mitosis, where they die due to

mechanical failure of proper chromosome segregation, caused by the

abnormal number of spindle poles (Figure 8).

Cell-dependent responses to AAV infection
Why is treatment with genotoxic agents often lethal for cancer

cells? Here we show that different cell-types can respond quite

differently to exactly the same damage signal, UV-inactivated

AAV. The underlying cause of this variability is probably complex,

depending on the specific set of checkpoint mutations present.

One criterion suggested by our findings is a functional G1

checkpoint. In this model, after a DNA damage signal induced by

AAV in the presence of a competent G1 checkpoint and the

consequent G1 arrest, certain cells are able to initiate a caspase-

dependent apoptotic pathway and undergo cell suicide. Absence of

the G1 checkpoint leads to escape from apoptosis. Nevertheless,

those cells still die, but only after a mechanical catastrophe that is

due to an unscheduled entry into abnormal mitosis. U2OS cells

without the dominant negative p53, on the other hand, are more

resistant to AAV infection, and show a strong cell cycle arrest,

which is overcome after about 5 days [30].

Alternatively, it may be that a cell’s sensitivity or indifference to

apoptotic signaling underlies the variation seen in response to

AAV infection. Our FACS analyses of cells treated with the pan-

Figure 8. Hypothetical model explaining the difference be-
tween U2OSp53DD and M059K cells in deciding which cell
death pathway to follow after AAV infection.
doi:10.1371/journal.pone.0022946.g008
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caspase inhibitor suggested that even within a single cell

population the response to AAV infection varies. This is confirmed

by quantitative live imaging showing that while over 80% of the

infected U2OSp53DD cells die in a prolonged aberrant mitosis,

the remaining cells respond differently and rapidly undergo

apoptosis [29]. These findings are consistent with a model in

which non-genetic determinants of cell fate, such as the balance

between signals promoting apoptosis or continued movement

through the cell cycle, can vary within individual cells with time.

The principal outcome of our study is that mitotic catastrophe

can occur independently of apoptosis. Mitotic cell death in p53-null

cells occurred predominantly as a result of mechanical disruption

induced by multipolar mitotic spindles, and not as a consequence of

a suicide signal. Although chromosomal instability has been

considered to be tumorigenic, it is now becoming clear that,

paradoxically, high rates of aneuploidy may cause tumor suppres-

sion and cell death [52]. Our results suggest that AAV or UV-

inactivated AAV can be used as an inducer of DNA damage

signaling to target p53-deficient cells and trigger death after entry of

cells with overamplified centrosomes into mitosis. Since this does

not involve apoptosis, cell death triggered by AAV, or by drugs that

interfere with cell cycle control and mitosis in a similar way, may still

target cells that have lost apoptotic signaling pathways.

Materials and Methods

Cell lines and chemicals
M059K and NIH3T3 cells (American Type Culture Collection)

were maintained in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (FBS),

penicillin/streptomycin and ciprofloxacin (Ciproxin; Bayer, Le-

verkusen, Germany). U2OSp53DD cells, a kind gift from Dr. K.

Raj who produced them [30], were maintained in the above

medium supplemented with 1.5 mg/ml of puromycin. Chemicals

used are the following: ActinomycinD (1 mg/ml), chloroquine

(50 mM), DNaseI (0.5 u/ml), doxorubicin (50 nM), necrostatin-1

(80 mM) nocodazole (0.1 mg/ml), staurosporin (200 nM), TNFa
(50 ng/ml) and zVAD-fmk (20 mM). All chemicals were from

Sigma-Aldrich (Dorset, UK), except DNaseI (Roche, Basel,

Switzerland), necrostatin-1 (Alexis, Lausen, Switzerland) and

TNFa (Cell Sciences, Canton, MA, USA).

Virus production and infections
Production of AAV was done in HeLa cells and has been

previously described [53]. All experiments were performed using

UV-inactivated AAV2, unless stated otherwise. UV-treatment of

AAV and subsequent infection have been described before [32].

Propidium Iodide staining and FACS analysis
The PI-staining protocol has been previously described [40].

Flow cytometry was performed using a FACScan Becton-

Dickinson (San Jose, CA, USA) or a CyAn DAKO (Glostrup,

Denmark) flow cytometer.

Immunofluorescence staining and microscopy
The procedure for IF-staining and microscopy analysis has

been extensively described [32]. The primary antibodies used were

the following: anti-AAV-capsid (Progen, Heidelberg, Germany),

anti-AIF (Cell Signaling, Danvers, MA, USA), anti-a-tubulin

(Abcam, Cambridge, UK), anti-cleaved-caspase3 (Cell Signaling),

anti-cleaved-PARP1 (Cell Signaling), anti-LC3B (Cell Signaling) and

anti-phospho-RPA32-S4/S8 (Bethyl, Montgomery, TX, USA). The

secondary antibodies used were Alexafluor-488 (Molecular probes,

Eugene, OR, USA) and Cy3 (Jackson Immunoresearch, West

Grove, PA, USA) IgG conjugates. The annexin-V-Fluos staining kit

(11 858 777 001) was obtained from Roche Diagnostics GmbH and

used following the manufacturer’s instructions. Images were

obtained using the Zeiss Axioplan microscope and were acquired

with an AxioCam MRm Zeiss camera, using the Axiovision 4.5

software. The 636objective was used, unless otherwise stated. For

live imaging, the Zeiss Time-laps Axiovert 100 microscope was used.

Western blotting
The detailed protocol has been described before [32]. The

primary antibodies used were the following: anti-a-tubulin (Abcam),

anti-Bax (Santa Cruz), anti-Cdc25A (Santa Cruz), anti-Chk1

(Abcam), anti-cyclin E (Santa Cruz), anti-mcm3 (Abcam), anti-

p21 (Santa Cruz), anti-cleaved-PARP1 (Cell Signaling) and anti-

pRb (BD Pharmigen, San Diego, CA, USA). Horseradish

peroxidase-conjugated IgGs were used as secondary antibodies

(Jackson Immunoresearch).

Tunel assay
The fluorescein FragEL DNA fragmentation detection kit

(Calbiochem, San Diego, CA, USA) was used and the protocol

described by the manufacturer was followed.

Supporting Information

Figure S1 Inhibition of microtubule polymerization
prevents cell death in mitosis. (a) U2OSp53DD cells were

infected with UV-AAV and treated with nocodazole (Noco) 1 day

before IF analysis, to prevent microtubule polymerization.

Samples were analyzed 4 days after infection for micronucleated

cells by DAPI staining. a-tubulin was used as a control for the

effectiveness of the nocodazole treatment. Indeed, a-tubulin did

not stain polymerized microtubules in the AAV-infected/nocoda-

zole-treated sample. Furthermore, treatment with nocodazole

alone resulted in a large number of cells arrested in prometaphase,

as seen by their condensed chromatin and the staining of

condensed unpolymerized a-tubulin. Images were acquired using

the 106 objective. Arrows indicate micronucleated cells. Bar:

230 mm. (b) The experiment described in (a) was replicated and

the average percentage of micronucleated cells was calculated in

infected cells with or without nocodazole treatment. Nocodazole

treatment itself resulted in a small but significant number of

micronucleated cells. Error bars represent standard deviations.

(TIF)

Movie S1 Time-lapse video of AAV-infected cells from
the experiment described in Figure 1d.
(AVI)

Movie S2 Time-lapse video of untreated cells from the
experiment described in Figure 1d.
(AVI)
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