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Colorectal cancer (CRC) is the second leading cause of cancer deaths and continuously
increases new cancer cases globally. Accumulating evidence links risks of CRC to
antibiotic use. Long-term use and abuse of antibiotics increase the resistance of
the gut microbiota; however, whether CRC is associated with antibiotic resistance in
gut microbiota is still unclear. In this study, we performed a de novo assembly to
metagenomic sequences in 382 CRC patients and 387 healthy controls to obtain
representative species-level genome bins (rSGBs) and plasmids and analyzed the
abundance variation of species and antibiotic resistance genes (ARGs). Twenty-five
species and 65 ARGs were significantly enriched in the CRC patients, and among
these ARGs, 12 were multidrug-resistant genes (MRGs), which mainly included acrB,
TolC, marA, H-NS, Escherichia coli acrR mutation, and AcrS. These MRGs could confer
resistance to fluoroquinolones, tetracyclines, cephalosporins, and rifamycin antibiotics
by antibiotic efflux and inactivation. A classification model was built using the abundance
of species and ARGs and achieved areas under the curve of 0.831 and 0.715,
respectively. Our investigation has identified the antibiotic resistance types of ARGs
and suggested that E. coli is the primary antibiotic resistance reservoir of ARGs in
CRC patients, providing valuable evidence for selecting appropriate antibiotics in the
CRC treatment.

Keywords: antibiotic resistance gene (ARG), colorectal cancer (CRC), human gut metagenome, species-level
genome bins, Escherichia coli

INTRODUCTION

Colorectal cancer (CRC) is one of the most common cancers worldwide and has led to nearly
1 million deaths in 2020 only (Ferlay et al., 2021). Many factors are associated with an elevated
risk of CRC, including genetic predisposition, colorectal polyps, inflammatory bowel disease,
smoking, and alcohol intake (Wang et al., 2014). Accumulating evidence suggests that long-term,
frequent, and/or combined antibiotic use could also be risk factors for CRC (Wang et al., 2014;
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Dik et al., 2016; Cao et al., 2018; Crockett and Nagtegaal,
2019; Zhang et al., 2019). Antibiotics, such as metronidazole,
ciprofloxacin, and rifaximin, are frequently used to treat colitis
and intestinal lesions (Bernstein et al., 2016; Nitzan et al.,
2016). During the long-term development and progression of
CRC, the detrimental effect of antibiotics may be present even
at the early stage of colitis, adenomatous polyps, or other
precursors of the CRC. It is worth noting that antibiotic use could
increase the richness of antibiotic-resistance bacterial species
and the abundance of antibiotic resistance genes (ARGs) in
the gut microbiota (Casals-Pascual et al., 2018; Dubinsky et al.,
2020). Subsequent to antibiotic use and increased resistance,
bowel dysbacteria may occur, and concomitantly, colonization
resistance, and mucus production of the colon mucosal may be
impaired (Becattini et al., 2016; Schwartz et al., 2020). Existing
literature indicates that gut microbiota dysbiosis and colon
mucosal surface changes are associated with the occurrence and
progression of CRC (Yachida et al., 2019; Cheng et al., 2020; Xing
et al., 2021). Therefore, research on drug-resistant microbiota and
resistance genes may help to understand the progression of CRC.

The compositional patterns of antibiotic-resistant species and
ARGs in the gut microbiota of CRC patients were scantly studied.
To examine their potential effects exerted upon CRC patients
and healthy people, we have downloaded published human gut
metagenomic data of CRC patients and healthy controls to
study the antibiotic resistance species and ARG distribution in
the gut microbiota. We performed the metagenomic assembly
to obtain representative species-level genome bins (rSGBs) to
investigate ARG abundance in each species. Based on the
Genome Taxonomy Database (GTDB) and Comprehensive
Antibiotic Resistance Database (CARD), we annotated species
and ARGs in rSGBs and analyzed their abundance. These
analyses have revealed how the burden of antibiotic resistance
changes in the intestine of CRC patients, stressing significant
associations between these changes and microbiota composition.
Our study has characterized the resistance of the gut microbiota
in CRC patients and may shed new light on the proper antibiotic
use for avoiding drug resistance.

RESULTS

Reconstruction and Annotation of
Microbial Genomes and Plasmids
In this study, we downloaded metagenomic data of 382 CRC
patients (the CRC group) and 387 healthy controls (CTR group)
from eight studies (Table 1 and Supplementary Table 1).
The genome reconstruction was performed using a pipeline
reported by Pasolli et al. (2019) and carried out a de novo
single-sample metagenomes assembly and binning. More than
23.5 million contigs (mean ± SD, 30,688.6 ± 13,972.6) were
assembled from these samples; 5,880 high-quality metagenome-
assembled genomes (MAGs) and 5,390 medium-quality MAGs
were obtained (Supplementary Table 2). After clustering and
filtering the rSGBs for the high-quality MAGs, we obtained
696 rSGBs with genome sizes ranging from 0.95 to 6.41 Mb
(2.39 ± 0.43 Mb) (Supplementary Tables 2–4). We then aligned

the high-quality sequencing reads to the 696 rSGBs. The read
mapping rate in our results (76.6% ± 7.8%, Supplementary
Table 2) was similar to that of a large-scale gut microbiota study
(range, 67.76–87.51%) (Pasolli et al., 2019). Based on the quality
of the mapping rate, it is acceptable to use our data for subsequent
species and ARG annotations.

Thereafter, we classified rSGBs using the GTDB Toolkit
(GTDB-Tk, see Methods for details on the taxonomy
nomenclature used) (Chaumeil et al., 2019). However, 60
rSGBs (8.62%) could not be assigned to an existing species, and
402 (57.75%) rSGBs belonged to uncultured species (Figure 1
and Supplementary Table 5). All 696 rSGBs were classified into
13 phyla and 306 genera. In line with previous studies (Yeoh
et al., 2020), Firmicutes (including Firmicutes A), Bacteroidota,
Actinobacteriota, and Proteobacteria were predominant phyla,
and the total relative abundance accounted for more than 90% of
the gut microbiota (mean ± SD, CRC group: 93.69% ± 8.76%;
CTR group: 96.67% ± 5.75%) (Supplementary Figure 1A).
Bacteroides, Phocaeicola, Faecalibacterium, Prevotella, Alistipes,
and Blautia A were the dominant genera in the gut (Figure 2A).
It indicated that our rSGBs covered the dominate species in
the gut microbiota.

In addition, we assembled the plasmids of gut microbiota
using metaplasmidSPAdes (Antipov et al., 2019). We
obtained 24,692 plasmid-sourced contigs (N50 = 42,448 bp;
max = 473,623 bp; min = 2,564 bp) with a mean of 32 contigs
in each sample. The plasmid-sourced genes were predicted
and clustered with MetaGeneMark and cd-hit, respectively
(Li and Godzik, 2006; Zhu et al., 2010). A non-redundant
plasmid-sourced gene catalog (159,890 genes, N50 = 701 bp)
was obtained. Next, we applied reference-based taxonomy
annotation of the gene catalog using the NCBI-NT database.
Finally, 157,504 (98.5%) of the genes in the gene catalog could
be uniquely and reliably assigned to a species. We found those
genes mainly from Escherichia coli, Faecalibacterium prausnitzii,
Bacteroides dorei, Bacteroides fragilis, Bacteroides uniformis, and
Klebsiella pneumoniae.

Alterations of Gut Microbial Composition
in Colorectal Cancer and CTR Groups
We analyzed the effect size of cohorts and host characteristics on
the variance of the gut microbiome by permutational multivariate
analysis of variance (PERMANOVA) test, where results revealed
the factor “cohort” to have a predominant impact on the
species and ARG composition of the subjects (Supplementary
Figure 2). To test the accuracy of results in the analysis, we
select two cohorts randomly to confirm our species and ARG
results [PRJEB7774 (n = 109) and PRJEB12449 (n = 104)].
The analysis of the α and β diversity of microbial composition
revealed that the CRC group had a slightly lower species diversity
than the CTR group [Shannon–Wiener index (H’), p = 0.24,
Figure 2B], which was consistent with the literature (Gao
et al., 2015). The dimensionality-reduction analysis [principal
coordinate analysis (PCoA) and non-metric multidimensional
scaling (NMDS) analysis] of the rSGBs relative abundance of the
CRC and CTR groups showed that the CRC and CTR groups
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TABLE 1 | Characteristics of the data sets included in this study.

Accession numbera Group (nb) Age (years) (mean ± SDc) Gender (F/M,%d) BMI (kg/m2) (mean ± SDc) Read counts (mean ± SDc)

PRJEB7774 Feng et al.
(2015)

CRC (46) 67.07 ± 10.91 39.13/60.87 26.46 ± 3.54 49,936,552 ± 7,270,051

CTR (63) 67.06 ± 6.37 41.27/58.73 27.57 ± 3.74 46,090,975 ± 7,068,141

PRJNA389927 Hannigan
et al. (2018)

CRC (28) 58.86 ± 11.02 28.57/71.43 28.57/71.43 4,851,235 ± 2,209,656

CTR (28) 55.46 ± 9.52 60.71/39.29 60.71/39.29 5,848,176 ± 3,578,299

PRJEB10878 Yu et al.
(2017)

CRC (74) 66.04 ± 10.60 35.14/64.86 23.98 ± 3.16 49,225,941 ± 10,554,038

CTR (54) 61.76 ± 5.67 38.89/61.11 23.46 ± 2.96 53,622,545 ± 8,128,850

PRJEB6070 Zeller et al.
(2014)

CRC (91) 64.66 ± 12.23 40.66/59.34 26.04 ± 4.49 43,899,076 ± 19,556,571

CTR (66) 58.61 ± 12.79 50.00/50.00 24.68 ± 3.17 48,152,424 ± 23,181,408

PRJEB27928 Wirbel et al.
(2019)

CRC (22) 66.55 ± 10.6 50.00/50.00 25.33 ± 4.93 48,769,786 ± 18,597,297

CTR (60) 57.57 ± 11.08 46.67/53.33 24.88 ± 3.2 28,494,527 ± 7,144,313

PRJNA447983 Thomas
et al. (2019)

CRC (29) 71.45 ± 8.23 20.69/79.31 25.71 ± 4.14 46,797,011 ± 22,256,056

CTR (24) 67.92 ± 7.01 45.83/54.17 25.32 ± 3.51 58,117,998 ± 40,294,533

PRJDB4176 Yachida et al.
(2019)

CRC (40) 59.05 ± 12.83 47.50/52.50 22.36 ± 2.72 40,249,523 ± 12,291,484

CTR (40) 63.63 ± 12.36 42.50/57.50 22.90 ± 2.44 46,232,480 ± 14,228,285

PRJEB12449 Vogtmann
et al. (2016)

CRC (52) 61.85 ± 13.58 28.85/71.15 24.89 ± 4.25 52,664,424 ± 16,619,909

CTR (52) 61.23 ± 11.03 28.85/71.15 25.34 ± 4.28 52,629,971 ± 12,022,921

aReferences of the study.
bCounts of samples.
cStandard deviation.
dRatio of the percentage of female and male.

were separated (PERMANOVA analysis p = 0.01, R = 0.0731)
(Figure 2C and Supplementary Figure 1B).

Then, the composition of microbiota between CRC patients
and healthy controls was compared at phylum and genus levels.
On the phylum levels, Bacteroidota, Desulfobacterota, and
Fusobacteriota phyla were enriched in the CRC group, and
Firmicutes A phylum was enriched in the CTR group (Wilcoxon
test, adjusted p < 0.05; Supplementary Figure 1C). On the
genus level, Anaerotignum, Bilophila, Bulleidia, Flavonifractor,
Gemella, Intestinimonas, Parvimonas, Peptostreptococcus,
Porphyromonas, Prevotella, and Ruthenibacterium genera
were enriched in the CRC group; meanwhile, Agathobacter,
Anaerostipes, Butyricicoccus A, Butyrivibrio A, CAG-41,
Eubacterium G, Eubacterium R, Faecalibacterium, GCA-
900066135, Lachnospira, TF01-11, and UBA11524 genera were
enriched in the CTR group significantly (Wilcoxon test, adjusted
p < 0.05; Supplementary Figure 1C).

Next, we compared the microbiota composition between
CRC patients and healthy controls at species levels using the
linear discriminant analysis effect size (LefSe) algorithm (Segata
et al., 2011). Within the 25 species enriched in the CRC
group (Figure 2D and Supplementary Table 6), nine species
had been reported to be increased in the CRC group before,
that is, E. coli (GTDB classification: E. coli D), Parabacteroides
distasonis, B. fragilis, Porphyromonas species, Alistipes finegoldii,
Alistipes onderdonkii, Akkermansia muciniphila, Bacteroides
thetaiotaomicron, Mediterraneibacter torques (previously named
Ruminococcus torques), and Ruminococcus B gnavus (Zhang et al.,
2018; Ai et al., 2019; Dai et al., 2019; Sahankumari et al., 2019;
Wong and Yu, 2019; Yang et al., 2019). Moreover, two species
were the first discovered species that were enriched in the CRC
group, that is, CAG-180 sp000432435 and CAG-177 sp003514385.
Among the 35 species enriched in the CTR group (Figure 2D and

Supplementary Table 6), Anaerostipes hadrus, Bifidobacterium
catenulatum, Fusicatenibacter saccharivorans, and butyrate-
producing species F. prausnitzii, Agathobacter rectalis, and
Agathobacter faecis had been reported in the literature as enriched
in the healthy controls and possibly beneficial to the gut health
(Ai et al., 2019; Kim et al., 2020; Ma et al., 2021). Focusing on the
60 microbiota that exhibited significantly different abundances
between the CRC and CTR groups in all samples, we further
compared the relative abundances of these microbiota between
the CRC and CTR groups in PRJEB7774 and PRJEB12449
cohorts using the Wilcoxon rank-sum tests. We found that the
enrichment of 85 and 83.3% of the significantly different species
(CRC and CTR) in the PRJEB7774 and PRJEB12449 cohorts were
congruent with those in the composite cohort of all samples
(Supplementary Figure 3).

Antibiotic Resistance Genes Conferred
to Multiple Antibiotics
To analyze the antibiotic resistance information in microbiota,
we characterized the ARGs and analyzed their abundance in
the rSGBs and plasmids by annotating them to the CARD
(Alcock et al., 2020), obtaining 164 ARGs in 189 rSGBs
(Supplementary Tables 7, 8). The top 11 ARGs accounted for
51.16% of all abundance, mainly including adeF, TolC, E. coli soxS
mutation, AcrS, E. coli soxR mutation, and marA (Figure 3A and
Supplementary Figure 4A). The adeF had the highest relative
abundance, which could encode the membrane fusion proteins
of the multidrug efflux complex AdeFGH (Coyne et al., 2010).
Within the plasmid-sourced genes, we obtained 43 ARGs in 49
genes (0.03% of all plasmid genes) that conferred resistance to
antibiotics (Supplementary Table 8), and the ARG tetQ had the
highest abundance.
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FIGURE 1 | Phylogenetic tree of representative genomes. The phylogenetic tree in the center showed 696 rSGBs. The colored points on the tree represent different
phyla. The innermost circle (labeled “1”) means whether the species was cultured (red color, marked as Cultured) or not (white color, marked as Uncultured) in the
previous study. The middle circle (labeled “2”) means whether the species could be annotated to the known genome (purple color, marked as “GTDB”) or not (white
color, marked as “Unclassified species”) in the GTDB. In the outmost circle (label “3”), the length of bars represents the genome size (bp), and colors represent
different phyla.

We analyzed the resistance mechanisms and resistance drug
types of identified ARGs and found that these ARGs in the
rSGBs and plasmids could confer resistance to 33 and 18
types of antibiotics, respectively. Notably, 53.05% of rSGB-
sourced ARGs (87 out of 164) could confer resistance to more
than one antibiotic (Supplementary Table 7). ARGs could
affect antibiotic resistance through the mechanisms of antibiotic
efflux, inactivation, target alteration, target protection, target
replacement, and reduced permeability to antibiotics.

Regarding the percentage of abundance, the antibiotic
efflux accounted for 53.36% of rSGB-sourced ARGs resistance
mechanism, and antibiotic inactivation and antibiotic targets
alteration accounted for 21.21 and 14.49%, respectively
(Figure 3B and Supplementary Figure 4B). Eighty percent of
the total rSGB-sourced ARG abundance could be ascribed to the
top 10 resistance drug types, including nucleoside antibiotics
(17.3%), cephalosporins (16.77%), macrolides (11.64%), phenicol
antibiotics (8.06%), fluoroquinolones (5.97%), penams (5.2%),
rifamycins (2.96%), and other antibiotics (Figure 3C and
Supplementary Figure 4C).

We found that those with top resistance types were also the
most consumed antibiotics globally (Van Boeckel et al., 2014). For
example, ARGs in the gut of the CRC group could confer six types
of global high-consumption antibiotics, including penicillins,
cephalosporins, macrolides, fluoroquinolones, tetracyclines, and
rifamycins. The antibiotic resistance types in our findings were
consistent with the global antibiotic consumption. Among these
antibiotics, 19.23% belong to the Access Class, 30.77% belong
to the Watch Class, and 23.08% are part of the Reserve Class
(World Health Organization AWaRe classification, version 2019;
Supplementary Table 9 and Supplementary Figure 4D; World
Health Organization, 2019).

The Divergence and Heterogeneity of
Antibiotic Resistance Gene in the
Colorectal Cancer and CTR Groups
We performed a group comparison in the abundance of ARGs,
antibiotic mechanisms, and their resistance drug types to analyze
ARG variations. First, the component of ARGs in the CRC and
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FIGURE 2 | Relative abundance difference of rSGBs in the CRC and CTR groups. (A) The relative abundance of rSGBs on the genus level. (B) The Shannon–Wiener
indices of rSGBs abundance in CRC (yellow color) and CTR (blue color) groups were similar (Wilcoxon rank-sum test, p = 0.24). (C) Principal coordinate analysis
(PCoA) plot depicted the Bray–Curtis distances of rSGBs in the CRC (yellow) and CTR (blue) groups. P-value and R represent PERMANOVA analysis p-value and R2

value, respectively. (D) LefSe analysis results showed the distribution difference of rSGBs, the colors yellow and blue represent the CRC and CTR groups,
respectively.

CTR groups were analyzed. Compared with the CTR group, the
CRC group had a higher rSGB-sourced ARG diversity [Shannon–
Wiener index (H’), p < 0.001, Figure 3D], which indicated that
gut microbiota in the CRC group had more complexity of ARGs.
The β diversity of ARG abundance showed that the ARGs in
the CRC group differed from those in the CTR group (NMDS,
PERMANOVA: p = 0.01, R = 0.0058) (Figure 3E).

We then analyzed the rSGB-sourced ARG abundance
grouped by resistance mechanisms and resistance drug types
in the CRC and CTR groups. Eighty percent (33 of 39)
resistance mechanisms and resistance drugs were significantly

enriched in the CRC group, mainly including antibiotic efflux
and inactivation mechanism, tetracyclines, fluoroquinolones,
penams, carbapenem, and cephalosporins (Figure 3F). The
abundance of ARGs in the rSGBs was significantly enriched in the
CRC group on the mechanisms and resistance drug type scales.

To further demonstrate the variability in the resistance
burden between the CRC and CTR groups, we analyzed the
abundance difference of every ARG. Fifty ARGs from rSGBs were
significantly enriched in the CRC group (Wilcoxon test, adjusted
p < 0.05) (Figure 4). Correspondingly, the total abundance of
ARGs from plasmids was higher in the CRC group than that in
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FIGURE 3 | Antibiotic resistance variations in CRC and CTR groups. (A) The average abundance percentage of ARGs in the CRC and CTR groups. (B) Resistance
mechanism abundance percentage in the CRC and CTR groups, respectively. (C) The abundance of resistance drug types in CRC and CTR groups.
(D) Shannon–Wiener index (H’) difference of ARG abundance in the CRC (yellow color) and CTR (blue color) group. (E) NMDS results of ARG abundance in the CRC
(yellow color) and CTR (blue color) group. (F) Resistance drug types (green color label) and resistance mechanisms (purple color label) abundance had statistical
differences in the CRC (yellow color) and CTR (blue color) groups. The following symbols denoted statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001. In (A), the superscript labels from numbers 1 to 7 and β represent the resistance drug types of mutations: 1antibiotic resistance, 2 multiple
antibiotics, 3β-lactam antibiotics, 4pulvomycins, 5fosfomycin antibiotics, 6fluoroquinolones, 7rifampicins; β β-lactamases.

the CTR group (Figure 5A), and 70% of ARGs (16 of 23) were
enriched in the CRC group significantly (Wilcoxon test, adjusted
p < 0.05) (Figure 5B). In our two validation cohorts, 100 and 96%
rSGB-sourced ARGs as well as 60.9 and 73.9% plasmid-sourced
ARGs in PRJEB7774 and PRJEB12449 cohorts were enriched
congruently with all the samples (Supplementary Figures 5, 6).
The ARGs from both the rSGBs and plasmids in the validation
cohorts showed a notable consistency with those in all samples.

Among these rSGB-sourced ARGs, 90% (45 of 50) were found
in the E. coli, mainly composing of TolC, E. coli soxS mutation,

marA, AcrS, acrB, and mdtM. The remaining five ARGs,
including adeF, CcrA, cepA, tet(W/N/W), and tetQ, were found
in P. distasonis, B. fragilis A, B. fragilis, UMGS693 sp900544555,
and A. onderdonkii, respectively. Although the ARGs existing
in E. coli, Bacteroides species, and Alistipes species had been
reported, their association with CRC was not robust (Dubinsky
et al., 2020; Parker et al., 2020). In terms of resistance mechanisms
and resistance drug types, these rSGB-sourced ARGs enriched
in CRC could confer resistance to 33 types of antibiotics by
five mechanisms, and 37 of 50 ARGs encoded antibiotic efflux
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FIGURE 4 | ARGs with significant differences and their resistance mechanism and resistance drug type abundance. The left (with a green label) and the right (with an
orange label) panels of heatmap represented drug resistance type and resistance mechanism, respectively. The purple or white color denoted with and without
certain characteristic. The boxplot showed abundance difference of ARGs in the CRC (yellow) and CTR (blue) groups. The following symbols denoted statistical
significance: ***p < 0.001, ****p < 0.0001. The superscript label from numbers 1 to 7 and β was the same as Figure 3A.

mechanism (Figure 4). In addition, in rSGB-sourced ARGs, 22
ARGs had resistance to fluoroquinolones, 20 ARGs to penams, 17
ARGs to cephalosporins, 15 ARGs to tetracyclines, and 10 ARGs
to rifamycins, respectively.

For the 23 plasmid-sourced ARGs, 39% of ARGs (9 of
23) were found in E. coli, mainly composing acrB, msbA,
AcrF, and E. coli acrR mutation. These ARGs could confer
resistance to 18 antibiotics by five mechanisms (Figure 5B),
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FIGURE 5 | Plasmid ARGs with significant differences and their resistance mechanism and resistance drug type abundance. (A) The abundance variation of total
ARGs from plasmids in the CRC (yellow color) and CTR (blue color) groups. (B) The left (with a green label) and the right (with an orange label) panels of the heatmap
represented drug resistance type and resistance mechanism, respectively. The purple or white color denoted with or without certain characteristic. The boxplot
showed abundance difference of ARGs in the CRC (yellow color) and CTR (blue color) groups. In (B), the superscript label 1 and β represent the resistance drug
types of mutations: 1multiple antibiotics; β β-lactamases. The following symbols denoted statistical significance: *p < 0.05, **p < 0.01.

where the antibiotics included cephalosporins, fluoroquinolones,
macrolides, tetracycline, and penams. Seven ARGs had resistance
to penams and cephalosporins, six ARGs to tetracyclines and
lincosamides, respectively.

Interestingly, penicillins, cephalosporins, and
fluoroquinolones had been reported to be associated
with the onset of colitis (Nitzan et al., 2016). Meanwhile,
fluoroquinolones, cephalosporins, tetracyclines, and rifamycins
were the most commonly used antibiotics in colitis treatment
(Theochari et al., 2018). These results suggested that the increase
in resistance burden might be due to antibiotic treatment of
precancerous colitis and antibiotic use related to intestinal colitis
and CRC by an unknown mechanism.

To further investigate the multidrug resistance of ARGs,
we denoted ARGs that could confer resistance to five or
more antibiotic drug types as multidrug-resistant genes (MRGs)
(Supplementary Table 7). A total of 21 species from rSGBs were
found that carried 41 MRGs, of which 12 MRGs were significantly
enriched in the CRC group (Supplementary Figure 7). In
the plasmid-sourced ARGs, three MRGs were found (acrB,

E. coli acrR mutation, and E. coli acrA) enriched in the CRC
group. All these MRGs enriched in the CRC group were
derived from E. coli and K. pneumoniae (Figures 5B, 6A).
Meanwhile, compared with the CTR group, the rSGB-sourced
MRG abundance in E. coli was significantly higher in the CRC
group (Figure 6B). These MRGs could confer resistance to
19 types of antibiotic drugs, which included fluoroquinolones,
cephalosporins, tetracyclines, penams, phenicol antibiotics, and
rifamycins (Figures 5B, 6A). Among these MRGs, mdtM could
confer resistance to 15 types of antibiotics, where both E. coli
marR mutant and K. pneumoniae KpnE could confer resistance to
12 types of antibiotics, and H-NS conferred resistance to 9 types
of antibiotics (Figure 6A). The intergroup difference of MAGs
was completely confirmed in the PRJEB7774 and PRJEB12449
cohorts, respectively (Supplementary Figure 8). This finding
showed that the abundance of MRGs and species with MARs was
enriched in the CRC group, which suggested that the increase
in MRG abundance was also associated with the CRC. Findings
thus far indicated that the CRC group had a higher antibiotic
resistance burden and had resistance to multiple antibiotics.
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FIGURE 6 | MRG distribution in the CRC and CTR groups. (A) Distribution, resistance drug types, and resistance mechanism of MRGs in CRC (yellow color) and
CTR (blue color) groups. The left Sankey showed the source percentage of MARs. The middle heatmap exhibited the drug resistance type and mechanism of MARs.
The blue color denoted MAR had that characteristic. The right boxplot showed the abundance of MARs. (B) MRGs in Escherichia coli (SGB_285) were enriched in
the CRC groups significantly. The following symbols denoted statistical significance: ***p < 0.001, ****p < 0.0001.

Species Encoded by Antibiotic
Resistance Genes Were Enriched in the
Colorectal Cancer Group
We further analyzed the sum of ARG abundance in the CRC-
associated and unassociated species, where species enriched in
the CRC and CTR groups were denoted as the “CRC-associated”
cluster and others as the “unassociated” cluster. In the CRC-
associated cluster, there were 30% of species (18 of 60 species)
carrying ARGs; accordingly, there were 27% of species (171 of
636 rSGBs) with ARGs in the unassociated cluster (Figure 7A).
Among all ARG types, 61 ARG types are found in CRC-associated
clusters, and 122 ARG types are in unassociated clusters, whereas
19 are common to both clusters (Figure 7B). Moreover, the
results showed that the CRC-associated cluster and unassociated
cluster were divided in the PCoA analysis (PERMANOVA
analysis, p = 0.01, Figure 7C), and the total abundance of
ARGs in the CRC-associated cluster was significantly higher
than that in the unassociated cluster (Wilcoxon test, p < 0.0001,
Figure 7D).

The analysis of ARG abundance in the CRC group reported
that E. coli, A. onderdonkii, P. distasonis, and A. finegoldii had a

relatively high abundance of ARGs (median value) (Figure 7E).
Notably, these four species were also significantly enriched in the
CRC groups, primarily E. coli, which was encoded by as many as
37 ARGs and 13 MRGs. Although the ARG type counts in the
CRC-associated cluster were lower than that in the unassociated
cluster, the former cluster carried a higher abundance of ARGs.
Therefore, E. coli in the CRC-associated cluster may act as an
antibiotic resistance reservoir in the gut microbiota because of
its high abundance of drug resistance genes. Taken together, we
reported here that more ARGs encoded CRC-associated species
than unassociated species, and E. coli was a critical antibiotic
reservoir in the gut.

Predictive Effectiveness of Species and
Antibiotic Resistance Genes
To demonstrate the plausible clinical prediction of ARGs and
species, we next built a series of random-forest prediction models
using all the species, rSGB-sourced ARGs, and these features
enriched in two groups. First, we tested the classification effect
of the abundance of species and ARGs. The results showed that
the classification performance of species features (area under the

Frontiers in Microbiology | www.frontiersin.org 9 December 2021 | Volume 12 | Article 765291

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-765291 December 15, 2021 Time: 10:3 # 10

Liu et al. ARGs in CRC Patients Gut

FIGURE 7 | Abundance difference of ARGs in rSGBs that associated with CRC or not. (A) The rSGB count and percentage in the CRC-associated and
unassociated clusters; the blue or yellow colors represented the proportion of rSGBs with or without ARGs. (B) ARG counts in the CRC-associated and
unassociated clusters. (C) PCoA plot depicting Bray–Curtis distances of ARG abundances in the CRC-associated (green color) and unassociated (dark yellow color)
clusters. (D) Total ARG abundance in the CRC-associated (green color) and unassociated (dark yellow color) clusters (***p < 0.001). (E) Relative abundance of
ARGs in every CRC-associated rSGBs in the CRC groups.

curve [AUC] = 0.802) outperformed that of the ARG features
(AUC = 0.663) (Supplementary Figures 9A,B).

To improve the precision, we rebuilt two models using 118
selected species (32 carried ARGs) features and 19 selected
ARG features, using the random forest method (Supplementary
Table 10 and Supplementary Figures 9C,D). From Figure 8,
it could be observed that the species model was more effective
(AUC = 0.831) than the ARGs model (AUC = 0.715), when

classifying the CRC and CTR groups. Our species-based
classification model performed better than the previous report,
where the AUC ≥ 0.8 (Wirbel et al., 2019). The model accuracy
based on ARG features in our study was approximate to that of
a previously reported species model, although the accuracy of
our model was unsatisfying (Thomas et al., 2019). In summary,
species and ARGs in microbiota could predict CRC patients with
modest precision.
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FIGURE 8 | AUC of classification model by selected rSGBs and ARGs
features. The random forest model was built based on species (green color)
and ARGs (dark yellow). CI, confidential interval.

DISCUSSION

Antibiotic resistance is one of the most critical public health
threats to human beings in recent years (Hernando-Amado
et al., 2019). Although evidence has shown that antibiotic use
may increase the risk of CRC, whether antibiotic resistance is
also related is far from clear (Dik et al., 2016; Zhang et al.,
2019; Armstrong et al., 2020; Wan et al., 2020). Here, we
discovered 696 rSGBs, 24,692 plasmids, and 187 ARGs in the gut
microbiota, where 25 species were enriched in the CRC group,
and 13 species carried ARGs, such as E. coli, A. onderdonkii,
B. fragilis, A. muciniphila, and M. torques. The abundance of
ARGs was enriched in the CRC group, and E. coli was the
essential ARG carrier.

To analyze the ARGs on the species level, we reconstructed
the genomes via single-sample assembly from the metagenomes
as reported in the literature (Pasolli et al., 2019; Zhu et al.,
2019). However, plasmids also harbor many ARGs. It is reported
that while the bacterial genome is assembled, its plasmids often
remain unidentified because it is not clear which contigs in the
genome assembly have arisen from plasmids (Antipov et al., 2016,
2019). We used metaplasmidSPAdes, which could identify novel
plasmids and assemble plasmids from metagenomic data sets in
order to annotate as many ARGs as possible.

With the species-level genomes reconstructed, representative
genomes had a high genome quality of more than 90%
completeness and less than 5% contamination. As a result,
we found 25 species enriched in the CRC group, such as
E. coli, P. distasonis, A. muciniphila, B. thetaiotaomicron, etc.
These species had been reported to induce CRC by producing
inflammatory polysaccharides, cell cycle inhibiting factors, and

cytolethal distending toxins (Wassenaar, 2018; Sahankumari
et al., 2019). For species enriched in the CTR group, mounting
evidence showed the potential benefits of F. prausnitzii for
improving intestinal healthy via producing butyrate (Ferreira-
Halder et al., 2017; Kim et al., 2020). B. catenulatum, as
a significant commensal bacterium of F. prausnitzii, could
improve its growth, gut colonization, and butyrate production
by producing short-chain fatty acids (Kim et al., 2020).
Moreover, Lachnospira eligens (formerly Eubacterium eligens)
could effectively suppress intestinal inflammation and prevent
colitis and CRC (Feng et al., 2016). Although more than 90%
of species we found had been reported or cultured before, we
had also discovered unknown species enriched in the CRC group,
such as UBA5446 sp900544295 and Anaerotignum sp000436415,
with both of the species carrying ARGs. It indicated that
reconstructing genomes was useful to find out more species
carrying ARGs and increased the probability of illustrating the
ARG distribution in gut microbiota.

In these species of rSGBs, we detected 164 ARGs, which was
slightly higher than another large cohort study on antibiotics (149
ARG types) (Hu et al., 2013). In our results, 30.49% of ARGs were
enriched in the CRC group significantly. These CRC-associated
species had a high antibiotic resistance abundance. The adeF gene
was the largest abundant ARG in the CRC group. In another
cohort of a healthy population, the highest abundance of ARG
was TcR (Hu et al., 2013). The ARG abundance difference in
different populations may be due to the disease-specific variations
in antibiotic resistance under different antibiotic exposures
(Shamsaddini et al., 2021).

Antibiotic resistance could be acquired via gut microbiota
through the use of broad-spectrum antibiotics, including
cephalosporins, fluoroquinolones, penams, and rifaximin, to
name a few. We noticed that the nucleoside antibiotic
type had the highest abundance of antibiotics, followed by
the cephalosporins, macrolides, and phenicol antibiotic types.
Although a previous meta-analysis reported no significant
associations between CRC and some antibiotics, for example,
quinolones, tetracyclines, and macrolide antibiotics (Wan et al.,
2020), a significantly higher abundance of these antibiotic
resistance drugs was detected in the CRC group. In this
study, penams were significantly higher in the CRC group,
which may be caused by higher penicillin usage in CRC
patients (Wan et al., 2020). Another interesting finding was
that we found no evident difference in resistance to rifaximin
between the CRC and CTR groups. Rifaximin, a rifamycin
antibiotic, was popularly used in travelers’ diarrhea and irritable
bowel syndrome. It had been reported to neither affect ARGs
nor increase the ARG burden because the use of rifaximin
would rarely bring about the development of drug resistance
compared with other antibiotics (Shamsaddini et al., 2021).
The high ARG burden in CRC patients suggested that it is
recommended to consider possible antibiotic resistance when
selecting appropriate antibiotic treatments, such as short-
term alternating antibiotics and microbiome-based interventions
(Dubinsky et al., 2020).

We found that ARGs were resistant to antibiotics in Reserve
Class. Reserve Class antibiotics were treated as the “last resort”
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options and usually used for highly selected patients (life-
threatening infections due to multidrug-resistant bacteria). They
were closely monitored and prioritized as targets of stewardship
programs to ensure their continued effectiveness (World Health
Organization, 2019). However, drug-resistance species in the
CRC group were resistant to the “last resort” antibiotics, such as
penems, glycylcyclines, and streptogramins. Increasing resistance
of intestinal bacteria to “last resort” antibiotics reduces the
number of antibiotics that can be used to control intestinal
infections. Therefore, even the use of reserve group antibiotics
still calls for caution.

Our study was limited to illustrating the association between
CRC and antibiotic use for lacking information on antibiotic
administration in these studies. A more directed study was
needed to establish their association in the future. As our
metagenomic data were collected from eight cohorts, the
abundance of rSGBs and ARGs was affected by the host
properties. Two cohorts were selected to analyze the abundance
variation of rSGBs and ARGs, and consistent results were
obtained. In our study, E. coli carried many MRGs and was
significantly enriched in the CRC group. Although phylotype D
E. coli (E. coli D) was one of these species with cyclomodulin-
encoding genes and could produce cytotoxic necrotizing factors,
phylotype B2 E. coli was the main strain associated with CRC
(Wassenaar, 2018). Therefore, whether the phylotype D E. coli is
associated with CRC warrants further investigation.

CONCLUSION

We analyzed the species and ARGs distribution in the gut
microbiota of CRC and CTR groups and found that the CRC
group’s gut microbiota had higher ARGs and MRG abundance
than that of the CTR group. And bacteria with ARGs were
enriched in the CRC group, such as E. coli, P. distasonis,
B. thetaiotaomicron, and B. fragilis. Meanwhile, CRC-associated
species carried abundant ARGs. E. coli was the primary antibiotic
resistance reservoir of species in the CRC patients. Using
species and ARGs could classify CRC patients from healthy
controls. It showed that the gut microbiota in CRC patients
could confer resistance to fluoroquinolones, cephalosporins,
penams, and tetracyclines. Our investigation proposes antibiotic
resistance guidance to CRC patients, and this may help develop
antibiotic use strategies to reduce the detrimental effects of
antibiotic resistance.

MATERIALS AND METHODS

Datasets and Samples Details
We downloaded a total of 769 metagenomic paired-end data,
including 382 CRC patients (CRC group, aged 64 ± 11 years)
and 387 healthy controls (CTR group, aged 61 ± 10 years)
(Table 1). Data were selected from eight published studies
with the NCBI SRA database accession codes PRJEB10878 (Yu
et al., 2017), PRJNA389927 (Hannigan et al., 2018), PRJEB12449
(Vogtmann et al., 2016), PRJEB27928 (Wirbel et al., 2019),

PRJEB6070 (Zeller et al., 2014), PRJNA447983 (Thomas et al.,
2019), PRJEB7774 (Feng et al., 2015), and PRJDB4176 (Yachida
et al., 2019). Participants who had a history of cancers, used
antibiotics in the past period, or with gastrointestinal disease,
including inflammatory bowel disease and intestinal infection,
were excluded from the CTR groups (Zeller et al., 2014; Feng
et al., 2015; Vogtmann et al., 2016; Yu et al., 2017; Hannigan et al.,
2018; Thomas et al., 2019; Wirbel et al., 2019; Yachida et al., 2019).
Basic information of participants, including gender, age, body
mass index (BMI), vegetarian or not, smoking or not, health stat
(health or CRC), and the American Joint Committee on Cancer
Staging (AJCC Staging) information for CRC participation, was
also collected (Supplementary Table 1).

Metagenomes de novo Assembly,
Binning, and Quality Evaluation
All the 769 paired-end fastq data went through quality control
by fastp (Chen et al., 2018); the host sequence (human
reference genome version: hg38) in the data was removed
using soap2 (Li et al., 2009). Next, data were applied de novo
assembled using metaSPAdes genome assembler (Nurk et al.,
2017). Metagenomic binning was performed by MetaBAT2,
which generated 36,461 bins in total. Completeness and
contamination rates of bins were calculated by checkm qa
workflow (Parks et al., 2015). We filtered bins into high-quality
bins (completeness > 90%, contamination < 5%), medium-
quality bins (completeness > 50%, contamination < 5%), and
low-quality bins (the residual bins). To obtain more high-
quality MAGs, we rebinned contigs using the same parameters
mentioned previously for these contigs tagged “bin.unbinned” in
the MetaBAT2 results and low-quality bins.

Species-Level Genome Bin Cluster and
Representation Selection
The completeness and contamination rates and the quality
filtering of new bins were assessed again to remove low-
completeness and high-contamination bins. Finally, we obtained
5,880 high-quality MAGs and 5,390 medium-quality MAGs.
The 5,880 high-quality MAGs were clustered into species-level
genome bins (SGBs) by a two-step clustering strategy based on
genetic distance calculation by Metapi (Zhu et al., 2019). Then,
representative genomes were selected for each cluster by SGB
properties, including completeness, contamination, genome size,
and strain heterogeneity index. The sequence with the maximal
rank value was selected as representative genomes (rSGBs). The
maximal rank value was computed according to a formula:
Rv = Cp − Ct + log(Gs) − Th, where Rv means rank value, Cp
and Ct represent completeness value and contamination value,
and Gs and Th represent genome size and train heterogeneity.

Taxonomy and Relative Abundance of
Species
Taxonomy annotation for all the rSGBs was performed by GTDB-
Tk (Chaumeil et al., 2019) based on the genome taxonomy
database (GTDB, Release 95) (Parks et al., 2020). The high-
quality reads were aligned to the rSGBs by bwa (default
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parameters) (Li, 2013). Sequence-based contigs abundance
profiling was performed by jgi_summarize_bam_contig_depths
(default parameters) (Kang et al., 2019). Reads were mapped
to the rSGBs, and the number of reads counted formed a
mapping depth. Considering the different sequencing depths
of different samples, we used the mapping depth matrix of
normalization to estimate the abundances of contigs. For the
rSGB profile, we used the species assignment of each contig
from the rSGBs and took the median of the relative abundance
of contigs from the same rSGBs to generate the abundance of
certain rSGBs (Supplementary Table 11). Then the α diversity
(Shannon–Wiener index) of relative abundance of species was
computed by the vegan (Oksanen et al., 2018). Next, β diversity
was computed by PCoA and NMDS based on ape packages
(Paradis and Schliep, 2018).

Plasmid Assembly and Acquisition of
Non-redundant Gene Catalog in the
Plasmids
To avoid the possible ARG omission in the progress of MAGs
assembly, we assembled the whole plasmid sequence in the gut
microbiota from the host genome and removed high-quality
reads using the metaplasmidSPAdes assembler (Antipov et al.,
2019). Then, we called the genes in the contigs by MetaGeneMark
(Zhu et al., 2010) and processed the gene cluster to the genes
by cd-hit (Li and Godzik, 2006) to get the non-redundant gene
catalog of the plasmids. After that, we computed the relative
abundance of non-redundant genes in all samples. The genes
were annotated to the NCBI-NT database (20191213) to get the
species source of plasmids.

Antibiotic Resistance Gene Identity,
Resistance Mechanism, and Drug Type
Analysis
To annotate ARGs in rSGBs, we predicted the open reading
frame by Prodigal (Hyatt et al., 2010) and then identified
ARGs using Resistance Gene Identifier based on CARD (version
3.0.7) for both rSGBs and plasmid genes (Alcock et al., 2020).
Then, antibiotic resistance ontology (ARG types) was matched
to the species by contigs id. Based on the best hit antibiotic
resistance ontology results, relative abundances of ARGs, drug
types, and resistance mechanism types were obtained. In our
research, the ARGs were used to represent ARGs types. We also
matched resistance antibiotics of rSGBs to AWaRe classification
according to the WHO AWaRe classification of antibiotics (2019
version) (Supplementary Table 9). We computed the α diversity
(Shannon–Wiener index) of ARG relative abundance in the
rSGBs by the vegan (Oksanen et al., 2018). Then, PCoA and
NMDS were performed to compute β diversity by ape packages
(Paradis and Schliep, 2018). Meanwhile, PERMANOVA was used
to test the statistical significance of β diversity by the vegan
package (Oksanen et al., 2018).

Machine Learning Train Model
To assess the classification effect of species and rSGB-
sourced ARGs, we built and trained a series of machine

learning models using selected elements from relative
abundance profiles of species and ARGs. Data splitting,
preprocessing, feature selection, model training, model tuning,
and variable importance estimation were finished using the
caret package (Kuhn, 2020). Before model training, near-zero
variance and high correlation (absolute value of correlations
coefficient > 0.75), variables were removed. And then, data
were centered and scaled. Next, the 10-fold cross-validation
approach was used to select features, and random forest
methods were applied to train models. Finally, we assessed
the effect of models by the area under the receiver operating
characteristic curve (AUC) value using the ROCR package
(Sing et al., 2005).

Statistical Analysis
During the analysis, we carried out Wilcoxon test and LefSe
analysis for the relative abundance of all species (Segata et al.,
2011), with cutoff p < 0.05 and absolute values of the LDA
score > 2.0 (Supplementary Table 6). Then, we analyzed the
ARG profile by calculating Wilcoxon test with a cutoff of
adjusted p < 0.05. Finally, 50 ARGs were filtered from rSGBs.
To access the effect of ARGs in the CRC-associated species,
we marked the selected 60 species above as “CRC-associated”
cluster and other species with ARGs as “unassociated” cluster.
And then, we compared the sum of ARG abundance in these
two clusters, and then a PCoA analysis was performed on the
classes. During the analysis and figure visualization, ggplot2
(Wickham, 2016), ggtree (Yu, 2020), ggpubr (Kassambara,
2020), and networkD3 (Allaire et al., 2017) packages were
used in our study.
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