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Abstract: The use of renewable energies sources is taking great importance due to the high demand
for electricity and the decrease in the use of fossil fuels worldwide. In this context, electricity
generation through photovoltaic panels is gaining a lot of interest due to the reduction in installation
costs and the rapid advance of the development of new technologies. To minimize or reduce the
negative impact of partial shading or mismatches of photovoltaic panels, many researchers have
proposed four configurations that depend on the power ranges and the application. The microinverter
is a promising solution in photovoltaic systems, due to its high efficiency of Maximum Power Point
Tracking and high flexibility. However, there are several challenges to improve microinverter’s
reliability and conversion efficiency that depend on the proper control design and the power converter
design. This paper presents a review of different control strategies in microinverters for different
applications. The control strategies are described and compared based on stability, dynamic response,
topologies, and control objectives. One of the most important results showed that there is little
research regarding the stability and robustness analysis of the reviewed control strategies.

Keywords: control strategies; DC-DC converter; DC-AC converter; microinverter; maximum power
point tracking; photovoltaic

1. Introduction

Electricity generation systems through photovoltaic panels are becoming increasingly
important within renewable energies sources, since the costs associated with photovoltaic
panels have decreased and the efficiency of power converters have increased [1]. Due to
environmental policies and the growth in electricity demand, the use of photovoltaic panels
has grown worldwide, today having a total installed capacity of 623 GW approximately [2].
However, when implementing or selecting an electrical generation system, high robustness
should be considered in the face of voltage variations, current or power outage, high
reliability (appropriate waveforms for both voltage and current and supply of electrical
energy in all moment), and an adequate power capacity for the design requirements,
in order to obtain a good electrical production performance. These systems generate many
transient, due to the variation in the solar radiation, and therefore a non-continuous supply,
leading to power quality issues [3,4]. A significant part of the photovoltaic installations
are the power conditioning system, also known as power converters, which transform
the electrical power, generated by the photovoltaic panels, into a signal suitable for use.
In order to mitigate these problems, or reduce the negative effects, different configurations
have been proposed, such as the string, multistring, central, and ac module, where the main
differences are given by the power range. For example, a string configuration operates
between 1 kW and 10 kW (residential application), a multistring configuration operates
between 10 kW and 30 kW (residential or commercial application), a central configuration
operates from 30 kW (large-scale photovoltaic plants), and a ac module configuration or
microinverter operates at a maximum of 500 W (small-scale systems) [5]. Moreover, they
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are also differentiated by the series and parallel combination of the photovoltaic panels
and their respective connection to the power converters.

The central configuration has arrived to the market with the greatest impact, having a
market-share of almost 95%, due to its high efficiency (close to 98%) and the high demand
for electricity generation [6]. On the other hand, a microinverter is a configuration which
allows for the integration of photovoltaic solar energy, where each photovoltaic module
contains its own converter. They are also known as ac modules or integrated module
inverters, because they are small and operate in a low power range [1]. The advantages
of this configuration are high Maximum Power Point Tracking (MPPT) efficiency, ease of
installation, flexibility, being modular, better amortization of the initial investment [7], ease
of monitoring and detecting faults [1], applications in small power, and it can be installed
in complex structures with different orientations and it is not necessary to incorporate
bypass diode [7].

However, up to now the microinverter’s configuration has a low market entry, having
a market-share of less than 10%, low operating power ranges, and low reliability. Other
shortcomings are low conversion efficiency (up to 96.5% [1,6]), higher cost per watt, and
in the absence of boost converter it requires a bulky power transform and it requires a high
boost to pump up the voltage to the grid level.

Due to the rapid development of new power semiconductors, microinverters are an
emerging and promising solution to mitigate the partial shading and dirt-effect problems.
Thanks to the recent advances, it will be possible to increase the ranges of power and
conversion efficiency. In addition, to ensure a safe, reliable, and efficient energy conversion
from photovoltaic generation systems, it is very important to consider the adequate design
of the control of the power converters, as well as the topology configuration. Hence,
control strategies are important to regulate the different voltage and current levels for
the requirements of different applications, with the aim of increasing the reliability of the
microinverter. Therefore, this paper will be focused on different types of control strategies
applied in microinverters for a range of purposes.

2. Microinverter

Microinverters can be classified into four categories [8,9], such as: one-stage topol-
ogy without galvanic isolation; two-stage topology without galvanic isolation; one-stage
topology with galvanic isolation; and two-stage topology with galvanic isolation.

Figure 1 shows the configuration of each category. In a two-stage topology, it consists
of a dc-dc converter that performs the MPPT, and the dc-ac converter has the responsibility
of controlling the dc-link and the control of the grid current or properly controlling the
output voltage in island mode. In terms of control, the two-stage topology is simple,
and the dc-dc converter also extends the operation of the photovoltaic system, leading to
a decrease in overall efficiency [6]. One-stage topologies are introduced to reduce power
losses and reduce the total system volume [6].

On the other hand, microinverters can also be classified by the incorporation of
galvanic isolation depending on the electrical policies of each country, as well as the needs
of photovoltaic installation. The incorporation of a transformer allows for the isolation
of the photovoltaic generation stage and the consumption stage or the grid, with the aim
that if panels fail, it does not have direct impact on the grid or on local loads. In addition,
the transformer allows reaching high levels of voltage, which is required for integration
to the grid; however, it leads to a reduction in efficiency reduction and an increase in the
microinverter’s volume [6,8,10].

However, there are certain challenges in positioning microinverters as an attractive
alternative on the market [6,8], such as: to increase reliability and lifespan due to sensitivity
to the temperature of the electrolytic capacitors; to increase conversion efficiency consider-
ing cutting-edge semiconductors and development of new high-gain converter topologies;
and to increase the functionality of the microinverters, adding some other tasks such as
reactive power support and power supply at all times.
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Figure 1. Classification of microinverters. (a) One-stage topology without galvanic isolation. (b) Two-stage topology with
galvanic isolation. (c) One-stage topology with galvanic isolation. (d) Two-stage topology with galvanic isolation.

2.1. Design Challenges

Despite having several advantages, in the market they are not the device that users
buy the most due to low power ranges, low reliability, and low conversion efficiency com-
pared to the other configurations [6]. Other disadvantages are that they have a single
function, aimed to make the conversion of electrical energy necessary for their use or
inject into the grid. Microinverters are usually equipped with bulky, low-reliability ca-
pacitors, which have a high rate of failure [7]. On the other hand, because solar energy
is intermittent, a storage system with high capacity and a fast charging/discharging is re-
quired. One of the possible solutions to improve reliability is the incorporation of a hybrid
storage (supercapacitor and battery) with the aim of increasing power density and energy
density. Moreover, the cost of rechargeable energy storage has decreased drastically in re-
cent years due to technological advances due to higher penetration of distributed Renew-
able Energy Sources. Additionally, if this battery/ultracapacitor hybrid energy storage
system is embedded in the PV micro-inverters, the problem of reliability that electrolytic-
capacitor-based micro-inverters have can be overcome, together with the filtering of the
power ripple, and it will allow an additional ancillary service as backup for the power
grid acting as a distributed Uninterruptible Power Supply, providing a distributed inertia
to the utility grid.

On the other hand, the proposed solution to increase power capacities, improve ef-
ficiency, and reduce the size of the microinverter is the implementation of semiconduc-
tors based on Gallium-Nitride and Silicon-Carbide since they are characterized by being
of high efficiency, high power density, high frequency operation, and they decrease the
size of the converter [11]. As these materials allow much higher switching speeds, it im-
plies smaller passive components, increasing thus the power density of micro-inverters
but also taking into account that the circuit parasitics and the associated electromagnetic
interference may be reduced to unprecedentedly low levels, demanding new approaches
of fully integrated assemblies comprising power devices, gate drives, filters, and control
functions.
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Design Challenges

Despite having several advantages, in the market they are not the device that users buy
the most due to low power ranges, low reliability, and low conversion efficiency compared
to the other configurations [6]. Other disadvantages are that they have a single function,
aimed to make the conversion of electrical energy necessary for their use or inject into
the grid. Microinverters are usually equipped with bulky, low-reliability capacitors, which
have a high rate of failure [7]. On the other hand, because solar energy is intermittent,
a storage system with high capacity and a fast charging/discharging is required. One
of the possible solutions to improve reliability is the incorporation of a hybrid storage
(supercapacitor and battery) with the aim of increasing power density and energy density.
Moreover, the cost of rechargeable energy storage has decreased drastically in recent
years due to technological advances due to higher penetration of distributed Renewable
Energy Sources. Additionally, if this battery/ultracapacitor hybrid energy storage system
is embedded in the PV micro-inverters, the problem of reliability that electrolytic-capacitor-
based micro-inverters have can be overcome, together with the filtering of the power ripple,
and it will allow an additional ancillary service as backup for the power grid acting as a
distributed Uninterruptible Power Supply, providing a distributed inertia to the utility grid.

On the other hand, the proposed solution to increase power capacities, improve
efficiency, and reduce the size of the microinverter is the implementation of semiconductors
based on Gallium-Nitride and Silicon-Carbide since they are characterized by being of high
efficiency, high power density, high frequency operation, and they decrease the size of the
converter [11]. As these materials allow much higher switching speeds, it implies smaller
passive components, increasing thus the power density of micro-inverters but also taking
into account that the circuit parasitics and the associated electromagnetic interference may
be reduced to unprecedentedly low levels, demanding new approaches of fully integrated
assemblies comprising power devices, gate drives, filters, and control functions.

3. Control Strategies

This section presents a review of control strategies applied to microinverters and it is
organized depending on the control application: grid connected, islanding mode (off-grid),
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reactive power compensation, photovoltaic system including energy storage, and multiple
operation mode or multiple functions.

3.1. Grid Connected

The reference [12] presents a hybrid hysteresis current control GHCC(s) and a low-
frequency harmonic mitigation strategy based on a PR (Proportional-Resonant) control
GPR(s). Tthe microinverter’s topology is a full-bridge inverter for the PV system (Figure 2).
The main objective is to reduce the switching losses and achieve an optimized grid current.
Figure 3 shows the proposed control strategy. Due to a wide hysteresis band for smooth
switching, low output inductance, and digital controller sampling time, the error between
the reference current i∗(t) and the average inductor output current still results from many
low frequency harmonics, so the current grid ig(t) must be sensed and compared to a
reference. The low frequency error can be mitigated by the PR controller and the power
quality of the electrical grid could be improved.
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In [13,14] a two-stage microinverter consisting of a boost-half-bridge converter con-
nected to an full-bridge inverter is presented (Figure 4). The control strategy is presented
in Figure 5. The dc-dc converter is in charge of the maximum power point tracking
and generates the voltage reference v∗pv, which is compared with the voltage of the photo-
voltaic panel vpv. The voltage error is minimized by a Proportional-Integral controller (PI),
and the result is summed up to the panel photovoltaic voltage reference and compared
with the derivative of the panel voltage. The result is the modulating pattern, which is
compared to a triangular carrier signal that generates the switching signal of the dc-dc
converter. In the dc-ac stage there is a double control loop, where the external voltage
loop is handled by a PI controller that generates the grid peak current reference. Then, it
is compared with the norm of the inverter current |iinv| f f and then the result is multiplied
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In [13,14] a two-stage microinverter consisting of a boost-half-bridge converter con-
nected to an full-bridge inverter is presented (Figure 4). The control strategy is presented in
Figure 5. The dc-dc converter is in charge of the maximum power point tracking and gen-
erates the voltage reference v∗pv, which is compared with the voltage of the photovoltaic
panel vpv. The voltage error is minimized by a Proportional-Integral controller (PI), and the
result is summed up to the panel photovoltaic voltage reference and compared with the
derivative of the panel voltage. The result is the modulating pattern, which is compared to
a triangular carrier signal that generates the switching signal of the dc-dc converter. In the
dc-ac stage there is a double control loop, where the external voltage loop is handled by a
PI controller that generates the grid peak current reference. Then, it is compared with the
norm of the inverter current |iinv| f f and then the result is multiplied by a sinusoidal signal
sin(θg) whose angle is obtained from a Phase Locked Loop (PLL). This inverter current
reference i∗inv is compared with the sensed inverter current iinv whose result is minimized
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by a repetitive controller (Plug-in RC) to generate the switching signals of the full-bridge
inverter. To achieve fast dynamic responses in both grid current as well as dc-link voltage,
a feed-forward current reference is added to the control strategy.
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The references [15,16] present a dual-stage microinverter, where in the first stage is an
LLC resonant dc-dc converter and in the second stage a three-phase zero-voltage-switching
(ZVS) dc-ac converter (Figure 6). The variables to be controlled in the microinverter are the
inductor currents (ia

L2, ib
L2 and ic

L2) used as a filter, the dc-link voltage vdc and the currents
injected into the grid (ia, ib, ic). Figure 7 presents the control strategy. The objective of the
dc-dc converter is to track the maximum power point by means of an MPPT algorithm,
whose function is to define the switching signal fs based on the power of the photovoltaic
panel. In the dc-ac stage, the proposed control strategy is that of a triple loop controller.
In order to balance the power of the photovoltaic panel and the power of the electrical
network, it is necessary to have a constant dc-link voltage. This is done by comparing the
dc-link voltage vdc with a reference v∗dc and the result is controlled by a dc-link controller
that generates the current reference in the d-frame and is compared with the current id
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obtained by the dq transformation. The result is controlled by a PI controller that generates
the voltage reference in the d-frame v∗d which is sum to the grid voltage. The Q control is
not explained in [15] because reference current in q-frame is considered zero. On the other
hand, the reference current i∗q compared with the grid current in the q-frame is controlled
by the mean of a PI controller to generate the reference grid voltage in the q-frame v∗q which
is which is the reference for the sensed grid voltage vq. Then, the reference three-phase
current (I∗a , I∗b and I∗c ), and then it is compared with the inductance currents (ia

L1, ib
L1, ic

L1) in
order to generate the switching sequence.
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In [18] a microinverter without galvanic isolation is presented and it consists of a
topology derived from a non-inverted Cuk converter connected to an inverted Cuk con-
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In [18] a microinverter without galvanic isolation is presented and it consists of
a topology derived from a non-inverted Cuk converter connected to an inverted Cuk
converter (Figure 8). The proposed control strategy is presented in Figure 9. The control
strategy consists of an MPPT algorithm that generates the reference voltage v∗pv that is
compared with the voltage of the instantaneous photovoltaic panel vpv. The result is
processed by a PI voltage controller that generates the current for the photovoltaic panel at
the maximum power point impp. This signal is multiplied by the sinθ provided by a PLL to
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synchronize the signal with the grid voltage, obtaining the inductor current reference i∗L2.
This signal is compared with the sensed inductor current iL2 and is processed by a PR type
current controller to generate the modulator ma. This modulating signal is necessary to
generate the switching sequence by means of a SPWM.
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In [19,20] a current sensorless control strategy is proposed for a dual stage microin-
verter. It consists of a flyback dc-dc converter connected to a voltage source inverter for the
current injection to the electrical grid (Figure 10). The advantage of this proposal is the cost
derived from current sensors by minimizing and reducing measurement noise introduced
to the control algorithm. The control strategy is presented in Figure 11 and consists of an
observer that estimates the inductance values to calculate the inductor current based on
the comparison between the results of two calculations of the current. The state observer
estimates the value of the magnetizing current îL,pri and the current of the photovoltaic
panel îpv. Then, the MPPT (Perturb and Observe) algorithm generates the photovoltaic
panel voltage v∗pv reference which is compared to the sensed photovoltaic panel voltage
vpv. The result is processed by a PI controller that generates the maximum permissible
magnetizing current imax

L,pri and is multiplied by the voltage of the synchronized network

to generate the peak magnetization current ipk
L,pri. Finally, a peak current control (PCM) is

developed to generate the switching signal Sp that depends on the peak magnetization
current and the estimated magnetization current. It is worth mentioning that the pro-
posed work only presents the control strategy for the dc-dc stage and an open loop for the
inverter, leaving the control strategy for the dc-ac stage as future work.
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In [19,20] a current sensorless control strategy is proposed for a dual stage microin-
verter. It consists of a flyback dc-dc converter connected to a voltage source inverter for the
current injection to the electrical grid (Figure 10). The advantage of this proposal is the cost
derived from current sensors by minimizing and reducing measurement noise introduced
to the control algorithm. The control strategy is presented in Figure 11 and consists of an
observer that estimates the inductance values to calculate the inductor current based on
the comparison between the results of two calculations of the current. The state observer
estimates the value of the magnetizing current îL,pri and the current of the photovoltaic
panel îpv. Then, the MPPT (Perturb and Observe) algorithm generates the photovoltaic
panel voltage v∗pv reference which is compared to the sensed photovoltaic panel voltage
vpv. The result is processed by a PI controller that generates the maximum permissible
magnetizing current imax

L,pri and is multiplied by the voltage of the synchronized network

to generate the peak magnetization current ipk
L,pri. Finally, a peak current control (PCM) is

developed to generate the switching signal Sp that depends on the peak magnetization
current and the estimated magnetization current. It is worth mentioning that the proposed
work only presents the control strategy for the dc-dc stage and an open loop for the inverter,
leaving the control strategy for the dc-ac stage as future work.
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In [21–24] a microinverter (Figure 12) based on a direct digital synthesis technique
is presented for operation in grid-connected mode. This technique provides flexibility in
implementation of various controls such as MPPT, PLL, anti-island, and low-voltage ride-
though (LVRT). The control strategy is presented in Figure 13 and consists of the MPPT
algorithm based on the constant voltage method (CVT) for the dc-dc stage, which requires
sensing the voltage and current of the photovoltaic panel (vpv y ipv). The MPPT algorithm
generates the voltage at the maximum power point Vmpp and it is compared with a refer-
ence voltage v∗pv and the error is processed by a PI controller that generates the d frame
current (id). On the other hand, the grid voltage vg and the grid current is are sensed
to generate the currents and voltages in dq frame that are used by a dq power estimator.
The output of the estimator is the Q reactive power which is compared with the reference
reactive power Q∗. The error is processed by a PI controller that generates the current in q
frame (iq). Then, the dq frame currents are transformed to the αβ frame. In summary, the d
component regulates the output voltage vo and the q component determines the reactive
power to be injected into the grid.
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In [21–24] a microinverter (Figure 12) based on a direct digital synthesis technique
is presented for operation in grid-connected mode. This technique provides flexibility
in implementation of various controls such as MPPT, PLL, anti-island, and low-voltage
ride-though (LVRT). The control strategy is presented in Figure 13 and consists of the
MPPT algorithm based on the constant voltage method (CVT) for the dc-dc stage, which
requires sensing the voltage and current of the photovoltaic panel (vpv y ipv). The MPPT
algorithm generates the voltage at the maximum power point Vmpp and it is compared with
a reference voltage v∗pv and the error is processed by a PI controller that generates the d
frame current (id). On the other hand, the grid voltage vg and the grid current is are sensed
to generate the currents and voltages in dq frame that are used by a dq power estimator.
The output of the estimator is the Q reactive power which is compared with the reference
reactive power Q∗. The error is processed by a PI controller that generates the current in q
frame (iq). Then, the dq frame currents are transformed to the αβ frame. In summary, the d
component regulates the output voltage vo and the q component determines the reactive
power to be injected into the grid.
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In [25] a microinverter consisting of two stages is presented. The dc-dc stage consists
of a flyback converter with an active-clamp circuit in the primary part of the transformer
and a series resonant voltage doubler in the secondary part of the transformer (Figure 14).
The active-clamp circuit allows for the operation of the switches in zero-voltage switching
by limiting the voltage across the active power semiconductors and therefore reducing
the losses. The control strategy is presented in Figure 15 which consists of the MPPT
algorithm that generates the amplitude of the grid current reference I∗g . This is multiplied
by the signal obtained from the PLL in order to obtain the reference grid current i∗g. Then
this signal is compared to the grid current |ig| to generate the variation of the duty cycle
∆D by means of a proportional controller kpg. The term |vg|/vdc is the product of the
applied feedback linearization, to decouple the variation of the duty cycle with rated duty
cycle Dnom, in order to make the relationship between of the variation of the grid current
∆ig and ∆D first order and linear. Furthermore, the voltage regulation is performed on the
dc-link voltage vdc by means of a voltage controller. The signal generated by the voltage
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The active-clamp circuit allows for the operation of the switches in zero-voltage switching
by limiting the voltage across the active power semiconductors and therefore reducing
the losses. The control strategy is presented in Figure 15 which consists of the MPPT
algorithm that generates the amplitude of the grid current reference I∗g . This is multiplied
by the signal obtained from the PLL in order to obtain the reference grid current i∗g. Then
this signal is compared to the grid current |ig| to generate the variation of the duty cycle
∆D by means of a proportional controller kpg. The term |vg|/vdc is the product of the
applied feedback linearization, to decouple the variation of the duty cycle with rated duty
cycle Dnom, in order to make the relationship between of the variation of the grid current
∆ig and ∆D first order and linear. Furthermore, the voltage regulation is performed on the
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In [25] a microinverter consisting of two stages is presented. The dc-dc stage consists
of a flyback converter with an active-clamp circuit in the primary part of the transformer
and a series resonant voltage doubler in the secondary part of the transformer (Figure 14).
The active-clamp circuit allows for the operation of the switches in zero-voltage switching
by limiting the voltage across the active power semiconductors and therefore reducing the
losses. The control strategy is presented in Figure 15 which consists of the MPPT algorithm
that generates the amplitude of the grid current reference I∗g . This is multiplied by the
signal obtained from the PLL in order to obtain the reference grid current i∗g. Then this
signal is compared to the grid current |ig| to generate the variation of the duty cycle ∆D
by means of a proportional controller kpg. The term |vg|/vdc is the product of the applied
feedback linearization, to decouple the variation of the duty cycle with rated duty cycle
Dnom, in order to make the relationship between of the variation of the grid current ∆ig
and ∆D first order and linear. Furthermore, the voltage regulation is performed on the
dc-link voltage vdc by means of a voltage controller. The signal generated by the voltage
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controller and the sum of the duty cycle variation and the rated duty cycle generate the
switching signals for the dc-dc converter and the dc-ac converter (S1, S2, S3, S4).
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In [26] a single stage dc-ac microinverter is presented consisting of a coupled-inductor
double-boost inverter (Figure 16). The main characteristics are: simple structure, genera-
tion of an ac output in magnitude greater than the dc signal, small volume, and high
efficiency. The control strategy is presented in Figure 17. The control consists of an MPPT
P and O algorithm where the reference voltage of the photovoltaic panel V∗

pv is obtained
and it is compared with the photovoltaic panel voltage vpv, whose error is processed by
a PI voltage control to generate the current amplitude Im. The amplitude is multiplied
by a sinusoidal signal, whose angle is obtained from a PLL for synchronization with the
grid, obtaining the reference of the output current i∗o . The reference is compared with the
output current io and enters a current controller proposed in [26] and allows canceling the
dc components of the inductor current, as well as canceling some poles and zeros of the
proposed converter model.
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In [26] a single stage dc-ac microinverter is presented consisting of a coupled-inductor
double-boost inverter (Figure 16). The main characteristics are: simple structure, generation
of an ac output in magnitude greater than the dc signal, small volume, and high efficiency.
The control strategy is presented in Figure 17. The control consists of an MPPT P and
O algorithm where the reference voltage of the photovoltaic panel V∗pv is obtained and
it is compared with the photovoltaic panel voltage vpv, whose error is processed by a PI
voltage control to generate the current amplitude Im. The amplitude is multiplied by a
sinusoidal signal, whose angle is obtained from a PLL for synchronization with the grid,
obtaining the reference of the output current i∗o . The reference is compared with the output
current io and enters a current controller proposed in [26] and allows canceling the dc
components of the inductor current, as well as canceling some poles and zeros of the
proposed converter model.
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In [27,28], the study of the dc-dc stage of a microinverter is presented, which is suit-
able for connecting it to a dc-ac stage and integrating it with the grid (Figure 18). A topol-
ogy of a dual-mode rectifier (DMR) based series resonant dc-dc converter is proposed and
its characteristics are: ability to operate in a wide variety of voltage inputs and high ef-
ficiency. The control strategy proposed for the dc-dc converter is presented in Figure 19
and its main characteristic is its variable dc-link voltage control, with the aim of reducing
RMS (root mean square) currents, improving the efficiency of the microinverter. In addi-
tion, it is characterized by being a flexible control, since it has two modes of operation.
For the case of the control of the MPPT, Mode 1 will be applied. The MPPT algorithm is
executed and the voltage reference is compared with the voltage of the photovoltaic panel
vpv. Then the comparison result is processed by a PI control to get φ (inverter controls the
dc-link). In Mode 2, the switch connects the dc source and disconnects the photovoltaic
panel. Then, the variable control is executed which generates the reference voltage of the
dc link v∗o and is compared with the output voltage vo. Finally, the result of the comparison
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In [27,28], the study of the dc-dc stage of a microinverter is presented, which is suitable
for connecting it to a dc-ac stage and integrating it with the grid (Figure 18). A topology
of a dual-mode rectifier (DMR) based series resonant dc-dc converter is proposed and its
characteristics are: ability to operate in a wide variety of voltage inputs and high efficiency.
The control strategy proposed for the dc-dc converter is presented in Figure 19 and its
main characteristic is its variable dc-link voltage control, with the aim of reducing RMS
(root mean square) currents, improving the efficiency of the microinverter. In addition, it is
characterized by being a flexible control, since it has two modes of operation. For the case
of the control of the MPPT, Mode 1 will be applied. The MPPT algorithm is executed and
the voltage reference is compared with the voltage of the photovoltaic panel vpv. Then the
comparison result is processed by a PI control to get φ (inverter controls the dc-link). In
Mode 2, the switch connects the dc source and disconnects the photovoltaic panel. Then,
the variable control is executed which generates the reference voltage of the dc link v∗o and
is compared with the output voltage vo. Finally, the result of the comparison is processed by
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a PI control to obtain the value of φ. The switching sequence is generated by the modulator
depending on the operating mode of the microinverter.

In [29] a control strategy for a two-stage topology is presented. In the first stage, it
contains a flyback dc-dc converter and in the second stage it contains a full-bridge inverter
(Figure 20). A microinverter with hybrid mode is presented and consists of a control
strategy that allows the system to operate in both continuous and discontinuous mode.
The advantages of operating in hybrid mode is the stress reduction faced by the primary
and secondary part of the transformer [29]. The control strategy is presented in Figure 21.
The proportional-resonant controller (PR controller) plus the harmonic compensator (HC)
provide a high gain in the fundamental frequency and harmonics, in order to improve the
performance of the discontinuous mode and the stability of the continuous mode of the
flyback converter. In addition, the hybrid duty cycle obtained by means of the operating
mode selector allows for the elimination of disturbances and reduces the load on the
feedback controller.
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Other control techniques are as follows:

• The paper [30] presents a Flyback PV microinverter with analog and digital controller.
The analog control consists of a precision rectifier circuit, a pulse width modulation
comparator, and zero-crossing detector. The aim of digital control is to obtain the
Maximum Power Point from the Photovoltaic module.

• The paper [31] presents a differential boost microinverter. The control technique con-
sists of a MPPT-loop control, a second loop that synchronizes the grid current to the
grid voltage, and a three-loop differential peak current control.

• The paper [32] presents a two stage microinverter with LLC resonant converter. The con-
trol technique consists of a MPPT based a fixed-frequency model predictive control
and a PI control.

• The paper [33] presents a microinverter based a cascaded boost converter with a
full bridge. The control technique consists in two sliding control alternatives (input
current mode and pseudo-oscillating mode).

• The paper [34] presents a microinverter based a interleaved flyback with an unfold-
ing H-bridge inverter. The control technique consists in a novel sliding mode control
current controller.

• The paper [35,36] presents a interleaved flyback with two stage unfolding cyclo-
converter. The control strategy consists in a power-increment-aided i n  r e m e n t a l -

 o n d u  t a n  e M P P T w i t h  o n s t a n t - f r e q u e n  y v a r i a b l e - d u t y a n d a f o r w a r d  o m p e n s a t o r .

• The paper [37] presents a dual-active-bridge (DAB) microinverter. The control strat-
egy consists in simple closed-loop current control (PI controller).

• The paper [38] presents a switched capacitor buck-boost voltage source inverter (SC-
BBVSI). The control strategy consists in a PI controller for dc-link voltage regulation
and proportional-resonant (PR) controller for injected current regulation.
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Other control techniques are as follows:

• The paper [30] presents a Flyback PV microinverter with analog and digital controller.
The analog control consists of a precision rectifier circuit, a pulse width modulation
comparator, and zero-crossing detector. The aim of digital control is to obtain the
Maximum Power Point from the Photovoltaic module.

• The paper [31] presents a differential boost microinverter. The control technique
consists of a MPPT-loop control, a second loop that synchronizes the grid current to
the grid voltage, and a three-loop differential peak current control.

• The paper [32] presents a two stage microinverter with LLC resonant converter.
The control technique consists of a MPPT based a fixed-frequency model predictive
control and a PI control.

• The paper [33] presents a microinverter based a cascaded boost converter with a
full bridge. The control technique consists in two sliding control alternatives (input
current mode and pseudo-oscillating mode).

• The paper [34] presents a microinverter based a interleaved flyback with an unfolding
H-bridge inverter. The control technique consists in a novel sliding mode control
current controller.

• The paper [35,36] presents a interleaved flyback with two stage unfolding cyclo-
converter. The control strategy consists in a power-increment-aided incremental-
conductance MPPT with constant-frequency variable-duty and a forward compensator.

• The paper [37] presents a dual-active-bridge (DAB) microinverter. The control strategy
consists in simple closed-loop current control (PI controller).

• The paper [38] presents a switched capacitor buck-boost voltage source inverter (SC-
BBVSI). The control strategy consists in a PI controller for dc-link voltage regulation
and proportional-resonant (PR) controller for injected current regulation.
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• The paper [39] presents a two stage microinverter. This consists of a high step-up Z
source dc-dc converter with a full-bridge inverter. The control technique is similar
to [13] (Figure 4).

• The paper [40] presents a two stage microinverter and it consists of boost dc-dc
converter with a single-phase full-bridge inverter. The control strategy consists in
non-linear control techniques based of the non-linear average model of microinverter.

• The paper [41] presents a boost inverter and it consists of two boost dc-dc converters
connected in differential mode to the grid. The control technique consists of a PI
control for power reference and a flatness-based control. In [42], a flatness-based
control is also presented.

• The paper [43,44] presents two microinverter topologies. First, a interleaved flyback
dc-dc converter with unfolding inverter is presented and then a push–pull dc-dc
converter with unfolding inverter. The proposed control strategy consists in a simple
PR controller to generate a sinusoidal current reference waveform and PI controller to
generate a power reference.

• The paper [45] presents a two-stage microinverter and it consists in a step-up iso-
lation dc-dc converter with half-bridge inverter. The control technique consists in
a PI controller in order to reduce the third harmonic. Moreover, it consists in a
feedforward control.

• The paper [46] presents a full-bridge inverter for microinverter application. The con-
trol technique consists in a sliding mode control of the output current.

• The paper [47] presents a quadratic boost dc-dc converter with full-bridge inverter.
The control technique consists in a sliding mode control for dc-link voltage and grid
current regulation. The paper [48] presents the above topology, but the control strategy
is based on PI controllers.

• The paper [49] presents a multi-level single phase microinverter and its control strat-
egy consists in a model predictive control to reduce the steady state error of the
grid-injected current. Another control technique used in this microinverter is the PI
controller with PR controller proposed in [50].

• The paper [51] presents a single stage boost inverter, composed by a two bidirectional
boost dc-dc converter. The control strategy consists in a finite control set model
predictive control algorithm with predictions of the system variables.

• The paper [52] presents a full-bridge converter cascaded to a boost converter with
other full-bridge converter. The control technique consists in a PI controller for dc-link
voltage regulation and a PR controller used in the current control loop.

• The paper [53] presents a T-type microinverter in boundary conduction mode. The con-
trol technique consists in a hybrid control based on the proposed voltage equalization
and adaptive reverse current control method.

• The paper [54] presents a high-gain Z-source boost converter with H-bridge inverter.
The control strategy consists of a PI controller to regulate the dc-link voltage and
hysteresis current control to regulate the grid current.

• The paper [55] presents a resonant microinverter and its control strategy consists of
different PI controllers.

• The paper [56] presents a microinverter based in a modified current source inverter.
The control strategy consists in two PI controllers and dq transformation.

• The paper [57] presents a flyback dc-dc converter with line-frequency inverter. The con-
trol strategy consists in a inverse model with a single closed-loop PI controller.

• The paper [58] presents a boost-half-bridge dc-dc converter and full-bridge inverter.
The control technique consists in a repetitive current controller based on fourth-order
linear phase IIR filter. The repetitive current controller is used to reduce the total
harmonic distortion and current regulation. There is a PI controller in the dc-dc stage.

• The paper [59] presents a flyback-based partial power dc-dc converter with a H-bridge
inverter. The control strategy consists in a cascaded control loop (PI controllers)
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for dc-dc stage and a classical single-phase voltage oriented control algorithm for
dc-ac stage.

• The paper [60] presents a coupled inductor based cúk dc-dc converter connected to the
line frequency current unfolding stage. The control strategy is comprised of different
PI controllers.

• The paper [61] presents a LLC dc-dc converter connected to a full-bridge inverter.
The control strategy of dc-ac stage consists in a dead-beat scheme. The control strategy
of dc-dc stage consists in a simple closed-loop PI control.

3.2. Island Mode

In [62] a microinverter is presented and it consists of a high frequency dc-ac con-
verter based on a dual active bridge (DAB) operating with zero-voltage-switching (ZVS)
(Figure 22). The control strategy is presented in Figure 23 and it consists of three objectives:
dc-link voltage vdc regulation, power decoupling, and ac output voltage vo regulation. First,
the dc voltage is regulated by a PI controller that generates the average phase shift signal
δav. The result is added to the ac offset signal δac to generate the offset signal δ. Second,
a power decoupling controller generates the ac phase shift δac. It consists of a resonant
controller to eliminate oscillations. Finally, two resonant drivers regulate the output ac
voltage vo and are adjusted to reject third order harmonics and to compensate for the effects
of second order.
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In [63], a microinverter comprises a dc-dc flyback converter coupled to an active de-
coupling circuit and a full-bridge inverter (Figure 24). This can operate in island mode and
it is modulated by the pulse density (PDM). Its advantages are: use of electrolytic capaci-
tors of low magnitude and it can operate in soft switching frequency. The proposed con-
trol strategy is presented in Figure 25 and is implemented in a Field Programmable Gate
Array. The strategy consists of two control loops that control the dc-dc converter and con-
trol the full-bridge inverter. The control of the dc-dc stage consists of a voltage controller
of the decoupling circuit that generates a input current reference i∗pv which is compared
with the current of the photovoltaic panel ipv. The current controller generates the mod-
ulator for the switching sequence. Both controllers mentioned above are PI. On the other
hand, the control of the dc-ac stage consists of a voltage controller whose input signal is
the comparison of the load voltage vo with the reference voltage v∗o . The controller output
is processed by the pulse density modulation generator and generates the pulse sequence
for the decoupling circuit and for the single-phase voltage source inverter.

Figure 22. Microinverter’s topology proposed in [62].

In [63], a microinverter comprises a dc-dc flyback converter coupled to an active
decoupling circuit and a full-bridge inverter (Figure 24). This can operate in island mode
and it is modulated by the pulse density (PDM). Its advantages are: use of electrolytic
capacitors of low magnitude and it can operate in soft switching frequency. The proposed
control strategy is presented in Figure 25 and is implemented in a Field Programmable
Gate Array. The strategy consists of two control loops that control the dc-dc converter
and control the full-bridge inverter. The control of the dc-dc stage consists of a voltage
controller of the decoupling circuit that generates a input current reference i∗pv which is
compared with the current of the photovoltaic panel ipv. The current controller generates
the modulator for the switching sequence. Both controllers mentioned above are PI. On the
other hand, the control of the dc-ac stage consists of a voltage controller whose input signal
is the comparison of the load voltage vo with the reference voltage v∗o . The controller output
is processed by the pulse density modulation generator and generates the pulse sequence
for the decoupling circuit and for the single-phase voltage source inverter.
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3.3. Reactive Power Compensation

In [64], a microinverter is introduced and provides Volt/VAR support to the power
grid. The microinverter consists of a first stage with a partial power LLC resonant con-
verter followed by an interleaved full-bridge inverter (Figure 26). The control strategy is
presented in Figure 27. First, there is an MPPT algorithm to extract the maximum power
from the photovoltaic panel and generate the reference voltage v∗pv, which is compared to
the voltage of the photovoltaic panel vpv. The error is processed by a PI controller and gen-
erates the phase-shift angle ϕ. In addition, to minimize the phase-shift angle, a switching
frequency feedforward loop is implemented, which is generated by the voltage of the dc
link vdc, by the output power of the photovoltaic panel P∗

pv and by the reference voltage of
the photovoltaic panel. This allows the dc-dc converter to change its switching frequency
to maintain soft switching fsw_LLC as well as to obtain an appropriate gain. In the dc-ac
stage there is a double loop control. The outer voltage loop consists of the dc-link voltage
regulation and is compared with a dc reference voltage v∗dc obtained from a generator as
a function of the output power of the photovoltaic panel and the voltage vpk. The error is
minimized by a PI controller that generates the reference current in the d-frame i∗d . Then,
a feedforward loop in terms of the output power of the photovoltaic panel and the voltage
vpk is added to the reference current. Both currents are added in d and q frame to gener-
ate the reference current i∗g. Then the reference current is compared with the grid current
and the error is minimized by a PI and resonant control (RC) to generate the duty cycle of
the inverter.
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3.3. Reactive Power Compensation

In [64], a microinverter is introduced and provides Volt/VAR support to the power
grid. The microinverter consists of a first stage with a partial power LLC resonant converter
followed by an interleaved full-bridge inverter (Figure 26). The control strategy is presented
in Figure 27. First, there is an MPPT algorithm to extract the maximum power from the
photovoltaic panel and generate the reference voltage v∗pv, which is compared to the voltage
of the photovoltaic panel vpv. The error is processed by a PI controller and generates the
phase-shift angle ϕ. In addition, to minimize the phase-shift angle, a switching frequency
feedforward loop is implemented, which is generated by the voltage of the dc link vdc,
by the output power of the photovoltaic panel P∗pv and by the reference voltage of the
photovoltaic panel. This allows the dc-dc converter to change its switching frequency
to maintain soft switching fsw_LLC as well as to obtain an appropriate gain. In the dc-ac
stage there is a double loop control. The outer voltage loop consists of the dc-link voltage
regulation and is compared with a dc reference voltage v∗dc obtained from a generator as a
function of the output power of the photovoltaic panel and the voltage vpk. The error is
minimized by a PI controller that generates the reference current in the d-frame i∗d . Then,
a feedforward loop in terms of the output power of the photovoltaic panel and the voltage
vpk is added to the reference current. Both currents are added in d and q frame to generate
the reference current i∗g. Then the reference current is compared with the grid current and
the error is minimized by a PI and resonant control (RC) to generate the duty cycle of
the inverter.
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In [65] a series configuration of microinverters consisting of cascaded full-bridge in-
verter is presented, where each full-bridge inverter is connected to a single photovoltaic
panel (Figure 28). A distributed control strategy is proposed for each independent mi-
croinverter, in which the power is shared between the different inverters depending on
the power available in the photovoltaic panels and the reactive power is controlled by
a single microinverter. The control strategy is presented in Figure 29, whose objectives
are: active power regulation, reactive power regulation which entails voltage, and current
regulation. The control strategy first consists of an algorithm for tracking the maximum
power of the photovoltaic panel to generate the reference panel voltage v∗pvj. The reference
voltage is compared to the voltage of the sensed photovoltaic panel vpvj. The result is pro-
cessed by a PI controller and generates the voltage in the d-frame vdj that is multiplied by
a sinusoidal generated by a PLL of the voltage in the Point of Common Coupling. This
generates the reference output voltage v∗oj. The reference output voltage is compared to
the sensed output voltage of the inverter voj and it enters a PR controller to generate the
reference inductor current i∗Lj. This reference is compared to the sensed inductor current
iL f and it enters a PR controller to generate the modulator of the commutation sequence.
The switch Sj determines the activation of the reactive power control. The reactive power
Qj is then compared with the reference reactive power Q∗

j and the result is processed by
a Proportional (P) controller and it generates the voltage of the q frame vqj multiplied
by −cosθ. The result is added to the voltage in the d-frame to obtain the output voltage
reference v∗oj.

In [66] a dual-stage microinverter without capacitors is proposed, whose dc-dc stage
consists of two interleaved flyback dc-dc converters and a third harmonic current injec-
tion circuit. The dc-ac stage has a three-phase current source inverter switched at line
frequency and an LC output filter (Figure 30). The flyback converter controls the MPPT
and the third harmonic current injection circuit regulates the power factor correlation. In
Figure 31 the control strategy for the dc-dc stage is presented. On the one hand, there
is the Perturb and Observe MPPT algorithm that generates the reference input current
of the flyback converter ipv1 (outer voltage loop), and then a PI controller (inner current
loop) regulates the error to generate the modulator d. G f 1(s) and G f 2(s) are the trans-
fer functions of the first flyback converter and the second flyback converter respectively.
To achieve a balance of power between the interleaved converters, a PI controller is used.
The difference between the average input current of the primary flyback converter and
secondary flyback converter (īpm1 y īsm1) goes into a PI controller; the output is added to
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In [65] a series configuration of microinverters consisting of cascaded full-bridge
inverter is presented, where each full-bridge inverter is connected to a single photovoltaic
panel (Figure 28). A distributed control strategy is proposed for each independent mi-
croinverter, in which the power is shared between the different inverters depending on
the power available in the photovoltaic panels and the reactive power is controlled by
a single microinverter. The control strategy is presented in Figure 29, whose objectives
are: active power regulation, reactive power regulation which entails voltage, and current
regulation. The control strategy first consists of an algorithm for tracking the maximum
power of the photovoltaic panel to generate the reference panel voltage v∗pvj. The reference
voltage is compared to the voltage of the sensed photovoltaic panel vpvj. The result is
processed by a PI controller and generates the voltage in the d-frame vdj that is multiplied
by a sinusoidal generated by a PLL of the voltage in the Point of Common Coupling. This
generates the reference output voltage v∗oj. The reference output voltage is compared to
the sensed output voltage of the inverter voj and it enters a PR controller to generate the
reference inductor current i∗Lj. This reference is compared to the sensed inductor current
iL f and it enters a PR controller to generate the modulator of the commutation sequence.
The switch Sj determines the activation of the reactive power control. The reactive power
Qj is then compared with the reference reactive power Q∗j and the result is processed by
a Proportional (P) controller and it generates the voltage of the q frame vqj multiplied
by −cosθ. The result is added to the voltage in the d-frame to obtain the output voltage
reference v∗oj.

In [66] a dual-stage microinverter without capacitors is proposed, whose dc-dc stage
consists of two interleaved flyback dc-dc converters and a third harmonic current injection
circuit. The dc-ac stage has a three-phase current source inverter switched at line frequency
and an LC output filter (Figure 30). The flyback converter controls the MPPT and the third
harmonic current injection circuit regulates the power factor correlation. In Figure 31 the
control strategy for the dc-dc stage is presented. On the one hand, there is the Perturb and
Observe MPPT algorithm that generates the reference input current of the flyback converter
ipv1 (outer voltage loop), and then a PI controller (inner current loop) regulates the error to
generate the modulator d. G f 1(s) and G f 2(s) are the transfer functions of the first flyback
converter and the second flyback converter respectively. To achieve a balance of power
between the interleaved converters, a PI controller is used. The difference between the
average input current of the primary flyback converter and secondary flyback converter
(īpm1 y īsm1) goes into a PI controller; the output is added to the duty cycle of the first
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flyback converter and is subtracted from the duty cycle of the second flyback converter.
The photovoltaic panel current is equal to the sum of the currents of the primary flyback
converter and secondary flyback converter. Figure 32 shows the control strategy of the
current injection circuit and it consists of a PI current controller that compares the inductor
current of the third harmonic (iy) with a reference current i∗y . The reference current is
obtained by the angle of the grid voltage θm (generated by a PLL), plus the reference power
P∗ (obtained by the sum of all the electrical powers of the photovoltaic panels), plus the
desired output angle ϕ. Gp(s) is the transfer function of the current injection circuit of the
third harmonic.
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In [25] a control strategy is presented to compensate the reactive power and is pre-
sented in Figure 33. This consists mainly of an MPPT algorithm that generates the ref-
erence current in d frame (i∗d). Then, the currents i∗d and i∗q are multiplied by cos(ωt)
and sin(ωt) respectively, whose angle is obtained by a PLL. Both reference currents are
summed and compared with the grid current ig that multiplied by a proportional gain kpg
generates the variation of the duty cycle ∆D. The duty cycle variation plus the nominal
duty cycle generates the PWM signal.
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īsm1
ipv1

Figure 31. Control strategy of the MPPT proposed in [66].

+ ++

PLL
vmid−vmin
vmax−vmid

2P∗
o cos(θmid+ϕ)
3Vomcosϕ

PIP∗
o

ϕ

Ppv1

Ppv4

vpv1

ipv1

vpv4

ipv4

Σ

i∗y
Gp(s)

km

vg
abc

iy

Figure 32. Control strategy proposed in [66].

In [25] a control strategy is presented to compensate the reactive power and is pre-
sented in Figure 33. This consists mainly of an MPPT algorithm that generates the ref-
erence current in d frame (i∗d). Then, the currents i∗d and i∗q are multiplied by cos(ωt)
and sin(ωt) respectively, whose angle is obtained by a PLL. Both reference currents are
summed and compared with the grid current ig that multiplied by a proportional gain kpg
generates the variation of the duty cycle ∆D. The duty cycle variation plus the nominal
duty cycle generates the PWM signal.

Figure 32. Control strategy proposed in [66].

In [25] a control strategy is presented to compensate the reactive power and is pre-
sented in Figure 33. This consists mainly of an MPPT algorithm that generates the reference
current in d frame (i∗d). Then, the currents i∗d and i∗q are multiplied by cos(ωt) and sin(ωt)
respectively, whose angle is obtained by a PLL. Both reference currents are summed and
compared with the grid current ig that multiplied by a proportional gain kpg generates
the variation of the duty cycle ∆D. The duty cycle variation plus the nominal duty cycle
generates the PWM signal.
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Other control techniques are as follows:

• The paper [67] presents an active clamp flyback converter with a dual-buck inverter.
The control consists of a current control (a 2-pole 2-zero compensator) for a dc-dc
stage. The control technique in the dc-ac stage consists in a voltage-loop control (PI
controller), a current-loop control (3-pole 3-zero compensator and feedback lineariza-
tion), and a phase-locked loop. The power control is based a dq transformation.

• The paper [68] presents a two-stage microinverter and it consists of a bidirectional
boost/buck dc-dc converter with coupled inductors and a full-bridge inverter. The con-
trol strategy consists of a conventional current control (PI controller) for reactive
power compensation.

• The paper [69] presents a quasi Z-source (qZS) single-phase microinverter. The con-
trol s t r a t e g y  o n s i s t s i n a m o d e l p r e d i  t i v e  o n t r o l w i t h l o w - v o l t a g e r i d e - t h r o u g h  a p a -

b i l i t y .

3.4. Microinverter with Energy Storage

In [70] a microinverter with integrated storage is presented and it consists of a dual
active H-bridge dc-dc converter (DAB); in addition, a dc-dc converter connected to a bat-
tery is coupled in parallel (Figure 34). This work only presents the connection stage of the
photovoltaic panel and the battery with dc-link. The proposed dc-dc converter has two
modes: on the first hand, it works as a dual-active H-bridge (DAB) converter, and on the
second hand it works as a dual-transistor flyback converter. The proposed dual control
strategy is presented in Figure 35. This consists of different conditions of the power flow
P, which depending on the condition, the flyback mode or dual active H-bridge mode
is selected. The article [70] does not present more details of the control strategy, it only
mentions that the comparison between the power flow calculated with the reference is
processed by a controller Gc2(s) generating Ts, to then generate the switching sequence of
the flyback mode. In the case of DAB mode, the controller Gc1(s) generates an angle φ to
regulate the power flow tofrom the dc-ac stage. The multiplexer determines the sequence
of commutation depending on the selected mode.

Other control techniques are as follows:

• The paper [71] presents a high-frequency push–pull topology with galvanic isolation
with a voltage source inverter. The control technique consists of MPPT controller,
a battery charge algorithm (constant current followed by constant voltage control),
a dc-link voltage regulator (PI controller), and a current-loop control based a model
predictive control.

• The paper [72] presents a dual-active bridge microinverter topology with integrated
energy storage capability. The control strategy comprises a cascaded loop with two
PI controllers and a two-loop approach with PI controller and PR controller.

Figure 33. Control strategy proposed in [25].

Other control techniques are as follows:

• The paper [67] presents an active clamp flyback converter with a dual-buck inverter.
The control consists of a current control (a 2-pole 2-zero compensator) for a dc-dc stage.
The control technique in the dc-ac stage consists in a voltage-loop control (PI con-
troller), a current-loop control (3-pole 3-zero compensator and feedback linearization),
and a phase-locked loop. The power control is based a dq transformation.

• The paper [68] presents a two-stage microinverter and it consists of a bidirectional
boost/buck dc-dc converter with coupled inductors and a full-bridge inverter. The con-
trol strategy consists of a conventional current control (PI controller) for reactive
power compensation.

• The paper [69] presents a quasi Z-source (qZS) single-phase microinverter. The control
strategy consists in a model predictive control with low-voltage ride-through capability.

3.4. Microinverter with Energy Storage

In [70] a microinverter with integrated storage is presented and it consists of a dual
active H-bridge dc-dc converter (DAB); in addition, a dc-dc converter connected to a battery
is coupled in parallel (Figure 34). This work only presents the connection stage of the
photovoltaic panel and the battery with dc-link. The proposed dc-dc converter has two
modes: on the first hand, it works as a dual-active H-bridge (DAB) converter, and on the
second hand it works as a dual-transistor flyback converter. The proposed dual control
strategy is presented in Figure 35. This consists of different conditions of the power flow
P, which depending on the condition, the flyback mode or dual active H-bridge mode
is selected. The article [70] does not present more details of the control strategy, it only
mentions that the comparison between the power flow calculated with the reference is
processed by a controller Gc2(s) generating Ts, to then generate the switching sequence of
the flyback mode. In the case of DAB mode, the controller Gc1(s) generates an angle φ to
regulate the power flow tofrom the dc-ac stage. The multiplexer determines the sequence
of commutation depending on the selected mode.

Other control techniques are as follows:

• The paper [71] presents a high-frequency push–pull topology with galvanic isolation
with a voltage source inverter. The control technique consists of MPPT controller,
a battery charge algorithm (constant current followed by constant voltage control),
a dc-link voltage regulator (PI controller), and a current-loop control based a model
predictive control.

• The paper [72] presents a dual-active bridge microinverter topology with integrated
energy storage capability. The control strategy comprises a cascaded loop with two PI
controllers and a two-loop approach with PI controller and PR controller.
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3.5. Multi-Modes or Multiples Functions

In [73], two-stage topology of microinverters is presented and the multi-mode control
strategy is presented in Figure 36. The first stage is a active-clamped current-fed push–
pull converter and the second stage is an full-bridge inverter. These microinverters are
connected to each other in cascade, between the grid and the load Figure 37). It has three
operation modes: (1) grid-connected mode (GCM), (2) line-interactive mode (LIM), and
(3) stand-alone mode (SAM). The multi-mode control strategy is presented in Figure 36.
First, the dc-dc converter regulates the dc-link voltage vdc by means of a PI type voltage
controller. The full-bridge inverter is commanded by the output current control io, whose
reference is generated from the GCM, SAM, or LIM modes. The island detector allows to
select the grid-connected mode or off-grid mode through MS1. In the event of a power
grid failure, the SS switch opens and the island detector selects SAM mode. In SAM mode,
a controller regulates the ac voltage of the inverter vo and it generates the reference current
i∗o2. In the case that the grid voltage is maintained under normal conditions, the SS switch
remains closed; therefore, the microinverter is connected to the grid. In this case, there are
two modes of operation, the GCM or the LIM. They are selected by the MS2 signal in order
to determine the reference current amplitude im1 o im2. In the case of GCM mode, an MPPT
algorithm is used to inject the maximum available power from the photovoltaic panel into
the grid. The MPPT algorithm generates the voltage reference of the photovoltaic panel v∗pv
and it is compared to the sensed voltage panel vpv, which then through a voltage controller
generates the reference current im1. In LIM mode, the reference current im2 is generated by
the minimum value of the voltage controller of the photovoltaic panel and an ac coupling
controller, whose input signals are the output voltage vo and the load current iLo.
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In [74–76] a dual-stage microinverter is presented and it consists of a push–pull dc-
dc converter connected to a full-bridge inverter (Figure 38). The proposal of the article
is a microinverter that can operate both in island mode and in mode connected to the
electrical grid without the need to modify the control algorithm. In grid-connected mode,
the microinverter must inject electrical power; on the other hand, in island mode, the mi-
croinverter must deliver an appropriate ac voltage to local loads. The control strategy of
Figure 39 for the grid-connected mode consists of an internal loop that controls the injec-
tion of current iL, while an external loop controls the voltage of the dc-link vdc. In this
case, the push–pull converter controls the MPPT algorithm, whose reference voltage v∗pv
is compared with the voltage of the photovoltaic panel vpv that is processed by a volt-
age controller. In addition, the proposed control in the dc-dc stage limits the transformer
current to avoid its saturation.

On the other hand, in Figure 40, the control strategy in island mode is presented.
In island mode, the inner current loop does not change with respect to the aforemen-
tioned, but the outer voltage loop regulates the output voltage vo (voltage source control
algorithm). This is compared to a reference voltage v∗o , generated by a droop control as a
function of active and reactive power. The control of the dc-dc stage controls the voltage
in the dc link by means of a voltage controller generating the limit of the reference voltage
and is added to the reference voltage of the photovoltaic panel. All voltage controllers are
PI, while current controllers are PR. The characteristic of the proposed reconfigurable con-
trol is that there are no transients between the microinverter and the load when switching
from one mode to another.

Other control techniques are as follows:

• The paper [77] presents a two-stage microinverter and it consists of dc-dc triple active
bridge (TAB) converter that integrates back-up battery; and the second stage is a
voltage source inverter (VSI) that operates in both grid-connected mode (GCM) and
stand-alone mode (SAM). The control algorithm consists in a central control based in
a mode transition scheme. Each mode has PI controllers to regulate the current grid,
current load, and dc-link voltage; it has a PR controller to regulate the load voltage.
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In [74–76] a dual-stage microinverter is presented and it consists of a push–pull dc-dc
converter connected to a full-bridge inverter (Figure 38). The proposal of the article is a
microinverter that can operate both in island mode and in mode connected to the elec-
trical grid without the need to modify the control algorithm. In grid-connected mode,
the microinverter must inject electrical power; on the other hand, in island mode, the mi-
croinverter must deliver an appropriate ac voltage to local loads. The control strategy
of Figure 39 for the grid-connected mode consists of an internal loop that controls the
injection of current iL, while an external loop controls the voltage of the dc-link vdc. In this
case, the push–pull converter controls the MPPT algorithm, whose reference voltage v∗pv
is compared with the voltage of the photovoltaic panel vpv that is processed by a voltage
controller. In addition, the proposed control in the dc-dc stage limits the transformer
current to avoid its saturation.

On the other hand, in Figure 40, the control strategy in island mode is presented.
In island mode, the inner current loop does not change with respect to the aforementioned,
but the outer voltage loop regulates the output voltage vo (voltage source control algorithm).
This is compared to a reference voltage v∗o , generated by a droop control as a function of
active and reactive power. The control of the dc-dc stage controls the voltage in the dc
link by means of a voltage controller generating the limit of the reference voltage and is
added to the reference voltage of the photovoltaic panel. All voltage controllers are PI,
while current controllers are PR. The characteristic of the proposed reconfigurable control
is that there are no transients between the microinverter and the load when switching from
one mode to another.

Other control techniques are as follows:

• The paper [77] presents a two-stage microinverter and it consists of dc-dc triple active
bridge (TAB) converter that integrates back-up battery; and the second stage is a
voltage source inverter (VSI) that operates in both grid-connected mode (GCM) and
stand-alone mode (SAM). The control algorithm consists in a central control based in
a mode transition scheme. Each mode has PI controllers to regulate the current grid,
current load, and dc-link voltage; it has a PR controller to regulate the load voltage.
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• The paper [78] presents a buck-boost dc-dc converter cascaded interleaved flyback
dc-dc converter with a unfolding bridge inverter. The control technique consists in a
droop control and a peak current control.

• The paper [79] presents a current-fed push–pull, full-wave rectifier with full-bridge.
The microinverter can operate in island mode and grid mode. The control technique
comprises of different PI controllers for both modes.
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4. Discussion

Table 1 presents the characteristics of the revised control strategies, in order to make
a comparison between them. Table 1 shows the stability results as a function of the gain
margin (GM) and phase margin (PM). In addition, the quality of the signals is presented
as a function of the total harmonic distortion (THD) and the dynamic responses are also
presented as a function of the settling time (ts) in millisecond and the overshoot (Mp). In
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Table 1 presents the characteristics of the revised control strategies, in order to make
a comparison between them. Table 1 shows the stability results as a function of the gain
margin (GM) and phase margin (PM). In addition, the quality of the signals is presented
as a function of the total harmonic distortion (THD) and the dynamic responses are also
presented as a function of the settling time (ts) in millisecond and the overshoot (Mp). In
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addition, the efficiency of the maximum power point tracking algorithm (MPPT) is pre-
sented.

Most of the authors use a PI controllers because they are simple and easy to design.
As the microinverters are non-linear systems, the PI control is capable of working properly
only in a reduced operating region, this being a disadvantage of the controller. In addi-
tion, it is necessary to determine the gain values of the controller, which is sensitive to
variations and uncertainty of the microinverter parameters [80]. In addition, the revised
articles tend to use the PR control that has better performance in the regulation of alter-
nating current as compared to the PI control [81]; however, it also has the problem of
sensitivity to variations and uncertainties. From this point of view, a feasible solution is
to implement other control techniques, such as model-based predictive control [82], feed-
back linearization control [83], and fuzzy logic control [84].

In addition, as can be seen in Table 1, the different characteristics depend on both the
topology (design) and the control strategy. The design determines the values of the vari-
ous components contained in the microinverter to meet voltage and current requirements
and also determines the size of the microinverter. In addition, this determines the voltage
and current ratings of the power semiconductors. The selection of electronic components
will mainly influence the efficiency of the microinverter. Finally, once the topology is de-
signed and the components are selected, it is necessary to regulate the voltage and current
levels despite the presence of disturbances. Therefore, it is necessary to implement con-
trol techniques that ensure a correct operation of the microinverter to meet the different
voltage and current requirements and thereby increase the reliability and robustness of
the microinverter.
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4. Discussion

Table 1 presents the characteristics of the revised control strategies, in order to make
a comparison between them. Table 1 shows the stability results as a function of the gain
margin (GM) and phase margin (PM). In addition, the quality of the signals is presented
as a function of the total harmonic distortion (THD) and the dynamic responses are also
presented as a function of the settling time (ts) in millisecond and the overshoot (Mp). In ad-
dition, the efficiency of the maximum power point tracking algorithm (MPPT) is presented.

Most of the authors use a PI controllers because they are simple and easy to design.
As the microinverters are non-linear systems, the PI control is capable of working properly
only in a reduced operating region, this being a disadvantage of the controller. In addition,
it is necessary to determine the gain values of the controller, which is sensitive to variations
and uncertainty of the microinverter parameters [80]. In addition, the revised articles tend
to use the PR control that has better performance in the regulation of alternating current as
compared to the PI control [81]; however, it also has the problem of sensitivity to variations
and uncertainties. From this point of view, a feasible solution is to implement other control
techniques, such as model-based predictive control [82], feedback linearization control [83],
and fuzzy logic control [84].

In addition, as can be seen in Table 1, the different characteristics depend on both the
topology (design) and the control strategy. The design determines the values of the various
components contained in the microinverter to meet voltage and current requirements
and also determines the size of the microinverter. In addition, this determines the voltage
and current ratings of the power semiconductors. The selection of electronic components
will mainly influence the efficiency of the microinverter. Finally, once the topology is
designed and the components are selected, it is necessary to regulate the voltage and
current levels despite the presence of disturbances. Therefore, it is necessary to implement
control techniques that ensure a correct operation of the microinverter to meet the different
voltage and current requirements and thereby increase the reliability and robustness of
the microinverter.
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Table 1. Characteristics of the revised control strategies.

Cite GM(dB) PM THD(%) ts (ms) Mp MPPT(%) Advantage Topology Controller

[12] - - 4.37(ig) - - -

Low frequency
Harmonic mitigation.
Switching losses
reduction.

Full bridge inverter Hysteresis + PR

[13] - - 2.87(ig)
3.09(vg)

20(ig) - 99.7
High reliability
Wide operating range.
Fast MPPT.

Boost-half-bridge
converter + full-bridge

inverter

PI controllers +
Resonant control

[15] 12(ig)
inf(vdc)

58°(ig)
74°(vdc)

2.5(ig) - - - Fast dynamic response.
LLC resonant converter

+ 3-phase dc-ac
converter

PI Controllers

[18] inf(iL2) 85.9°(iL2) 3.18(ig) - - 96 High reliability.
Reactive power support.
LVRT Capacity.

Non-inverted Cuk
connected to an inverter

Cuk converter

PI and PR
controllers

[19] - - - - - 98.5 Ability to estimate current
for different inductance values.
Elimination of measurement noise.

Flyback converter + VSI PI control + PCM
+ State Observer

[21] - -
Off-grid
0.5(vg)
On-grid
2.4(ig)

- - - LVRT and anti-island capability. Flyback converter + VSI
PI controllers +

DQ power
estimation

[25] - - 3.8(ig) - - - High conversion efficiency
High reliability

Flyback converter +
series resonant voltage

doubler

P controller +
feedback

linearization +
Voltage controller

[26] - - 3(ig) - - - Simple.
Elimination of distortion caused
by zero crossing.

Coupled-inductor
double-boost inverter PI controllers
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Table 1. Cont.

Cite GM(dB) PM THD(%) ts (ms) Mp MPPT(%) Advantage Topology Controller

[27] - - - 10(vo) 5V(vo) - Switching losses reduction. DMR based series resonant
dc-dc converter PI controllers

[62] - - 0 70(vdc) - -
ZVS capacity.
Switching losses reduction.
Decoupling
capacitance reduction.

Flyback converter + VSI PR control + HC

[29] inf(io) 45°(io) 2.4(io) - - -
Fast dynamic response
Harmonic frequencies elimination.
Low computational burden.
Elimination of disturbances.
Hybrid operation(DCM-CCM).

DAB inverter PI + RC controllers

[63] -
60°(ipv)
60°(vdc)
60°(vo)

3.73(io) 1000(vdc) - - ZCS switching capacity.
Wide range of input voltages.

Flyback + active
decoupling circuit +
full-bridge inverter

PI controllers

[64] - - - - - - Reactive power support.
High Efficiency

LLC resonant converter +
interleaved full-bridge

inverter

PI controllers + RC
+ feedforward loop

[65] - - - - - -
Distributed control.
Active and reactive power
control capacity.

Cascaded full-bridge
inverter

Distributed control:
P + PI + PR
controllers

[66] - -
Full load
4.29(io)
Partial load
6.82(io)

- - -
Controllable power factor.
High efficiency.
Independent MPPT control.

Interleaved flyback
converter + 3-phase

Current Source Inverter
PI controllers

[70] - - - 0.04(ipv) 0.2
A(ipv) -

Two modes of operation
Flyback and DAB.
Reduction of switching
losses.
High stability.

DAB + dc-dc converter for
the batteries Dual-mode control

[73] - - - - - - Multifunctionality.
Parallel multi-mode operation.

Push–pull converter +
full-bridge inverter PI controllers
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Table 1. Cont.

Cite GM(dB) PM THD(%) ts (ms) Mp MPPT(%) Advantage Topology Controller

[74,75] -

On-grid
89.6°(vpv)
58.6°(ig)
87°(vdc)
Off-grid
90.2°(vpv)
65.2°(vo)
76.2°(vdc)
81.2°(io)

0.05 s(vg) - - -

Ability to operate
off-grid and
on-grid.
Reconfigurable Control.

Push–pull converter +
full-bridge inverter PI + PR controllers
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5. Conclusions

This article presented an overview of microinverters and a review of control strategies
for applications such as grid-connected, island mode, reactive power compensation, incor-
poration of energy storage, and multi-modes. Microinverters are a promising solution to
mitigate the problems of using photovoltaic panels, such as partial shading. Within the
reviews it can be inferred that there is an increase of studies on microinverters, due to the
advancement of semiconductor technology as well as cost reduction. From the point of
view of the control strategy, research tends to use PI controllers and PR.

The control strategies were studied for the different applications in microinverters.
The proposed control strategy was described as well as the associated power converters.
It can be mentioned that due to the advancement of microprocessors, it is tending to the
incorporation of multiple controls and multiple modes in the microinverters, increasing
reliability and functionality of the photovoltaic system.

Finally, it can be mentioned that although the design and selection of the electronic
components in a power converter topology is important and essential in the conversion
efficiency, the design of the control strategy is a third important factor in increasing the
reliability and functionality of microinverters.
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Abbreviations
The main abbreviations and nomenclatures that are used in this manuscript are listed below:

ACC Phase Accumulator
DAB Dual active bridge
DMR Dual Mode Rectifier
CVT Constant Voltage Method
EMI Electromagnetic Interference
GCM Grid Connected Mode
GM Gain Margin
HC Harmonic Compensator
LIM Line-interactive Mode
PCM Peak Current Control
PDM Pulse Density Modulator
PM Phase Margin
SAM Standalone Mode
RC Repetitive Controller
THD Total Harmonic Distortion
ZVS Zero Voltage Switching
Am Voltage amplitude reference
Cdc DC-link capacitor
CF Filter capacitor
Cin Input capacitor
Cx Capacitor x = 1, 2...
Co Output capacitor
Cr Resonant capacitor
d Duty cycle
DCCM Duty cycle in continuous conduction mode
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DDCM Duty cycle in discontinuous conduction mode
Dn Diode n, where n = 1, 2 . . .
Dnj Diode n of the microinverter j = 1, 2 . . .
Dnom Rated duty cycle
Dp Hybrid nominal duty ratio
dpp Switching signal pattern
E Amplitude of the inverter voltage
en Enable the mode selector
f ∗ Reference of switching frequency
fo Sampling frequency
fs Switching frequency
G(s) Transfer function
ibat Battery current
iCn Current of capacitor n = 1, 2, 3 . . .
id d Frame current
ig(t) Grid current
I∗g Amplitude of the grid current reference
iL Inductor current
ilo Load current
iL,pri Current of the primary side transformer
iL,sec Current of the secondary side transformer
ilim Current amplitude limit reference
ipv Photovoltaic panel current
Îpv Estimated photovoltaic panel current
io Output current
iq q Frame current
k Sensor gain
Kd Derivative gain
km Duty ratio
kpg Proportional gain
LF Filter inductor
Lin Input inductor
Lm Magnetizing inductor
Ln Inductor n, where n = 1, 2, 3 . . .
Lon Output inductor n, where n = 1, 2 . . .
Ls Inductor of transformer
Lr Resonant inductor
m Amplitude droop coefficient
mx Modulator signal x = a, b, c
Mp Overshoot
n Frequency droop coefficient
po Output power of the inverter
P∗ Power reference
P Active power
Ppv Photovoltaic panel power
Q Reactive power
R Resistor
s1−8 Gating voltages for switches S1−8
Sn Switch n, where n = 1, 2, 3 . . .
Ton Fixed on-time
ts Settling time
Ts Switching period
vab Inverter voltage
vbat Battery voltage
vcd Voltage between the terminals cd
vd Voltage in the d frame
vdc DC-link voltage
vCn Voltage of capacitor n = 1, 2, 3 . . .
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vg Grid voltage
vmpp Voltage in the maximum power point
vmax Maximum value of the dc-link voltage
vmid Medium value of the dc-link voltage
vmin Minimum value of the dc-link voltage
v∗limit Limit voltage reference
vo Output voltage
Vom Magnitude of the output phase voltage.
vPCC Voltage in the point common coupling
vpv Photovoltaic panel voltage
vq Voltage in the q frame
∆ Disturbance or variation
ϕ Output angle
δ Offset signal
θm Angle of the grid voltage
ω Frequency of the inverter voltage
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