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Abstract

In this study, a non-tensor product B-spline algorithm is applied to the search space of the registration process, and
a new method of image non-rigid registration is proposed. The tensor product B-spline is a function defined in the
two directions of x and y, while the non-tensor product B-spline S} (ALY is defined in four directions on the 2-type
triangulation. For certain problems, using non-tensor product B-splines to describe the non-rigid deformation of an
image can more accurately extract the four-directional information of the image, thereby describing the global or
local non-rigid deformation of the image in more directions. Indeed, it provides a method to solve the problem of
image deformation in multiple directions. In addition, the region of interest of medical images is irregular, and
usually no value exists on the boundary triangle. The value of the basis function of the non-tensor product B-spline
on the boundary triangle is only 0. The algorithm process is optimized. The algorithm performs completely
automatic non-rigid registration of computed tomography and magnetic resonance imaging images of patients. In

particular, this study compares the performance of the proposed algorithm with the tensor product B-spline
registration algorithm. The results elucidate that the proposed algorithm clearly improves the accuracy.

Keywords: Non-rigid registration, Diagonal direction, Non-tensor product type B-spline, Boundary triangle domain

Introduction

Medical imaging technologies are essential in modern
medical diagnosis, and provides indispensable help for
doctors to accurately determine the condition of pa-
tients’ lesions. At present, the most commonly used
medical imaging techniques include computed tomog-
raphy (CT), magnetic resonance imaging (MRI), positron
emission computed tomography (PET), and ultrasound
(US). However, in the treatment cycle of each patient,
the human tissue inevitably undergoes a local deform-
ation, and doctors cannot accurately judge the changes
in the lesions using medical images. The medical image
non-rigid registration algorithm can solve this problem
to a certain extent, which is a search for the
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transformation relationship between images collected at
different times or using different instruments [1]. Ac-
cording to the existing three-dimensional (3D) modeling
technologies [2, 3], Fig. 1 illustrates a 3D model of
hematoma and nerve bundle before and after registra-
tion, respectively.

In the 1980s, the medical image scanning technology
was relatively backward, and most registrations were
only applied to rigid registrations in the same modalities.
In 1992, Brown [4] classified registration methods ac-
cording to the complexity of the transformation model
and proposed four components of registration, including
the feature space, similarity measure, search space, and
optimization strategy. In the mid to the late 1990s, with
the application of CT, MRI, PET, US, and other medical
imaging equipment in clinical diagnosis, doctors and sci-
entific researchers realized that medical images of differ-
ent modalities can provide various information and a
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solid basis for diagnosis. Maes et al. [5] applied the con-
cept of mutual information to multimodal medical
image registration and used the mutual information be-
tween the reference and moving images as a similarity
measure for image registration. In 1999, Rueckert et al.
[6] proposed a free deformation model based on a B-
spline. Subsequently, they applied the uniform multi-
level B-spline method of discrete data interpolation, pro-
posed by Lee et al. [7], to the non-rigid registration of
breast MRI, which could restore the motion and deform-
ation of the breast [8]. Subsequent methods attempted
to improve this method. In the twenty-first century, the
rapid development of computer hardware has promoted
studies on the image registration in 3D and even four-
dimensional fields, particularly on the non-rigid registra-
tion between different images of a certain patient. In
2001, Schnabel et al. [9] proposed a non-uniform multi-
layer B-spline to improve the registration efficiency. In
2013, Oliveira and Tavares [10] introduced a new en-
hanced B-spline method to register the plantar pressure
image sequences in time and space simultaneously. Al-
though the traditional B-spline registration algorithm
can achieve reasonable results, it is difficult to obtain ac-
curate results for images with large local and global dis-
tortions. The accuracy of the algorithm is low when the
smoothing term in the cost function is large. When the
smoothing term is considerably small or close to 0, over-
registration occurs, severely destroying the image top-
ology. Therefore, some areas cannot be registered. In
view of this problem, Ji et al. [11] presented a non-rigid
registration algorithm based on a multilevel B-spline,
and checked the influence of the balance item using the
L2 regularization term, which improved the registration
accuracy.

In 1975, Wang [12] established the basic theoretical
framework of multivariate splines on arbitrary
subdivisions, proposed the smoothing cofactor con-
formality method, and pioneered the algebraic geom-
etry method for studying multivariate splines.
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Subsequently, many types of non-tensor product ex-
pressions for binary B-spline spaces and basic func-
tions were introduced. In particular, the binary B-
spline was on the 1-type and 2-type triangulations. In
1984, Chui and Wang [13] provided a bivariate quad-
ratic first-order smoothness B-spline basis with a
minimum symmetric support under the uniform div-
ision and constructed an S}(A!?)) non-tensor product
B-spline theoretical framework. In 2001, the theory of
multivariate spline was organized, while the theory of
smooth cofactor coordination method and its applica-
tion in multivariate spline function were introduced
in detail [14]. In addition, some considerable results
were achieved in various applications [15-17]. To the
best of our knowledge, the application of the above-
mentioned splines and registration of medical images
has not been reported yet.

The tensor product B-spline in the rectangular domain
can only express the information in the horizontal and
vertical directions. The direction information is crucially
important in the registration of images. The non-tensor
product B-spline may contain more directional informa-
tion, which can display more feature information. In this
study, a new registration algorithm is proposed that uses
non-tensor product B-spline S}(A?)) on the 2-type tri-
angulation in search space to describe the global or local
motion of the image in more directions [18]. The brain
CT and MRI were selected for the registration test. In
addition, there are basis functions that can describe the
deformation of an image in four directions, which com-
pensates for the lack of tensor product B-spline func-
tions to a certain extent and achieves accurate results.

The remainder of this paper is organized as follows.
First, the basic framework of image registration is intro-
duced, and explicit expressions and images of non-
tensor product B-spline basis functions in S%(Aﬁf,),) space
are provided, followed by the registration experiments
and a detailed analysis.

(a)

(b)

Fig. 1 3D model of before and after registration. (a): 3D model before registration; (b): 3D model after registration
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Methods

Non-tensor product B-spline in the Sl(Agr)w) space

Uniform 2-type triangulation

Uniform 2-type triangulation is a triangulation formed

by connecting two diagonal lines of each small rectangle

on the basis of a rectangular division. If the rectangular

division is uniformly divided, the formation of a uniform

2-type triangulation is also achieved using the division.
The uniform 2-type triangulation A?) on area D is

generated by the following division lines, as shown in

Fig. 2.

mx—i =0

ny-i =20

ny-mx—i =0 (1)
my-nx—i =0

i=..-1,0,1,..

Basis function of the spline space S;(AE,?,),) [14]
The dimension of the spline space S}(A(2)) can be
expressed as

dimS}(A%) = (m +2)(n +2)-1 (2)

A local support spline function B(x,y) exists in the
space S}(A(2)). Its support is the area Q in Fig. 3, where
the support function is centered at the origin.

According to the theory of polynomial interpolation,
the second-degree polynomial on a triangle can be
uniquely determined using the value of the polynomial
on the three vertices of the triangle and midpoints of the
three sides. In fact, these six points are simply a set of

Y A

0 X

Fig. 2 Area D and its division A(ng
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Fig. 3 Area Q and its division

well-posed node groups for the second-degree polyno-
mial interpolation, as shown in Fig. 4.

A = Xi—Xi-1
xité_xi—jlc
, e
Al‘+1 _ i+27WVi+1
Xit2—Xi
Vi~Yj1 (3)
Bj = ———
Vi+17Yj-1
/ YVita=Vj+1
B ="+
yj+2_y]

Therefore, it is only necessary to indicate the values of
the corresponding six points on the cavities to represent
the spline B(x, y) of the above-mentioned local support.

As shown in Fig. 3, for each i=1, ..., 28, consider the
polynomials as

11,1,
pl(x,y)—% %x 12y
Y . 2
ps(y) = g-ox=3y
o) = (7 1) 4 (221 1,

po(x.9) = | g=x+ % R Lt (4)
(x )—9 3x+1x2
P1o\X, )y 38 9 B
X

where other polynomials can be obtained using the
principle of symmetry.

According to Eq. (4), all polynomials on the cavity are
obtained as follows:



Zheng et al. Visual Computing for Industry, Biomedicine, and Art (2022) 5:5 Page 4 of 14
p
1, 1
16 Ditt 15 76 B
1, 1
1, 7 Bin —AL B
Z AB 47 i+1P4+1
17 ¢1hBa 16 VIS G T
1 , i i / 1. /
g4 166+ 14287 16 O M) B | 4B
18 6 12
A;B!
i1 1 1
i AiBj 1 (2+ A+ A1) B AinBin 4 AinBin
1 1 , Al + Bj+5A;+5B), +4AB],, Aj+ Bj+5Al, +5Bj,, +4A},,B),, 1
G4 1916 (5+4Bj,)A; 6 9 6 15 6+ 4B AL
|
! L ™~ YA+ A, 1B+ B - L 15 A
1 A; 1 (2+ B;+ Bj,,) A 1 (Ai+ Al +Bj+ Bjy) 14 16
20 7 1 5 10
1
1 7 2+ B+ B AL, 1
’ / ’
1 A i (A, + Bjyy +5Ai+ 5B, +44,B)) I T ALy
16 "
21 1 ® 4 9
— (5+4B)j)A 1 ] / )
o 16 i) A; 1g (i By 54, 4 5B, + 44, ) 1_16 (51 4B)AL,
i
1 Al B 1
(24 A+ AL B e ~ AL B;
1 A;B; 1 AANE. 4( i T A1) 5 7 b
22 AB; g OB . 28
1 , 1
% (5 + 4AH1)B]> i A;-HB]'
1
23 tiam 24 26 ALB Y o7
— BJ
1 25 1z
165 167
Fig. 4 Support of B-spline function B(x, y) on uniform 2-type triangulation
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Fig. 5 Basis function image
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0
B(x,y) = {pi(x7y)’i =1,2,...,28 )

Here, the B-spline basis is Bjj(x,y) = B(mx—i+3,ny-j
+1). Figure 5 demonstrates a 3D diagram of the local
support of a bivariate quadratic spline curve, where the
provided equidistant grid points are located at x; 1, ...,
xi+2=-1,0,1,2and y,_1q, ..., ¥i:2=-1,0, 1, 2. The
bivariate B-spline basis function was connected to all 28
nonzero polynomial surfaces. In addition, it is continu-
ous and has a continuous first-order partial derivative.
The following properties were established:

V(x,y)eD, ZB,'/(x,y) =1

V(x,y)eD, Z (—1)i+jB,7(x7y) -0 (6)

The smoothness and local characteristics of the bivari-
ate B-spline make it an ideal candidate as the basis func-
tion of the approximation or interpolation kernel.

Normalized cross-correlation algorithm

Common measures of image similarity include peak
signal-to-noise ratio, structural similarity, normalized
cross-correlation (NCC), normalized mutual informa-
tion, and mean square error. Because the calculation of
the NCC coefficient is relatively simple, and the reason-
able concave-convex characteristic is conducive to solv-
ing the optimal parameters, the NCC method was
chosen as the similarity measurement algorithm. The
NCC similarity metric measures the similarity of the im-
ages to be registered by calculating the cross-correlation
value between the reference image and the moving
image. The NCC of a two-dimensional (2D) image can
be expressed as
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where A(i,j) and B(i,j) represent the gray values of the
moving image and the reference image in m rows and n
columns, respectively. When the NCC value between the
reference and moving images is the largest, the two im-
ages are fully registered. Our chosen optimization strat-
egy adopts the gradient descent method to solve the
minimum value of the objective function. Therefore, this

study selects the reciprocal of Eq. (7).

1
Sncc

(8)
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Image registration framework

The 2D arrays I;(x,y) and I (x,y) of a known size re-
spectively represent the gray value of the moving and
reference images at the point (x, y). Subsequently, the
registration relationship between the images can be
expressed as

L(x,y) = Ii{glf (x,y)]} ©)

where f represents a 2D geometric transformation func-
tion, and g represents a one-dimensional gray-scale
interpolation function.

The geometric transformation function f in the non-
rigid registration algorithm consists of three parts, in-
cluding the search space (the non-tensor product B-
spline model), similarity measure (the NCC algorithm),
and optimization strategy (the gradient descent algo-
rithm). The gray-level interpolation relationship g applies
a bilinear interpolation algorithm. First, convert the pixel
coordinates of the image into parameter grid coordi-
nates, perform the uniform 2-type triangulation on the
parameter grid, and calculate the value of the non-
tensor product B-spline model transformation. This
value is the offset of the image coordinates, each of
which is affected by nine control point parameters. Pro-
vided that the pixel coordinates of a moving image I(x;, y)
in row a and column b are (x,y) and the parameter co-
ordinates are (4, v), convert it into a parameter grid with
m rows and # columns, respectively.

: <(E.. :ln)_- Lﬁ;—c n ]”J (10)

The coordinate offset is as follows:

IR N

(11)

Algorithm 1 DPseudo-code implementation of non-
tensor product B-spline transformation

Input:Moving_Image (x, y), Control_vertex_parameter[2 * m * n]

Output:Deformation_Image(New_x, New_y)
1 while x<a and y <b do

2 delta_x=a/m;

3 delta_y=b/n;

4 x_block=x/ delta_x;

5 y_block=y / delta_y;
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Fig. 6 Non-tensor product registration framework
A

Image registration framework (Continued)

Input:Moving_lmage (x, y), Control_vertex_parameter[2 * m * n]

6  w=floor(x_block);
7 s=floor(y_block);

8 u=x_block - w;

9 v=y_block-s;

10 =0

1 j=0

12
13
14
15
16
17
18
19
20
21
22

if (U, v) in the interval of the basis function p(u, v) then

While i <3 do

While j <3 do

Tx += B(u, v) * Control_vertex_parameter[(s + i) * n+w +jl;

Ty + = B(u, v) * Control_vertex_parameter[(s+i) * n+w+j+m * nJ;
end while

end while

end if

end while

New_x=x+ Tx;

New_y =y +Ty;

In pseudo-code implementations, such as Algorithm 1,
the control vertex parameter sequence is first initialized,
the parameter sequence and moving image are input
into the non-tensor product B-spline model and the
pixel coordinates of the moving image are transformed
to obtain the deformation image. Subsequently, the
NCC algorithm is used to calculate the similarity meas-
ure between the deformation and reference images, and
then it is judged whether the similarity measure satisfies
a certain threshold. If not, the gradient descent algo-
rithm is used to update the control vertex parameters,
find the optimal solution using the continuous iteration,
and finally export the registration image, as shown in
Fig. 6.

To perform the experiments in this study, an Intel(R)
Core (TM) i7-8750H CPU and NVIDIA GeForce GTX
1050 GPU hardware configuration was employed. The
graphics processing unit with Compute Unified Device
Architecture was used to accelerate the calculation of
the non-tensor product B-spline algorithm.

Results and Discussion

33x 33 parameter grid

This group of experiments used MRI and CT images of
a patient with a brain hematoma to test the effectiveness
of the algorithm in correcting the non-rigid motion of
medical images. The size of the images was 496 x 472,
and the parameter grid specification was set to 33 x 33,
as shown in Fig. 7. The initial similarity measure value
of the MRI and CT reference and moving images was
1.01348 and 1.01908, respectively.

Tensor product quadratic uniform B-spline

In this experiment, a two-variable quadratic uniform B-
spline tensor product was selected as the deformation
function of the registration, in which 3 x 3 control verti-
ces controlled the offset of each pixel. Thirteen valid it-
erations were performed for the registration experiment
of the MRI images. The similarity measure reached
1.00338, where the running time was 5 min. Figure 8 il-
lustrates the MRI experimental results. Eighteen valid it-
erations were carried out for the registration experiment
of the CT images. The final similarity measure, for a
running time of 4 min, was 1.00569. Figure 9 demon-
strates the CT experimental results.

Tensor product cubic uniform B-spline

In this experiment, a two-variable cubic uniform B-
spline tensor product was selected as the deformation
function of the registration, in which 4 x 4 control verti-
ces controlled each pixel. Sixteen valid iterations were
performed for the registration experiment of the MRI
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(b)

()

Fig. 7 Initial image data. (a): MRI reference image; (b): MRI moving image; (c): Difference between MRI reference image and moving image; (d):
CT reference image; (e): CT moving image; (f): Difference between CT reference image and moving image

(d)

images. The similarity measure reached 1.00327, where
the running time was 11 min. Figure 10 presents the
MRI experimental results. Eighteen valid iterations were
carried out for the registration experiment of the CT im-
ages. The final similarity measure, for a running time of
10 min, was 1.00559. Figure 11 shows the CT experi-
mental results.

Non-tensor product uniform B-spline

In this experiment, a B-spline uniformly divided in the

1
)33
1. Here, m = 33, n = 33; thus, the dimension

space S}(A2)) was used, where the node vector was 0

2 3L 32
73371733733

of S%(A%LB) was 1224, and the set of basis functions to
be subtracted was as follows:

(a)

(b)

Fig. 8 MRI data after registration. (a): Difference between MRI reference image and registration image; (b): MRI registration image
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(a)

(b)

Fig. 9 CT data after registration. (a): Difference between CT reference image and registration image; (b): CT registration image

1 ) 1 1 1
E(B3M+33V—l) ,Osusﬁ and 0£v£§ and u+v—§ <0
0, others

{

Among them, 3x3 control vertices controlled the
offset of each pixel, where 17 valid iterations were
carried out for the registration experiment of MRI
images. The similarity measure reached 1.00274, where
the running time was 49 min. Figure 12 presents the
MRI experimental results. Twenty-eight valid iterations
were carried out for the registration experiment of the
CT images. The final similarity measure was 1.00457,
where the running time was 45 min. Figure 13 illustrates
the CT experimental results.

}

(12)

Non-tensor product non-uniform B-spline

In this experiment, the non-uniformly divided B-spline
in the S1(A?)) space was used as the deformation func-
. 1 3 4 29 31 32
tion, where the node vector was 0,35,53,35,--,33 3353
1. Among them, the 4 x 3 control vertices controlled the

pixel offset, and the subtracted set of basis functions was
as follows:

(13)

1 , 1 1 1
—(33u + 33v-1)",0<su< — and 0<sv<— and u +v-——<0
33 33 33

{s

0, others

The MRI registration experiment carried out 19
effective iterations and reached a similarity measure of
1.00537 with a running time of 30min. Figure 14
presents the MRI experimental results. The CT
registration experiment carried out 25 effective
iterations, and reached a similarity measure value of
1.00808, where the running time was 28 min. Figure 15
demonstrates the CT experimental results.

Figures 16 and 17 present the fitting curves of the
number of iterations and the registration accuracy of
different methods in the experimental process,
respectively. As shown in Tables 1 and 2, the uniform B-

spline method in the non-tensor S}(A2)) space has the

mn
highest registration accuracy.

(a)

Fig. 10 MRI data after registration. (a): Difference between MRI reference
A\

(b)

image and registration image; (b): MRI registration image
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(a)

(b)

Fig. 11 CT data after registration. (a): Difference between CT reference image and registration image; (b): CT registration image

66X 66 parameter grid
The experimental data from this group used CT images
of a patient. Its size was 835 x 835, the parameter grid

size was 66 x 66, and the node vector was 0, %, =, ..., %2,
% 1, as shown in Fig. 18. The initial similarity measure

of the CT images was 1.01562.

Tensor product cubic uniform B-spline

This experiment used a tensor product two-variable
cubic B-spline as the deformation function. The CT
registration experiment carried out 35 effective itera-
tions, and reached a similarity measure value of 1.00671,
where the running time was 3 h. Figure 19 presents the
experimental results.

Non-tensor product uniform B-spline
In this experiment, a B-spline uniformly divided in the

SY(Al2)) space was used, and the subtracted set of basis

functions was as follows:

1(66Lt+661/ 1)%,0<us ! and 0<v< ! and u +v ! <0
4 T 66 “77 66 766
{0,0thers }

(14)

The CT registration experiment carried out 36
effective iterations, and reached a similarity measure
value of 1.0067, where the running time was 6h.
Figure 20 shows the CT experimental results.

Figure 21 illustrates the fitting curves between the
number of iterations and the registration accuracy in
this set of experiments. Table 3 proves that as the image
size and specification of the parameter grid increase, the
time cost of the two algorithms increases. Consequently,
the experimental results proved that the non-tensor
product algorithm obtained a higher accuracy.

Conclusions
In this study, a non-rigid registration algorithm based on

the S1(Al2)) non-tensor-type B-splines was introduced.

Applying the proposed algorithm to the search space al-
gorithm could satisfactorily simulate the non-rigid

(a)

(b)

Fig. 12 MRI data after registration. (a): Difference between MRI reference image and registration image; (b): MRI registration image
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(a) (®)

Fig. 13 CT data after registration. (a): Difference between CT reference image and registration image; (b): CT registration image

(a) (b)

Fig. 14 MRI data after registration. (a): Difference between MRI reference image and registration image; (b): MRI registration image

(a) (b)

Fig. 15 CT data after registration. (a): Difference between CT reference image and registration image; (b): CT registration image
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MRI registration experiment
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Table 1 MRI registration experiment results Table 2 CT registration experiment results
Similarity Number of Running Similarity Number of Running
measure iterations  time measure iterations time
values (min) values (min)
Tensor product type 1.00338 13 5 Tensor product type 1.00569 18 4
quadratic uniform B-spline quadratic uniform B-spline
Tensor product cubic 1.00327 16 11 Tensor product cubic 1.00559 18 10
uniform B-spline uniform B-spline
Non-tensor product type 1.00874 17 49 Non-tensor product type 1.00457 28 45
quadratic uniform B-spline quadratic uniform B-spline
Non-tensor product type 1.00537 19 30 Non-tensor product type 1.00808 25 28

quadratic non-uniform B-
spline

quadratic non-uniform B-
spline
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(a) (b) (c)

Fig. 18 Initial image data. (a): CT reference image; (b): CT moving image; (c): Difference between CT reference image and moving image

(a) (b)

Fig. 19 CT data after registration. (a): Difference between CT reference image and registration image; (b): CT registration image

(a) (b)

Fig. 20 CT data after registration. (a): Difference between CT reference image and registration image; (b): CT registration image
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CT registration experiment
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Fig. 21 CT registration experiment
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The number of iterations

deformation of medical images and describe the dynamic

motion of medical images. Indeed, the S}(A?)) non-
tensor product B-spline algorithm is a function defined
in four directions. Compared with the tensor product
spline function, it can describe the deformation of the

image in more directions. Simultaneously, the S}(A(2)
non-tensor product B-spline algorithm is highly flexible
in the processing of boundary triangles. By comparing
the performance of different methods, the non-tensor
product uniform B-spline algorithm yielded the highest
accuracy. The errors in this study might have been
caused by the slicing technology or tissue effects, which
will be attempted to be reduced in the future studies. Al-
though the accuracy could be improved, the required
time was increased owing to the increased complexity of
the algorithm. This problem can be addressed by chan-
ging the optimization algorithm of the search space and
increasing the computing power of the device. However,
further study is required to investigate the model’s para-
metric mesh subdivision and convergence.

Table 3 CT registration experiment results

Similarity Number of Running
measure iterations time (h)
values

Tensor product cubic 1.00671 35 3

uniform B-spline

Non-tensor product type 1.0067 36 6

quadratic uniform B-spline
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