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Abstract

Allostery is a fundamental biophysical mechanism that underlies
cellular sensing, signaling, and metabolism. Yet a quantitative
understanding of allosteric genotype-phenotype relationships
remains elusive. Here, we report the large-scale measurement of
the genotype-phenotype landscape for an allosteric protein: the
lac repressor from Escherichia coli, LacI. Using a method that
combines long-read and short-read DNA sequencing, we quantita-
tively measure the dose-response curves for nearly 105 variants of
the LacI genetic sensor. The resulting data provide a quantitative
map of the effect of amino acid substitutions on LacI allostery and
reveal systematic sequence-structure-function relationships. We
find that in many cases, allosteric phenotypes can be quantita-
tively predicted with additive or neural-network models, but
unpredictable changes also occur. For example, we were surprised
to discover a new band-stop phenotype that challenges conven-
tional models of allostery and that emerges from combinations of
nearly silent amino acid substitutions.
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Introduction

Allostery is an inherent property of biomolecules that underlies

cellular regulatory processes including sensing, signaling, and meta-

bolism (Fenton, 2008; Motlagh et al, 2014; Razo-Mejia et al, 2018).

With allosteric regulation, ligand binding at one site on a biomole-

cule changes the activity of another, often distal, site. Switching

between active and inactive states provides a sense-and-response

function that defines the allosteric phenotype. Quantitative descrip-

tions relating that phenotype to its causal genotype would improve

our understanding of cellular function and evolution, and advance

protein design and engineering (Raman et al, 2014; He & Liu, 2016;

Huang et al, 2016). However, the intramolecular interactions that

mediate allosteric regulation are complex and distributed widely

across the biomolecular structure, making the development of

general quantitative descriptions challenging.

Recently described genotype-phenotype landscape approaches

have enabled the phenotypic characterization of 104–105 geno-

types simultaneously (Li et al, 2016; Puchta et al, 2016; Sarkisyan

et al, 2016; Domingo et al, 2018; Li & Zhang, 2018; Pressman

et al, 2019). Measurements at this scale facilitate the exploration

of genotypes with widely distributed mutations, making them

ideal for probing complex biological mechanisms like allostery.

However, to quantitatively characterize the sense-and-response

phenotypes inherent to allostery, a measurement must encompass

the full dose-response curve that describes biomolecular activity

as a function of ligand concentration.

Genetic sensors have served as a model of allosteric regulation

for decades, and today are central to engineering biology. Genetic

sensors are allosteric proteins that regulate gene expression in

response to stimuli, giving cells the ability to regulate their metabo-

lism and respond to environmental changes. Like other allosteric

biomolecules, the lac repressor, LacI, switches between an active

state and an inactive state. In the active state, LacI binds to a DNA

operator upstream of regulated genes, preventing transcription.

Ligand binding to LacI stabilizes the inactive (non-operator-binding)

state that allows transcription to proceed. This switching results in

the allosteric phenotype that is quantitatively defined by a dose-

response curve relating the concentration of input ligand (L) to the

output response (the expression level of regulated genes, G). Genetic

sensors typically have sigmoidal dose-response curves following the

Hill equation:

G Lð Þ¼G0þ G∞�G0

1þ EC50

L

� �n
where G0 is basal gene expression in the absence of ligand, G∞ is

gene expression at saturating ligand concentrations, EC50 is the

effective concentration of ligand that results in gene expression
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midway between G0 and G∞, and the Hill coefficient, n, quantifies

the steepness of the dose-response curve (Fig 1E).

As a framework to relate changes in the dose-response curve to

the underlying biophysics of the LacI protein, we use recently

described biophysical models that extend the general Monod-

Wyman-Changeux (MWC) model of allostery (Monod et al, 1965) to

the case of allosteric transcription factors (Daber et al, 2011; Razo-

Mejia et al, 2018; Chure et al, 2019). Within those models, the

dose-response curve depends on several biophysical parameters,

including ligand-binding affinity, operator-binding affinity, and the

allosteric constant, which is the equilibrium ratio between the inac-

tive and active states in the absence of ligand and DNA operator

(Monod et al, 1965; Daber et al, 2011; Razo-Mejia et al, 2018; Chure

et al, 2019). The amino acid sequence (and corresponding structure)

sets these biophysical parameters, and thus, amino acid substitu-

tions can change these parameters (Daber et al, 2011; Chure et al,

2019). However, in the absence of data, the effect of any particular

substitution on the biophysical parameters is unpredictable. Further-

more, substitutions distal to the active sites of a biomolecule can

strongly affect allosteric function (Taylor et al, 2016; Leander et al,

2020). Consequently, to develop a more predictive understanding of

allostery will require large-scale, quantitative measurements of

changes to an allosteric dose-response curve resulting from wide-

spread substitutions.

Results

Measuring the genotype-phenotype landscape

To measure the genotype-phenotype landscape for the allosteric

LacI sensor, we first created a library of LacI variants using error-

prone PCR and attached a DNA barcode to the coding DNA

sequence (CDS) of each variant (Fig 1A). We used error-prone PCR

across the full lacI CDS to investigate the effects of higher-order

substitutions spread across the entire LacI sequence and structure.

We then inserted the barcoded library into a plasmid where LacI

regulates the expression of a tetracycline resistance gene

(Appendix Fig S1A). Consequently, in the presence of tetracycline,

the LacI dose-response modulates cellular fitness (i.e., growth rate)

based on the concentration of the input ligand isopropyl-β-D-thio-
galactoside (IPTG). We then transformed the library into Escherichia

coli for the landscape measurement (Fig 1B). To ensure that most

variants in the library could regulate gene expression, we used fluo-

rescence-activated cell sorting (FACS) to enrich the library for vari-

ants with low G0 (Appendix Fig S2). Then, using high-accuracy,

long-read sequencing (Wenger et al, 2019), we determined the

genotype for every variant in the library and indexed each variant

to its attached DNA barcode (Fig 1A).

The library contained 62,472 different LacI genotypes, with an

average of 7.0 single nucleotide polymorphisms (SNPs) per geno-

type. Many SNPs were synonymous, i.e., coded for the same amino

acid, so the library encoded 60,398 different amino acid sequences

with an average of 4.4 amino acid substitutions per variant

(Appendix Fig S3B, the number of variants in the library at each

mutational distance from the wild type are listed Appendix Table S1,

and the number of observations of each amino acid substitution in

the library is shown in Appendix Fig S4).

To quantitatively determine the allosteric phenotype for every

LacI variant in the library, we developed a new method to character-

ize the dose-response curves for large genetic sensor libraries.

Briefly, we grew E. coli containing the library in 24 chemical
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Figure 1. Library-scale allosteric genotype-phenotype landscape
measurement.

A A library of lac repressor (LacI) variants was generated by random
mutagenesis of the lacI coding DNA sequence (CDS). The CDS for each
variant was attached to a DNA barcode and inserted into a plasmid where
the LacI variant regulated expression of a tetracycline resistance gene. The
CDS and corresponding barcode on each plasmid were determined with
long-read sequencing.

B The library was transformed into Escherichia coli.
C Cells containing the library were grown in 24 chemical environments,

including 12 concentrations of the ligand IPTG, each with (orange) and
without (blue) tetracycline. Cultures were maintained in exponential
growth. Changes in the relative abundance of each variant were measured
with short-read sequencing of DNA barcodes at four timepoints and were
used to determine the fitness associated with each variant in each
environment.

D The fitness without tetracycline (blue) is independent of IPTG
concentration. The fitness with tetracycline (orange) depends on the IPTG
concentration via the dose-response of each variant. Error bars
indicate � one standard deviation estimated from least-squares fits of the
barcode abundance vs time (Materials and Methods) and are often within
markers. Data are from a single library-scale measurement.

E Dose-response curves for 62,472 LacI variants were determined from the
fitness measurements with Bayesian inference using a Hill equation model
(black lines for variants with normal and inverted dose-response curves)
and a Gaussian process (GP) model (purple lines, shaded regions indicate
50% and 90% credible intervals). Flow cytometry verification
measurements (purple points) generally agreed with Bayesian inference
results and verified the existence of the band-stop and other phenotypes.
dose-response output was calibrated from fitness to fluorescent protein
expression (Appendix Fig S10) and reported in molecules of equivalent
fluorophore (MEF). Purple points represent the geometric mean of the YFP
fluorescence minus the geometric mean of a zero-fluorescence control (92
MEF), as determined from a single flow cytometry measurement at each
IPTG concentration.
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environments (12 ligand concentrations, each with and without

tetracycline). We used short-read sequencing of the DNA barcodes

to measure the relative abundance of each variant at four timepoints

during growth (Fig 1C). We then used the changes in relative abun-

dance to determine the fitness associated with each variant in each

environment (Fig 1D). Finally, for each variant in the library, we

used the fitness difference (with vs without tetracycline) from all 12

ligand concentrations to quantitatively determine the dose-response

curve using Bayesian inference (Fig 1E). Most variants had

sigmoidal dose-response curves (e.g., Appendix Figs S5 and S6),

which we analyzed using a Hill equation-based inference model to

quantitatively determine the Hill equation parameters and their

associated uncertainties. Some variants had non-sigmoidal dose-

response curves (e.g., Appendix Figs S7 and S8, and discussion

below), so we also analyzed all of the variants using a non-paramet-

ric Gaussian process (GP) inference model.

We compared the distributions of the resulting Hill equation pa-

rameters between two sets of variants: 39 variants with exactly

the wild-type CDS for LacI (but with different DNA barcodes) and

310 variants with synonymous nucleotide changes (i.e., the wild-

type amino acid sequence, but a non-wild-type DNA coding

sequence). Using the Kolmogorov-Smirnov test, we found no

significant differences between the two sets (P-values of 0.71,

0.40, 0.28, and 0.17 for G0, G∞, EC50, and n, respectively,

Appendix Fig S9). So, for all subsequent analyses we considered

only amino acid substitutions.

To evaluate the accuracy of the new method for library-scale

dose-response curve measurements, we independently verified the

results for over 100 LacI variants from the library. For each verifi-

cation measurement, we chemically synthesized the CDS for a

single variant and inserted it into a plasmid where LacI regulates

the expression of a fluorescent protein (Appendix Fig S1B). We

transformed the plasmid into E. coli and measured the resulting

dose-response curve with flow cytometry (e.g., Fig 1E). We

compared the Hill equation parameters from the library-scale

measurement with those same parameters determined from flow

cytometry measurements for each of the chemically synthesized

LacI variants (Fig 2A–D). This served as a check of the new

library-scale method’s overall ability to measure dose-response

curves with quantitative accuracy. The accuracy for each Hill equa-

tion parameter in the library-scale measurement was 4-fold for G0,

1.5-fold for G∞, 1.8-fold for EC50, and � 0.28 for n. For G0, G∞, and

EC50, we calculated the accuracy as: exp RMSE ln xð Þð Þ½ �, where

RMSE ln xð Þð Þ is the root-mean-square difference between the loga-

rithm of each parameter from the library-scale and cytometry

measurements. For n, we calculated the accuracy simply as the

root-mean-square difference between the library-scale and cytome-

try results. The accuracy for the gene expression levels (G0 and

G∞) was better at higher gene expression levels (typical for G∞)

than at low gene expression levels (typical for G0), which is

expected based on the non-linearity of the fitness impact of tetracy-

cline (Appendix Figs S10 and S11). Measurements of the Hill coeffi-

cient, n, had high relative uncertainties for both barcode

sequencing and flow cytometry, so the parameter n was not used

in any quantitative analysis. Overall, the flow cytometry results

demonstrated that our experimental method measures dose-

response curves with both high qualitative and quantitative accu-

racy (Fig 2A–D, Appendix Figs S5–S8).

Effects of amino acid substitutions on LacI phenotype

During library construction, we chose the mutation rate to simulta-

neously achieve two objectives: exploration of a broad genotype-

phenotype space, and acquisition of the single amino acid

substitution data most useful for building quantitative biophysical

models of allosteric function (Monod et al, 1965; Razo-Mejia et al,

2018; Chure et al, 2019). Starting from the wild-type DNA sequence

for LacI, there were 2,110 possible SNP-accessible amino acid

substitutions. Most of those substitutions were present in one or

more variants within the library; however, nearly half were found

only in combination with other substitutions. So, to comprehen-

sively determine the impact of single amino acid substitutions, we

constructed a deep neural network model (DNN) capable of accu-

rately predicting the Hill equation parameters for LacI variants that

were not directly measured. We tested two different neural network

architectures: a recurrent DNN and a more conventional feed-

forward DNN, as well as a linear-additive model. Of the three

models, the recurrent DNN model provides the best predictive

performance for each of the Hill equation parameters, though for

EC50, the recurrent DNN and linear-additive models have similar

performance (Appendix Fig S12). So, for subsequent analysis, we

used the recurrent DNN model, which captures the context depen-

dence of amino acid substitution effects (Appendix Fig S12). In addi-

tion, to estimate uncertainties for the model predictions, we used

approximate Bayesian inference methods as described in the Materi-

als and Methods (Hochreiter & Schmidhuber, 1997).

We trained the DNN model to predict the Hill equation parame-

ters G0, G∞, and EC50 (Appendix Fig S13), the three Hill equation pa-

rameters that were determined with relatively low uncertainty by

the library-scale measurement. To evaluate the accuracy of the

model predictions, we used the root-mean-square error (RMSE) for

the model predictions compared with the measurement results. We

calculated RMSE using only held-out data not used in the model

training, and the split between held-out data and training data was

chosen so that all variants with a specific amino acid sequence

appear in only one of the two sets. For all three parameters, the

RMSE for the model predictions increases with the number of amino

acid substitutions relative to the wild type (Appendix Fig S14).

Importantly, for single-substitution variants, the model RMSE is

comparable to the experimental measurement uncertainty

(Appendix Fig S15). So, we could confidently integrate the experi-

mental and DNN results to provide a nearly complete map of the

effects of SNP-accessible amino acid substitutions. Furthermore, by

integrating information about the causal substitutions from multiple

genetic backgrounds, the model provided improved estimates of

EC50 and G∞ for variants with EC50 near or above the maximum

ligand concentration measured (Appendix Fig S16).

The resulting map of single-substitution effects includes quantita-

tive point estimates and uncertainties of the Hill equation parameters

for 94% of the possible SNP-accessible amino acid substitutions

(1,991 of 2,110; 964 directly from measured data, and 1,027 from

DNN predictions; Appendix Figs S17–S19, Dataset EV1). Most of the

119 substitutions missing from the dataset were probably excluded

by FACS during library preparation because they cause a substantial

increase in G0. These include 83 substitutions that have been shown

to result in constitutively high G(L) (Markiewicz et al, 1994; Pace

et al, 1997). Of the 1,991 substitutions included in the dataset, 38%
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Figure 2. Accuracy of the library-scale dose-response curve measurement.

A–D The plots compare the results from the library-scale measurement (y-axis) with the flow cytometry verification results (x-axis) for each Hill equation parameter.
Data are shown for all of the verified LacI variants with sigmoidal dose-response curves (i.e., band-stop and band-pass variants are not included). Data for different
variants are plotted with different combinations of color and shape. Variants that occurred more than once in the library (with different DNA barcodes) are plotted
multiple times. For example, the wild type (dark gray “X” symbols) is plotted 53 times. The accuracy for each Hill equation parameter is 4-fold for G0 (A), 1.5-fold for
G∞ (B), 1.8-fold for EC50 (C), and � 0.28 for n (D). For G0, G∞, and EC50 (A–C), the accuracy is calculated as: exp RMSE ln xð Þð Þð Þ, where RMSE ln xð Þð Þ is the root-mean-
square difference between the logarithm of each parameter from the library-scale and cytometry measurements. For n, the accuracy is given simply as the root-
mean-square difference between the library-scale and cytometry results. The inverse-variance-weighted coefficient of determination (R2) for each Hill
equation parameter is: 0.83 for G0 (A), 0.55 for G∞ (B), 0.86 for EC50 (C), and −0.04 for n (D). The variance of the posterior distribution from the Bayesian inference
was used for weighting. In addition, the contribution from the wild-type observations were weighted by a factor of 1/53 to avoid bias from multiple observations.
In all plots, points indicate the median and error bars indicate � one standard deviation from the Bayesian posterior. Data are from a single library-scale
measurement, and a single flow cytometry measurement for each LacI variant at each IPTG concentration.

Source data are available online for this figure.
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measurably affect the dose-response curve (beyond a 95% confi-

dence bound).

The LacI protein has 360 amino acids arranged into three struc-

tural domains (Lewis et al, 1996; Flynn et al, 2003; Swint-Kruse

et al, 2003). The first 62 N-terminal amino acids form the DNA-bind-

ing domain, comprising a helix–turn–helix DNA-binding motif and a

hinge that connects the DNA-binding motif and the core domain.

The core domain, comprising amino acid positions 63–324, is

divided into two structural subdomains: the N-terminal core and the

C-terminal core. The full core domain forms the ligand-binding

pocket, core-pivot region, and dimer interface. The tetramerization

domain comprises the final 30 amino acids and includes a flexible

linker and an 18 amino acid α-helix (Fig 3, Appendix Table S2).

Naturally, LacI functions as a dimer of dimers: Two LacI monomers

form a symmetric dimer that further assembles into a tetramer (a

dimer of dimers).

The effect of any amino acid substitution depends strongly on its

location within the protein structure, indicating systematic

sequence-structure-function relationships underlying LacI allostery

(Fig 3). For example, substitutions that increase the basal expres-

sion, G0, by more than 5-fold that were not excluded by FACS are

located either in helix 4 of the DNA-binding domain, along the

dimer interface, in the tetramerization helix, or at the protein start

codon (Fig 3A and D). G0 quantifies gene expression in the absence

of ligand. So, within the biophysical models, substitutions that affect

G0 must alter either the operator-binding affinity, the allosteric

constant, or the copy number of LacI proteins per cell (Daber et al,

2011; Razo-Mejia et al, 2018; Chure et al, 2019). Substitutions at the

first and second codons (M1I, M1T, and, K2E) probably reduce

the LacI copy number (Bivona et al, 2010; Hecht et al, 2017). But

the other substitutions that affect G0 (R51C, Q54K, L56M, T68N,

S70C, L71Q, A92S, F226V, S322P, and Q352L) almost certainly

change the operator-binding affinity, the allosteric constant, or both.

Interestingly, substitutions in helix 4 (R51C, Q54K, and L56M)

that increase G0 also decrease EC50 approximately 10-fold, consistent

with a change in the allosteric constant favoring the inactive state

(Chure et al, 2019) (Appendix Fig S20A). Helix 4 forms part of the

hinge connecting the DNA-binding motif to the core domain. It

changes from a disordered coil to an order helix only upon binding

of LacI to its cognate DNA operator, and interactions between the

helix 4 residues of each LacI monomer have been shown to stabilize

helix formation (Spronk et al, 1996) and therefore the active state of

LacI. So, although helix 4 is more closely associated with the DNA-

binding domain of LacI, the observed substitutions in helix 4 proba-

bly disrupt those interactions, changing the allosteric constant in a

way that favors the inactive (non-operator-binding) state.

A

D E F

B C

Figure 3. Effect of single amino acid substitutions on allosteric function of LacI.

A–C Protein structures showing the locations of amino acid substitutions that affect each Hill equation parameter: G0 (A), G∞ (B), EC50 (C). For each, the operator-
binding structure is shown on the left (operator DNA in light orange, PDB ID: 1LBG (Lewis et al, 1996)) and the ligand-binding structure is shown on the right (IPTG
in cyan, PDB ID: 1LBH (Lewis et al, 1996)). Both structures are shown with the view oriented along the protein dimer interface, with one monomer in light gray and
the other monomer in dark gray. Colored spheres highlight residues where substitutions cause a greater than 5-fold change in the Hill equation parameter relative
to wild-type LacI. Red spheres indicate residues where substitutions increase the parameter, and blue spheres indicate residues where substitutions decrease the
parameter. At three residues (A82, I83, and F161), some substitutions decrease EC50, while other substitutions increase EC50 (violet spheres in C).

D–F Scatter plots showing the effect of each substitutions as a function of position. Substitutions that change the parameter by less than 5-fold are shown as gray
points. Substitutions that change the parameter by more than 5-fold are shown as red or blue points with error bars. Histograms to the right of each scatter plot
show the overall distribution of single-substitution effects.

Data information: In (A) and (D), gray-pink spheres and points indicate positions for substitutions that are completely missing from the library-scale dataset reported
here and that have been shown by previous work to result in constitutively high G(L) (Markiewicz et al, 1994; Pace et al, 1997). In (D–F), points show the best consensus
estimate for the parameter values as described in the Materials and Methods. G0 and G∞ are reported in molecules of equivalent fluorophore (MEF) based on the
calibration with flow cytometry measurements (Materials and Methods). Error bars indicate � one standard deviation estimated from the Bayesian posteriors. Data are
from a single library-scale measurement.

Source data are available online for this figure.
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The remaining substitutions that increase G0 (T68N, S70C, L71Q,

A92S, F226V, S322P, and Q352L) are far from the DNA-binding

domain. So, they most likely affect the allosteric constant. Substitu-

tions T68N, S70C, and L71Q, which are near the dimer interface,

also decrease EC50 between 4-fold and 30-fold (Appendix Fig S20A),

similar to the substitutions in helix 4. Targeted molecular dynamic

simulations have suggested that interactions between the L71 back-

bone and Q780 (on the opposite monomer) stabilize the active state

(Flynn et al, 2003). Substitutions at position L71 might disrupt these

interactions, shifting the allosteric constant to favor the inactive

state. The substitution L71Q, which replaces the hydrophobic

leucine with a hydrophilic glutamine, causes the largest change (20-

fold increase in G0 and 14-fold decrease in EC50), likely due to

perturbation of the local hydrophobic environment at the dimer

interface. Our results for hydrophobic substitutions at this position

(L71V and L71M) support this picture, with just a 3-fold to 4-fold

reduction in EC50 (and little change to G0), consistent with a smaller

shift in the allosteric constant.

Approximately 3.5 and 5% of all amino acid substitutions

decrease ligand-saturated expression, G∞, more than 5-fold or 2.5-

fold, respectively. Substitutions that decrease G∞ by more than 5-

fold are all located near the ligand-binding pocket or along the

dimer interface (Fig 3B and E). Six of these substitutions also

increase EC50 more than 5-fold (A75T, D88N, S193L, Q248R, D275Y,

and F293Y; Appendix Fig S20B). Except for D88N, which is at the

dimer interface in helix 5, these substitutions are near the ligand-

binding pocket. Substitutions near the ligand-binding pocket proba-

bly decrease ligand-binding affinity by changing the ligand-binding

pocket environment directly. This would explain the observed

increase in EC50 for each of these substitutions, though studies with

targeted substitutions have shown that substitutions near the

ligand-binding pocket can also change the allosteric constant (Chure

et al, 2019).

Amino acid substitutions that change the effective concentration,

EC50, are the most numerous and are spread throughout the protein

structure, with approximately 9 and 20% of all substitutions causing

a greater than 5-fold or 2.5-fold shift in EC50, respectively (Fig 3C

and F; Dataset EV1). The strongest effects are from substitutions in

the DNA-binding domain, ligand-binding pocket, core-pivot region,

or dimer interface.

Substitutions that cause the largest decrease in EC50 are at the

dimer interface and probably disrupt cross-dimer interactions. In

particular, substitutions T68N (27-fold decrease) and L71Q (14-fold

decrease) each probably disrupt the L71-Q780 interaction (discussed

above). Substitutions V99E (25-fold decrease), E100G (17-fold

decrease), and V95M (16-fold decrease) are each in β-strand B and

each probably disrupts the K84-K840 interaction (discussed below).

All of these substitutions likely shift the allosteric constant to favor

the inactive state.

Substitutions that cause the largest increase in EC50 are often

near the ligand-binding pocket or core-pivot domain. Often, substi-

tutions at these positions also affect G∞ (discussed above).

However, we also identified nine positions near the ligand-binding

pocket or core-pivot domain (N125, P127, D149, V192, A194, A245,

N246, T276, Q291), where different substitutions either reduce G∞

by more than 5-fold or increase EC50 by more than 5-fold, but not

both (Dataset EV1). Given their positions, each of these substitu-

tions probably disrupt the ligand-binding pocket thereby reducing

ligand-binding affinity, though they may also change the allosteric

constant to favor the active state.

At three positions (A82, I83, and F161), different substitutions

can either increase or decrease EC50 more than 5-fold, depending on

the substitution.

Residue F161 sits in the core-pivot region and is sequestered in a

hydrophobic cluster (Swint-Kruse et al, 2001; Flynn et al, 2003),

where the phenylalanine ring makes van der Waals contacts with

Q291. In turn, Q291 is involved in hydrogen bonding networks that

span the ligand-binding pocket and dimer interface (Flynn et al,

2003). During the transition between active and inactive states, the

contacts between F161 and Q291 change, contributing to rearrange-

ments throughout the LacI structure. At position F161, large

hydrophobic amino acids (F161I, F161L) increase the EC50 approxi-

mately 10-fold, while a slightly smaller hydrophobic amino acid

(F161V) increases the EC50 approximately 3-fold. In contrast, a

small, hydrophilic amino acid (F161S) reduces EC50 approximately

10-fold. The hydrophobic substitutions likely have little effect on

the hydrophobic environment surrounding the position, but with

different geometries, these amino acids may not make the required

contacts with Q291. This could cause a shift in the allosteric

constant to favor the active state, consistent with the observed

increase in EC50 for F161I, F161L, and F161V. On the other hand,

the hydrophilic substitution at this position, F161S, likely disrupts

the local hydrophobic environment, destabilizing the active state

and shifting the allosteric constant to favor the inactive state, in

agreement with the observed decrease in EC50.

Positions A82 and I83 are in helix 5 of the N-terminal core

domain, and both are proximal to and pointed toward helix 13. The

A82E substitution, which replaces the diminutive alanine with the

larger glutamate, decreases EC50 approximately 30-fold. However, a

smaller amino acid at this position (A82G) increases the EC50
approximately 5-fold. These results suggest a steric clash between

the side chain of residue 82 and helix 13 that is disrupts the active

state and that effectively shifts the allosteric constant to favor the

inactive state. At position I83, the I83F substitution decreases EC50
approximately 5-fold while I83M increases EC50 approximately 5-

fold. Interestingly, both of these substitutions, as well as the wild-

type isoleucine, are similar in volume (Zamyatnin, 1972) and

hydropathy (Kyte & Doolittle, 1982). So, simple physiochemical dif-

ferences do not satisfactorily account for the observed effects. The

effects could perhaps be steric, as with position A82, but driven by

changes in side-chain flexibility instead of size. Phenylalanine is the

most rigid of the three side chains, followed by isoleucine, and the

even more flexible methionine (Miao & Cao, 2016). As with position

A82, our results suggest that such steric effects destabilize the active

state, effectively shifting the allosteric constant to favor the inactive

state.

We also identified five positions (H74, V80, K84, S97, M98)

where different substitutions reduce either G∞ or EC50 by more than

5-fold, but not both. These positions are all located at the dimer

interface, specifically in or near helix 5 or β-strand B.

Substitutions at position H74 either decrease EC50 approximately

8-fold (H74Q) or decrease G∞ approximately 10-fold while increas-

ing EC50 approximately 3-fold (H74P and H74Y). In the active state,

residues H74 from both monomers form stable π-stacking interac-

tions with each other. These interactions are disrupted in the inac-

tive state, and instead, H74 forms a charge-charge interaction with
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D2780 (on the opposite monomer) (Lewis et al, 1996). Substitutions

at this position that abolish the π-stacking interactions would

presumably destabilize the active state and shift the allosteric

constant toward the inactive state. This is consistent with our result

for H74Q. Our results for substitutions H74P and H74Y (decrease

G∞ and increase EC50) are consistent with either a shift in the allos-

teric constant to favor the active state or a decrease in the ligand

affinity of the inactive state. H74Y can form the same π-stacking
interactions seen in the active state of the wild type but cannot form

the charge-charge interaction with D2780 to stabilize the inactive

state. H74Y, therefore, would be expected to shift the allosteric

constant toward the active state, agreeing with our observations.

H74P cannot form either the π-stacking interactions or the charge-

charge interaction with D2780, yet that substitution still increases

EC50 similarly to H74P. Since proline is a helix initiator (Richardson

& Richardson, 1988; Kim & Kang, 1999) and H74 is positioned at the

beginning of helix 5, H74P may shift the allosteric constant to favor

the active state by stabilizing secondary structure.

Substitutions at positions K84, S97, and M98 decrease G∞

(S97P, M98R), or decrease EC50 (K84N, S97W, M98L), or both

(K84E, K84I, K84T, M98K). These residues are all involved in a

coordinated process during the transition from the active state to

the inactive state (Flynn et al, 2003). In the active state, the side

chains of the K84 residues from both monomers sit in-plane with

β-strand B and β-strand B0, interacting with the backbone of V94

and V960 (both in β-strands B). In this process, K84 residues act

as a bridge between the two β-strands. During the transition to

the inactive state, K84 forms transient interactions with the side

chain of S97 (also in β-strand B) and the backbone of M98,

before eventually forming a stable charge-charge interaction with

D88. Substitutions that disrupt this process have significant effects

on the structure and function of LacI. For example, the substitu-

tion K84L causes significant structural changes to the N-terminal

core domain and dimer interface (Bell et al, 2001), and substitu-

tions at position S97 and M98 can greatly alter the biophysical

properties of LacI (Zhan et al, 2010). Given the extent of struc-

tural and functional changes that can occur with substitutions

involved in this process, precise mechanisms of the observed

substitutions are difficult to predict, and observed changes are

not easily described by the biophysical models. For example,

within the biophysical models, to simultaneously decrease both

G∞ and EC50 (as observed for K84E, K84I, K84T, and M98K)

requires a change to the ligand-binding affinity. Yet positions K84

and M98 are approximately 14 and 12 �A, respectively, from the

ligand pocket (based on the wild-type LacI crystal structure).

None of the single amino substitutions measured in the library

simultaneously decrease G∞ and increase G0 (Appendix Fig S20C).

This is not surprising, since substitutions that shift the biophysics to

favor the active state tend to decrease G∞ while those that favor the

inactive state tend to increase G0, and the biophysical models

(Daber et al, 2011; Razo-Mejia et al, 2018; Chure et al, 2019) indi-

cate that only a combination of parameter changes can cause both

modifications to the dose-response. The library did, however,

contain several multi-substitution variants with simultaneously

decreased G∞ and increased G0. These inverted variants, and their

associated substitutions are discussed below.

Combining multiple substitutions in a single protein almost

always has a log-additive effect on EC50. That is, the proportional

effects of two individual amino acid substitutions on the EC50 can be

multiplied together. For example, if substitution A results in a 3-fold

change, and substitution B results in a 2-fold change, the double

substitution, AB, behaving log-additively, results in a 6-fold change.

Only 0.57% (12 of 2,101) of double amino acid substitutions in the

measured data have EC50 values that differ from the log-additive

effects of the single substitutions by more than 2.5-fold (Fig 4). This

result, combined with the wide distribution of residues that affect

EC50, reinforces the view that allostery is a distributed biophysical

phenomenon controlled by a free energy balance with additive

contributions from many residues and interactions, a mechanism

proposed previously (Marzen et al, 2013; Motlagh et al, 2014) and

supported by other recent studies (Leander et al, 2020), rather than

a process driven by the propagation of local, contiguous structural

rearrangements along a defined pathway.

Figure 4. The effects of amino acid substitutions on EC50 of LacI are log-
additive.

The log-additive EC50 for double-substitution LacI variants (i.e., two amino acid
substitutions) was calculated assuming log-additivity of the effect of each
single substitution on the EC50 relative to wild-type LacI: log(EC50,AB/
EC50,wt) = log(EC50,A/EC50,wt) + log(EC50,B/EC50,wt), where “wt” indicates the wild
type, “A” and “B” indicate the single-substitution variants, and “AB” indicates
the double-substitution variant. The measured EC50 of double-substitution
variants is from the library-scale measurement. Orange points mark double-
substitution variants in which one of the single substitutions causes a greater
than 2.5-fold change in EC50. Dark red points mark double-substitution variants
in which both single substitutions cause a greater than 2.5-fold change in EC50.
The EC50 of wild-type LacI is marked with a black “X”. For this analysis, only
experimental data were used (no results from the DNN model). Also, only data
from LacI variants with low EC50 uncertainty were used (SD(log10(EC50)) < 0.35).
Points show the best consensus estimate for the parameter values as described
in the Materials and Methods. Error bars for the measured result indicate
� one standard deviation estimated from the Bayesian posteriors; error bars
for the log-additive result indicate � one standard deviation propagated from
the Bayesian posterior uncertainties of the single-substitution results. Data are
from a single library-scale measurement.

Source data are available online for this figure.
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A similar analysis of log-additivity for G0 and G∞ is complicated

by the more limited range of measured values for those parameters,

the smaller number of substitutions that cause large shifts in G0 or

G∞, and the higher relative measurement uncertainty at low G(L).

However, the effects of multiple substitutions on G0 and G∞ are also

consistent with log-additivity for almost every measured double-

substitution variant (Appendix Fig S21).

Most of the non-silent substitutions discussed above are more

likely to affect the allosteric constant than either the ligand or

operator affinities. Within the biophysical models, those affinities

are specific to either the active or inactive state of LacI, i.e., they

are defined conditionally, assuming that the protein is in the

appropriate state. So, almost by definition, substitutions that affect

the ligand-binding or operator-binding affinities (as defined in the

models) must be at positions that are close to the ligand-binding

site or within the DNA-binding domain. Substitutions that modify

the ability of the LacI protein to access either the active state or

inactive state, by definition, affect the allosteric constant. This

includes, for example, substitutions that disrupt dimer formation

(dissociated monomers are in the inactive state), substitutions that

lock the dimer rigidly into either the active or inactive state, or

substitutions that more subtly affect the balance between the

active and inactive states. Thus, because there are many more

positions far from the ligand- and DNA-binding regions than close

to those regions, there are many more opportunities for substitu-

tions to affect the allosteric constant than the other biophysical

parameters. Note that this analysis assumes that substitutions do

not perturb the LacI structure too much, so that the active and

inactive states remain somewhat similar to the wild-type states.

Our results suggest that this is not always the case: consider, for

example, the substitutions at positions K84 and M98 discussed

above and the substitutions resulting in the inverted and band-stop

phenotypes discussed below.

Phenotypic innovation in an allosteric landscape

Beyond the comprehensive mapping of single-substitution effects,

the LacI genotype-phenotype landscape measurement revealed a

surprising number of variants with phenotypes that differ qualita-

tively from the wild type. For example, approximately 230 of the

LacI variants have an inverted phenotype (G0 > G∞, Fig 1E),

accounting for approximately 0.35% of the measured library

(Appendix Fig S3A). We verified the dose-response curves for 10

inverted variants with flow cytometry (e.g., Appendix Fig S6). To

understand the mutational basis for the inverted phenotype, we

examined a set of 43 strongly inverted variants (with G0/G∞ > 2,

G0 > G∞,wt/2, and EC50 between 3 and 1,000 µmol/l). The results

indicate that diverse substitutions can lead to the inverted pheno-

type. For example, we identified 10 amino acid substitutions associ-

ated with the inverted phenotype (S70I, K84N, D88Y, V96E, A135T,

V192A, G200S, Q248H, Y273H, A343G, P-value < 0.005; Fig 5A and

C; Appendix Table S3). However, none of these substitutions are

present in more than 12% of the strongly inverted variants, and

51% of the strongly inverted variants have none of these substitu-

tions. Furthermore, the set of strongly inverted variants are more

genetically distant from each other than randomly selected variants

from the library (Fig 5C, Appendix Fig S22). The genetic diversity of

the inverted variants found in our measurement is striking when

compared with previous reports of inverted LacI variants resulting

from site-saturated mutagenesis (Daber et al, 2011) or directed

evolution with random mutagenesis (Poelwijk et al, 2011; Meyer

et al, 2013). Those previous reports yielded only a small number of

inverted variants with closely related genotypes and substitutions at

specific positions that were key for inversion (I79, S97, and L296).

Even more striking, most of the positions previously identified as

important for the inverted phenotype are not significantly enriched

in the set of strongly inverted sensors reported here.

The inverted LacI variants can provide specific insight into allos-

teric biophysics and structure–function relationships, since inver-

sion of the dose-response curve requires inversion of both the

allosteric constant and the relative ligand-binding affinity between

the active and inactive states (Razo-Mejia et al, 2018; Chure et al,

2019). Although the set of strongly inverted LacI variants are geneti-

cally diverse, many of them have substitutions in similar regions of

the protein that may account for the requisite biophysical changes

(Appendix Table S3). First, 67% of the strongly inverted variants

have substitutions within 7 �A of the ligand-binding pocket (com-

pared with 31% of the full library, P-value = 1.15 × 10−6), which

likely contribute to the change in ligand-binding affinity. Surpris-

ingly, 21% of the strongly inverted variants have no substitutions

within 10 �A of the binding pocket, so binding affinity must be indi-

rectly affected by distal substitutions in those variants. Second,

nearly all strongly inverted variants have substitutions at the dimer

interface (91%, compared with 54% for the full library, P-value =
2.05 × 10−7), with most (70%) having substitutions in helix 5

(47%), helix 11 (28%), or both (5%, Fig 5A and C). This suggests

that residues in those structural features are important for modulat-

ing the allosteric constant.

Discovery of novel allosteric phenotypes

In addition to the inverted phenotypes, we were surprised to

discover LacI variants with dose-response curves that did not match

the sigmoidal form of the Hill equation. Specifically, we found vari-

ants with biphasic dose-response curves that repress or activate

gene expression only over a narrow range of ligand concentrations.

These include examples of LacI variants with band-stop dose-

response curves (i.e., variants with high-low-high gene expression;

e.g., Fig 1E, Appendix Fig S7), and LacI variants with band-pass

dose-response curves (i.e., variants with low-high-low gene expres-

sion; e.g., Appendix Fig S8). Approximately 200 of the LacI variants

have band-stop or band-pass phenotypes, accounting for approxi-

mately 0.3% of the measured library (Appendix Fig S3A). We veri-

fied the dose-response curves of 13 band-stop variants and two

band-pass variants using flow cytometry (e.g., Appendix Figs S7

and S8). To our knowledge, this is the first identification of single-

protein genetic sensors with band-stop dose-response curves.

Phenotypic similarities between band-stop and inverted LacI

variants (i.e., high G0, and initially decreasing gene expression as

ligand concentration increases) suggest similar biophysical require-

ments (i.e., inversion of both the allosteric constant and the relative

ligand-binding affinity between the two states). However, amino

acid substitutions associated with the band-stop phenotype are

remarkably different from those associated with inverted phenotype

(V4A, A92V, G178D, H179Q, R195H, G265D, D292G, R351G,

P-value < 0.005; Fig 5B and D; Appendix Table S4). While inverted
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variants often have substitutions near the ligand-binding pocket and

dimer interface, a set of 31 strong band-stop variants are twice as

likely as the full library to have substitutions in helix 9 (32%

compared with 16%, P-value = 2.14 × 10−2) and nearly four times

as likely to have substitutions in β-strand J (13% compared with

3.4%, P-value = 2.08 × 10−2). Helix 9 is on the periphery of the

protein, and β-strand J is in the center of the C-terminal core

domain. Furthermore, 100% of the strong band-stop variants have

substitutions in the C-terminal core of the protein, compared with

78% of the full library (P-value = 4.67 × 10−4).

To further investigate the band-stop phenotype, we chose a

strong band-stop LacI variant with only three amino acid substitu-

tions (R195H/G265D/A337D). These three positions are distributed

distally on the periphery of the C-terminal core domain, and the role

that each of these substitutions plays in the emergence of the band-

stop phenotype is unclear. To investigate the impact of these substi-

tutions, we synthesized LacI variants with all possible combinations

of those substitutions and measured their dose-response curves with

flow cytometry. Although each single substitution resulted in a

sigmoidal dose-response similar to wild-type LacI, the combination

A

C D

B

Figure 5. Structural and genetic diversity of inverted and band-stop genotypes.

A, B Protein structures showing the locations of amino acid substitutions associated with strongly inverted (A) and strong band-stop (B) phenotypes. For each, the
operator-binding structure of LacI is shown on the left (PDB ID: 1LBG), with the operator DNA at the bottom in light orange; the ligand-binding structure is shown
on the right (PDB ID: 1LBH), with IPTG in cyan. Both structures are shown with the view oriented along the protein dimer interface, with one monomer in light
gray and the other monomer in dark gray. The locations of associated (i.e., high-frequency) amino acid substitutions are highlighted as red spheres, and secondary
structures where inverted or band-stop variants have amino acid substitutions at a significantly higher frequency than the full library are shaded with different
colors. For strongly inverted variants (A), helix 5 is shaded blue, helix 11 is shaded violet, and the residues near the ligand-binding pocket are shaded orange. For
strong band-stop variants (B), helix 9 is shaded blue, and β-strand J is shaded violet.

C, D Network diagrams showing relatedness among genotypes for strongly inverted (C) and strong band-stop (D) variants. Within each network diagram, larger
polygonal nodes represent LacI variants, with a colormap indicating the G0/G∞ or G0/Gmin ratio (see Fig 1E). The number of sides of the polygon indicates the
number of amino acid substitutions relative to the wild type, and bold outlines indicate variants that were verified with flow cytometry. Smaller circular nodes
represent specific amino acid substitutions, with connecting lines showing the substitutions for each variant. Bold red outlines on the substitution nodes indicate
the associated substitutions shown as spheres in (A and B), and the shading of substitution nodes matches the shading used to highlight secondary structures in (A
and B).

Source data are available online for this figure.
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of two substitutions (R195H/G265D) gave rise to the band-stop

phenotype (Fig 6A and B; Appendix Fig S23). To test whether this

result applies to the band-stop phenotype generally, we used the

single-substitution effects presented above to examine each of the

substitutions associated with the strong band-stop phenotype. Indi-

vidually, the substitutions associated with the band-stop phenotype

A

C D

B

Figure 6. The band-stop phenotype emerges from combinations of nearly silent amino acid substitutions.

A Dose-response curves measured with flow cytometry for selected LacI variants: wild-type LacI (gray “X”s), a strong band-stop variant identified from the library
with only three amino acid substitutions (R195H/G265D/A337D; blue diamonds), LacI variants containing the single-substitution R195H (orange circles) and G265D
(green circles), LacI variant with the double-substitution R195H/G265D (red diamonds). The single-substitution R195H (orange) or G265D (green) results in sigmoidal
dose-response curves similar to wild-type LacI, but the combination of the two, R195H/G265D (red), results in a band-stop phenotype. The complete set of
permutations of R195H, G265D, and A337D are shown in Appendix Fig S23.

B Location of the three amino acid substitutions found in a strong band-stop variant. The operator-binding structure of LacI is shown on the left (PDB ID: 1LBG), with
the operator DNA at the bottom in light orange; the ligand-binding structure is shown on the right (PDB ID: 1LBH), with IPTG in cyan. Amino acid positions R195
(orange), G265 (green), and A337 (purple) are highlighted as spheres.

C, D Effects of individual amino acid substitutions associated with inverted and band-stop phenotypes. Each plot shows the joint effect of individual amino acid
substitutions on two Hill equation parameters. The blue circles plotted with error bars show the effects of substitutions associated with the strongly inverted
phenotype and the orange triangles plotted with error bars show the effects of substitutions associated with the strong band-stop phenotype. Most substitutions
associated with the inverted phenotype cause a large shift in either EC50, G∞, or both, consistent with the biophysical requirements for inverting the dose-response
curve. In contrast, most of the amino acid substitutions associated with the band-stop phenotype are nearly silent. Light blue circles and light orange triangles
show the effects for all amino acid substitutions found in the sets of strongly inverted and strong band-stop variants, respectively. Dashed gray lines mark the
wild-type parameter values. Plotted data includes a combination of direct experimental measurements and DNN model predictions and is included in Dataset EV1.
Error bars indicate � one standard deviation estimated from the Bayesian posterior. Data are from a single library-scale measurement.

Source data are available online for this figure.
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are nearly silent, i.e., they have little or no effect on the dose-

response curve; yet in combination with other substitutions, they

result in the band-stop phenotype. In contrast, most of the individ-

ual substitutions associated with the inverted phenotype cause a

large shift in either EC50, G∞, or both (Fig 6C and D).

Discussion

For the goal of an improved understanding of allostery, our results

reveal the dual nature of the problem: First, the DNN model and the

mapping of single-substitution effects demonstrate that large-scale

measurements and analysis can overcome the challenges inherent

to the structural complexity of allosteric function. They can provide

accurate predictions for specific allosteric proteins and can also

reveal systematic sequence-structure-function relationships that

may be more generalizable (i.e., the importance of the dimer inter-

face and the log-additivity of EC50). However, the band-stop pheno-

type highlights the limits of that predictability, as well as the

constraints of conventional models of allostery.

While the allosteric function of many LacI variants is well

described by extensions of the MWC model of allostery (Monod

et al, 1965; Razo-Mejia et al, 2018; Chure et al, 2019), the band-stop

phenotype is inconsistent with that model. In particular, the bipha-

sic dose-response of the band-stop variants suggests negative coop-

erativity: that is, successive ligand-binding steps have reduced

ligand-binding affinity. Negative cooperativity has been shown to be

required for biphasic dose-response curves (Onufriev & Ullmann,

2004; Bouhaddou & Birtwistle, 2014). The biphasic dose-response

and apparent negative cooperativity are also reminiscent of systems

where protein disorder and dynamics have been shown to play an

important role in allosteric function (Motlagh et al, 2014), including

catabolite activator protein (CAP) (Popovych et al, 2006; Tzeng &

Kalodimos, 2012) and the Doc/Phd toxin-antitoxin system (Garcia-

Pino et al, 2010). This suggests that entropic changes may also be

important for the band-stop phenotype. A potential mechanism is

that band-stop LacI variants have two distinct inactive states: an

inactive monomeric state and an inactive dimeric state. In the

absence of ligand, inactive monomers may dominate the population.

Then, at intermediate ligand concentrations, ligand binding stabi-

lizes dimerization of LacI into an active state which can bind to the

DNA operator and repress transcription. When a second ligand

binds to the dimer, it returns to an inactive dimeric state, similar to

wild-type LacI. Similar dimerization-based regulation has been

described before and supports the observed negative cooperativity

and biphasic dose-response (Bouhaddou & Birtwistle, 2014). This

mechanism and other possible mechanisms do not match the MWC

model of allostery or its extensions (Monod et al, 1965; Daber et al,

2011; Razo-Mejia et al, 2018; Chure et al, 2019) and require a more

comprehensive study and understanding of the ensemble of states

in which these band-stop LacI variants exist.

Our most surprising and unpredictable result is the emergence of

the band-stop phenotype from combinations of nearly silent amino

acid substitutions. However, with over one hundred genetically

diverse band-stop variants, our dataset provides a basis for more

systematic understanding even in this case. Furthermore, the rela-

tively high abundance of inverted and band-stop variants (approxi-

mately 0.35 and 0.2% of the library, respectively, Appendix Fig

S3A) with genotypes near the wild type suggests that allosteric

genotype-phenotype landscapes allow for rapid evolutionary inno-

vation, a conclusion that is supported by the existence of natural

transcription factors related to LacI with inverted phenotypes

(Myers & Sadler, 1971; Rolfes & Zalkin, 1990).

Overall, our findings suggest that a surprising diversity of useful

and potentially novel allosteric phenotypes exist with genotypes that

are readily discoverable via large-scale landscape measurements.

Novel phenotypes emerged at mutational distances greater than one

amino acid substitution, highlighting the value in sampling a

broader genotype space with higher-order mutations. Furthermore,

the untargeted, random mutagenesis approach used here was criti-

cal for finding these novel phenotypes, as the genotypes required

for these novel phenotypes were unpredictable.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

Escherichia coli strain MG1655Δlac Sarkar et al (2020) Addgene cat. #164844

One Shot TOP10 Electrocomp E. coli Invitrogen Cat. #C404050

Recombinant DNA

Plasmid pTY1 This study Addgene cat. #164831

Plasmid pVER This study Addgene cat. #164830

plasmid pUC19 New England Biolabs Cat. #N3041

Oligonucleotides and sequence-based reagents

PCR primers for library construction This study Appendix Table S7

Barcode PCR amplification primers This study Appendix Tables S8 and S9

Paired-end adapter PCR amplification primers This study Appendix Table S10
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

Chemicals, enzymes, and other reagents

Sera-mag SpeedBeads GE Healthcare Cat. #65152105050250

GeneMorph II Random Mutagenesis Kit Agilent Cat. #200550

Phusion Flash High-Fidelity PCR Master Mix Thermo Scientific Cat. #548L

T4 DNA Ligase Thermo Scientific Cat. #EL0011

Calf Intestinal Phosphatase New England Biolabs Cat. #M0525L

FastDigest Buffer Thermo Scientific Cat. #B64

FastDigest SgsI Thermo Scientific Cat. #FD1894

FastDigest NheI Thermo Scientific Cat. #FD0974

FastDigest XhoI Thermo Scientific Cat. #FD0695

FastDigest ApaI Thermo Scientific Cat. #FD1414

FastDigest DpnI Thermo Scientific Cat. #FD1703

BspOI Thermo Scientific Cat. #ER2041

XmaI New England Biolabs Cat. #R0180S

FseI New England Biolabs Cat. #R0588S

Gibson Assembly Master Mix New England Biolabs Cat. #E2611S

Rainbow Calibration Particles, 8 peaks Spherotech Cat. #RCP-30-20A

LB BD Biosciences Cat. #244620

Casamino Acids Fisher Bioreagents Cat. #BP1424

Bacto Tryptone Gibco Cat. #211705

Bacto Yeast Extract Thermo Scientific Cat. #212750

Glucose Gibco Cat. #2494001

Glycerol Thermo Scientific Cat. #15514029

Chloramphenicol Fisher Bioreagents Cat. #BP904-100

Kanamycin Thermo Scientific Cat. #J1792406

IPTG Thermo Scientific Cat. #R0393

Tetracycline Alfa Aesar Cat. #B21408

Neutralization Buffer Qiagen Cat. #19064

Binding Buffer Qiagen Cat. #19066

Rnase A Qiagen Cat. #19101

Nuclease-free water Thermo Scientific Cat. #AM9938

M9 Salts BD Biosciences Cat. #248510

CaCl2 Fisher Bioreagents Cat. #BP210-100

MgSO4 Fisher Bioreagents Cat. #BP213-1

NaCl Thermo Scientific Cat. #AM9759

KCl Thermo Scientific Cat. #AM9640G

MgCl2 Thermo Scientific Cat. #AM9530G

NaOH Millipore Sigma Cat. #106462

Tris–Cl, pH 7.5 Fisher Bioreagents Cat. #BP1757-100

Tris–Cl, pH 8.0 Invitrogen Cat. #15-568-025

EDTA Fisher Bioreagents Cat. #1311-200

SDS Millipore Sigma Cat. #24802350

Absolute Ethanol Fisher Bioreagents Cat. #BP2818500

Tris–Cl, pH 8.5 VWR Cat. #MB-027-1000

PEG-8000 Sigma Aldrich Cat. #89510
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

Focusing fluid Invitrogen Cat. #4488621

PBS Invitrogen Cat. #AM9625

Tween-20 Fisher Bioreagents BP337-100

1× TE Buffer Thermo Scientific Cat. #12090015

96-deep well plate Eppendorf Cat. #951033405

96-well plate Abgene Cat. #AB-1127

96-deep well plate Eppendorf Cat. #951033588

96-well DNA elution plate Eppendorf Cat. #30603303

96-well DNA binding plate Nunc Cat. #278010

96-well midi plate Abgene Cat. #AB-0765

96-well growth plate 4titude Cat. #4ti-0255

Gas-permeable membrane 4titude Cat. #4ti-0598

Software

Data analysis software This study, Zhao et al (2018), and Schlecht et al (2017) github.com/djross22/nist_lacI_landscape_analysis

Other

Qubit 1× dsDNA HS Assay Kit Thermo Fisher Scientific Cat. # Q33231

QIAquick PCR Purification Kit Qiagen Cat. #28106

QIAquick Gel Extraction Kit Qiagen Cat. #28115

QIAprep Spin Miniprep Kit Qiagen Cat. #27106

Laboratory automation system Peak Analysis and Automation, S-Cell Integrated components marked with (**)

Star liquid handler** Hamilton

a4S plate sealer** 4titude

Xpeel plate desealer** Brooks

Neo2SM plate reader** BioTek

Rotanta 460 Robotic Centrifuge** Hettich Zentrifugen

NGS Star liquid handler Hamilton

Illumina HiSeqX 300-cycle paired-end service Novogene

PacBio Sequel II University of Maryland Institute of Genome Sciences

Qubit 3 Thermo Fisher Scientific

Attune NxT Flow Cytometer Thermo Fisher Scientific

SH800S Cell Sorter Sony

Methods and Protocols

Strain, plasmid, and library construction
All reported measurements were completed using E. coli strain

MG1655Δlac (Sarkar et al, 2020). Briefly, strain MG1655Δlac was

constructed by replacing the lactose operon of E. coli strain MG1655

(ATCC #47076) with the bleomycin resistance gene from Streptoal-

loteichus hindustanus (Shble).

Two plasmids were used for this work: a library plasmid (pTY1,

Appendix Fig S1A) used for the measurement of the genotype and

phenotype of the entire LacI library, and a verification plasmid

(pVER, Appendix Fig S1B) used to verify the function of over 100

LacI variants from the library chosen to test the accuracy of the

library-scale dose-response curve measurement method. A version

of this protocol is maintained at protocols.io https://doi.org/10.

17504/protocols.io.bjjxkkpn (preprint: Tack et al, 2020).

Plasmid pTY1 contained the lacI CDS and the lactose operator

(lacO) regulating the transcription of a tetracycline resistance gene,

tetA, which, in the presence of tetracycline, confers a measurable

change in fitness connected with the expression level of the regu-

lated genes. Plasmid pTY1 also encoded Enhanced Yellow Fluores-

cent Protein (YFP), which was used during library construction to

select a library in which most of the LacI variants could function as

allosteric repressors (see below).

Plasmid pVER contained a similar system in which LacI and lacO

regulate the transcription of only YFP. Plasmid pVER was used to

measure dose-response curves of clonal LacI variants using flow

cytometry. Each variant chosen from the library for verification was

chemically synthesized (Twist Biosciences), inserted into pVER, and

transformed into E. coli strain MG1655Δlac for flow cytometry

measurements to confirm the dose-response curve inferred from the

library-scale measurement.
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The LacI library was generated by error-prone PCR of the wild-

type lacI CDS encoded on plasmid pTY1. The library was constructed

by splitting the lacI CDS into an N-terminal half and a C-terminal half

using an ApaI restriction enzyme cut site that was near the center of

the lacI CDS covering codons for A186, G187, and P188. Error-prone

PCR of each half introduced genetic diversity, and then each unique

sequence was attached to a DNA barcode. Plasmid-encoded versions

of both sub-libraries were established (an N-terminal library, pNTL,

and a C-terminal library, pCTL). These two sub-libraries were then

assembled to generate the full lacI CDSs and to combine the two

halves of the DNA barcode. The library was inserted into pTY1 along

with randomly synthesized DNA barcodes (Appendix Fig S1A).

The plasmid containing the N-terminal library, pNTL, contained

the N-terminal half of the lacI CDS (lacI-N) and a randomized

nucleotide sequence that forms half of the DNA barcode. The proto-

col for constructing the N-terminal library was:

• PCR amplify the N-terminal half of the lacI CDS (coding for amino

acids M1-A186) from pTY1 using the GeneMorph II Random

Mutagenesis Kit (Agilent, cat. #200550) with primers DT.01 and

DT.02 (Appendix Table S7). Agarose gel purify PCR product.
• PCR amplify the T7 terminator (TT7) with primers DT.03 and

DT.04 with Phusion Flash polymerase (used for PCR unless other-

wise specified) and then re-amplified with primers DT.03 and

DT.05. Agarose gel purify PCR product.
• Assemble the two amplicons using assembly PCR with primers

DT.02 and DT.03.
• Digest the assembled amplicon with restriction enzymes FastDi-

gest ApaI and XmaI. Agarose gel purify.
• PCR amplify the pMB1 origin of replication and ampicillin resis-

tance gene from plasmid pUC19 (NEB, cat #N3041S) with primers

DT.06 and DT.07. Digest amplicon with restriction enzymes ApaI

and XmaI and dephosphorylate the ends with Calf Intestinal Phos-

phatase. Agarose gel purify.

o During this step, primer DT.06 incorporates half of the final

DNA barcode, consisting of 27 randomized nucleotides inter-

spersed with constant A/T bases to limit restriction site forma-

tion. Primer DT.06 was ordered with hand-mixed bases, with

“N” representing equal ratios of A, T, G, and C.

o Half DNA Barcode: 50-TNNTNNNANNTNNNANNTNNNANNT
NNNANNTNNNANNA-30

• Ligate the assembly PCR product and the pUC19 amplicon using

T4 DNA ligase (Thermo Scientific, EL0011) to form the final sub-

library plasmid pNTL, and desalt using QIAquick PCR Purification

Kit (Qiagen, cat. #28106).
• Transform into One Shot TOP10 Electrocomp E. coli (Invitrogen,

cat. #C404050).
• Recover with SOC media at 37°C while shaking for 1 h.

The plasmid containing the C-terminal library, pCTL, contained

the C-terminal half of the lacI CDS (lacI-C) and a randomized nucleo-

tide sequence that forms the second half of the DNA barcode. The

protocol for constructing the C-terminal library is:

• PCR amplify araC terminator from pTY1 using primers DT.08 and

DT.09. Agarose gel purify PCR product.
• PCR amplify the C-terminal half of lacI CDS (coding for amino

acids L189-Q360) from pTY1 using the GeneMorph II Random

Mutagenesis Kit with primers DT.10 and DT.11. Agarose gel purify

PCR product.
• Assemble the two amplicons using assembly PCR with primers

DT.08 and DT.11.
• Digest the assembled amplicon with restriction enzymes FastDi-

gest ApaI and XmaI. Agarose gel purify PCR product.
• PCR amplify the pMB1 origin of replication (pMB1) and ampicillin

resistance gene from plasmid pUC19 with primers DT.12 and

DT.13. Digest amplicon with restriction enzymes ApaI and XmaI

dephosphorylate the ends with Calf Intestinal Phosphatase.

Agarose gel purify.

o During this step, primer DT.12 incorporates half of the final

DNA barcode, consisting of 27 randomized nucleotides inter-

spersed with constant A/T bases to limit restriction site forma-

tion. Primer DT.12 was ordered with hand-mixed bases, with

“N” representing equal ratios of A, T, G, and C.

o Half DNA Barcode: 50-GNNTNNNANNTNNNANNTNNNTNNT
NNNANNTNNNANNA-30

• Ligate the assembly PCR product and the pUC19 amplicon using T4

DNA ligase to form the final sub-library plasmid pCTL, and desalt

using the ligation product using QIAquick PCR Purification Kit.
• Transform into OneShot TOP10 Electrocomp E. coli.
• Immediately recover with SOC media at 37°C while shaking for 1 h.

Plasmids pNTL, pCTL, and pTY1 are starting points to assemble

full length lacI CDS and combine the two halves of the DNA

barcodes. The protocol is:

• PCR amplify the lacI-C and lacI-N libraries from plasmids pCTL

and pNTL, respectively, both PCRs use primers DT.14 and DT.15.
• Digest the lacI-C library amplicon with restriction enzymes ApaI

and DpnI and treat with CIP.
• Digest the lacI-N library amplicon with restriction enzymes ApaI

and DpnI.
• Agarose gel purify both digested amplicons, then ligate the two

together using T4 DNA ligase to assemble the sensor library

with full length lacI CDS. Agarose gel purify the ligation

product.
• Digest with FseI (NEB, cat. #R0588S). Agarose gel purify digested

product.
• Circularize the linear product by ligating with T4 DNA ligase, then

relinearize by digestion with restriction enzymes SgsI and NheI

(Thermo Scientific, cat. #FD1894 and #FD0974) and agarose gel

purify.

o This is the assembled lacI CDS library with attached DNA

barcodes, ready for ligation into pTY1.
• Prepare plasmid backbone by digesting pTY1 plasmid DNA with

restriction enzymes SgsI and NheI, then treat with CIP. Agarose

gel purify.
• Insert the assembled lacI CDS library with attached DNA barcodes

into the pTY1 backbone using T4 DNA ligase with a 3-fold molar

excess of pTY1 backbone.
• Desalt the ligation product and electroporate into MG1655Δlac.

To prepare electrocompetent E. coli MG1655Δlac:

• Dilute overnight culture of E. coli MG1655Δlac 1,000-fold into

500 ml of LB media.

14 of 26 Molecular Systems Biology 17: e10179 | 2021 ª 2021 The Authors

Molecular Systems Biology Drew S Tack et al



• Incubated the culture at 37°C for 3.5 h in a 2-l baffled Erlenmeyer

flask to a final optical density at 600 nm (OD600) of approxi-

mately 0.8.
• Chill the culture in ice slurry for 20 min.
• Centrifuge the culture at 3,500 g for 10 min in refrigerated centri-

fuge at 4°C.
• Decant supernatant media, and then resuspended the cell pellet in

500 ml of 10% glycerol.
• Centrifuge the solution at 3,500 g for 10 min.
• Decant the supernatant glycerol solution.
• Repeated the glycerol wash one additional time (two washes total)
• Resuspended the cell pellet with residual 10% glycerol.
• Transform the plasmid-encoded sensor library (see above) into

the freshly prepared electrocompetent MG1655Δlac.
• Immediately recover with SOC media at 37°C while shaking for

1 h.
• Dilute the library in LB media supplemented with glucose (2 g/l)

and kanamycin (50 µg/ml) to a final volume of 500 ml and incu-

bate for 12 h at 37°C while shaking.
• Divide the library into 1 ml aliquots and store them in 20% glyc-

erol at −80°C (1:1 dilution with 40% glycerol).

Most of the variants in the initial library had high G(0), i.e., the

I– phenotype (Markiewicz et al, 1994). The initial library had a

bimodal distribution of G0, as indicated by flow cytometry results,

with a mode at low fluorescence (near G0 of wild-type LacI) and a

mode at higher gene expression. To generate a library in which most

of the LacI variants could function as allosteric repressors, we used

fluorescence-activated cell sorting (FACS) to select the portion of

the library with low fluorescence in the absence of ligand, gating at

the trough between the two modes (Sony SH800S Cell Sorter,

Appendix Fig S2). To allow comprehensive long-read sequencing of

the library (PacBio sequel II, see Long-read sequencing section,

below), we further reduced the library size by dilution of the FACS-

selected library to create a population bottleneck of the desired size.

For the work reported here, we used a library of approximately 105

LacI variants (determined by serial plating and colony counting).

A spike-in control strain was used to normalize the DNA barcode

read counts for the sequencing-based fitness measurement (see

Library-scale fitness measurement section, below). The spike-in

control strain contained the library plasmid (pTY1) with a LacI vari-

ant that had a constant, high tetA expression level. The fitness of

the spike-in control was determined from OD600 data acquired

during growth of clonal cultures with the same automated growth

protocol as used for the genotype-phenotype landscape measure-

ment (see Growth protocol for landscape measurement section,

below). The fitness of the spike-in control was measured in all 24

chemical environments and was independent of IPTG concentration

but was slightly lower with tetracycline (0.75 h−1) than without

tetracycline (0.81 h−1).

Culture conditions
Unless otherwise noted, E. coli cultures were grown in a rich M9

media (3 g/l KH2PO4, 6.78 g/l Na2HPO4, 0.5 g/l NaCl, 1 g/l NH4Cl,

0.1 mmol/l CaCl2, 2 mmol/l MgSO4, 4% glycerol, and 20 g/l casa-

mino acids) supplemented with 50 µg/ml kanamycin.

Escherichia coli cultures were grown in a laboratory automation

system that controlled preparation of 96-well culture plates with

media and additives (i.e., IPTG and tetracycline). Cultures were

grown in clear-bottom 96-well plates with 1.1 ml square wells (4ti-

tude, cat. #4ti-0255). The culture volume per well was 0.5 ml. Before

incubation, an automated plate sealer (4titude, a4S) was used to seal

each 96-well plate with a gas-permeable membrane (4titude, cat. #4ti-

0598). Cultures were incubated in a multi-mode plate reader (BioTek,

Neo2SM) at 37°C with a 1°C gradient applied from the bottom to the

top of the incubation chamber to minimize condensation on the

inside of the membrane. During incubation, the plate reader was set

for double-orbital shaking at 807 cycles per minute. Optical density at

600 nm (OD600) was measured every 5 min during incubation, with

continuous shaking applied between measurements. After incuba-

tion, an automated desealer (Brooks, XPeel) was used to remove the

gas-permeable membrane from each 96-well plate.

Growth protocol for landscape measurement
To measure the fitness and dose-response curve of every LacI vari-

ant in the library, a culture of E. coli containing the LacI library was

mixed at a 99:1 ratio with a culture of the E. coli spike-in control.

The culture was loaded into the automated microbial growth and

measurement system (S-Cell, Peak Analysis and Automation) where

it was distributed across a 96-well plate and then grown to station-

ary phase (12 h, Appendix Fig S24). Cultures were then diluted 50-

fold into a new 96-well plate, Growth Plate 1, containing 11 rows

with a 2-fold serial dilution gradient of IPTG with concentrations

ranging from 2 to 2,048 µmol/l and one column without IPTG.

Growth in IPTG allowed each variant to reach a steady-state tetA

expression level in each IPTG concentration. Growth Plate 1 was

grown for 160 min, corresponding to approximately 3.3 generations,

and then diluted 10-fold into Growth Plate 2. Growth Plate 2

contained the same IPTG gradient as Growth Plate 1 with the addi-

tion of tetracycline (20 µg/ml) to alternating rows in the plate,

resulting in 24 chemical environments, with each environment

spread across 4 wells. Growth Plate 2 was grown for 160 min and

then diluted 10-fold into Growth Plate 3, which contained the same

24 chemical environments as Growth Plate 2. This process was

repeated for Growth Plate 4, which also contained the same 24

chemical environments. Each growth plate was pre-heated to 37°C
before transferring the cells from the previous growth plate to avoid

any disruption of cell growth due to large variations in temperature.

The total growth time for the fitness measurements in the 24 chemi-

cal environments, 480 min across Growth Plates 2–4, corresponded
to approximately 10 generations for the fastest-growing cultures.

The 50-fold dilution factor from stationary phase into Growth Plate 1

and the 160-min growth time per plate were chosen to maintain the

cultures in exponential growth for the entire 480 min. During each

160-min incubation, the cultures without tetracycline increased

approximately 10-fold in optical density, to a final OD600 of approxi-

mately 0.5 (corresponding to an estimated cell density of

4 × 108 cells/ml. Appendix Figs S25 and S26, Appendix Table S5).

The protocol was:

• Inoculate 100 ml media in a 250-ml baffled Erlenmeyer flask with

2 ml frozen glycerol stock of library.
• Inoculate 50 ml media in a 250-ml baffled Erlenmeyer flask with

scrapping of spike-in control glycerol stock.
• Incubate both at 37°C shaking at 300 rpm for 18 h.
• Into a 250-ml baffled Erlenmeyer flask, combine 49 ml of library

ª 2021 The Authors Molecular Systems Biology 17: e10179 | 2021 15 of 26

Drew S Tack et al Molecular Systems Biology



culture, 0.5 ml of spike-in control culture, and 50 ml of media,

incubate 6 h at 37°C shaking at 300 rpm.

This mixture was used to begin the automated growth and

measurement process:

• Distribute 450 µl media to each well of a 96-well growth plate (4ti-

tude, cat. #4ti-0255).
• Distribute 50 μl of culture mixture of library and spike-in control

into each well of plate.
• Seal plate with a gas-permeable membrane and incubate in plate

reader at 37°C for 12 h (BioTek, Neo2SM).

o During incubations, the plate reader was set for continuous

double-orbital shaking at 807 cycles per minute. OD600 was

measured every 5 min.
• Prepare Growth Plate 1:

o Distribute 490 µl media across a 96-well growth plate

o Use a 2-fold serial dilution of IPTG to add a gradient of IPTG

across columns so that the final concentrations ranges from 2 to

2,048 µmol/l, and one column without IPTG.
• Ten minutes before the end of the 12-h incubation, preheat

Growth Plate 1 to 37°C.
o Preheat on temperature-controlled position set to 47°C for

10 min. Measurements of media temperature vs time indicated

that this resulted in a media temperature of approximately 37°C.
• Remove 12 h growth plate from plate reader, remove gas-perme-

able membrane, and transfer 10 µl of culture from each well into

the corresponding well of Growth Plate 1.
• Seal Growth Plate 1 with a gas-permeable membrane and incubate

in plate reader at 37°C for 160 min.

o Growth Plate 1 contains only the IPTG gradient (no tetracy-

cline). This allows cells to reach exponential growth and to

reach steady-state expression of tetA before adding tetracycline.
• Prepare Growth Plate 2

o Distribute media across a 96-well growth plate, 450 µl total

volume.

o In alternating rows, supplement media with tetracycline to a

final concentration of 20 µg/ml (rows B, D, F, H).

o Use a 2-fold serial dilution of IPTG to add a gradient of IPTG

across columns so that the final concentrations ranges from 2 to

2,048 µmol/l, and one column without IPTG.
• Ten minutes before the end of the 160-min incubation, preheat

Growth Plate 2 to 37°C.
o Preheat on temperature-controlled position set to 47°C for

10 min. Measurements of media temperature vs time indicated

that this resulted in a media temperature of approximately 37°C.
• Remove Growth Plate 1 from plate reader, remove gas-permeable

membrane, and transfer 50 µl of culture from each well of Growth

Plate 1 into the corresponding well of Growth Plate 2.
• Seal Growth Plate 2 with a gas-permeable membrane and incubate

in plate reader at 37°C for 160 min.
• Immediately proceed with plasmid DNA extraction for Growth

Plate 1 (below).
• Repeat plate preparation and dilution protocol for Growth Plate 3

and Growth Plate 4 (with the same IPTG gradient and tetracycline

in rows B, D, F, H).
• At the conclusion of Growth Plate 4 proceed with plasmid DNA

extraction, there is no dilution into another plate.

After each growth plate was used to seed the subsequent plate

(or at the end of 160 min for Growth Plate 4), the remaining culture

volumes for each chemical environment (approximately 450 µl/
well, four wells per plate) were combined and pelleted by centrifu-

gation (3,878 g for 10 min at 23°C). Plasmid DNA was then

extracted from the 24 combined samples with a custom method

using reagents from the QIAprep Miniprep Kit (Qiagen cat. #27104)

on an automated liquid handler equipped with a positive-pressure

filter press (a version of the protocol is maintained at protocols.io

https://doi.org/10.17504/protocols.io.bjjvkkn6) (preprint: Alper-

ovich et al, 2020a). The protocol was:

• Resuspend each cell pellet in in 200 µl of resuspension buffer

(50 mmol/l of Tris–CL pH 8.0, 10 mmol/l EDTA, 100 µg/ml

RNase A).
• Transfer resuspended cell samples to a new 96-well plate (Abgene,

cat. #AB-1127) located on an automated microplate shaker.
• Add 250 µl lysis buffer (200 mmol/l NaOH, 10 g/l SDS) to each

sample and mix by shaking the plate at 90 rpm for 2 min.
• Add 350 µl cold (4°C) Neutralization Buffer (Qiagen, cat. #19064)

to each sample and mix by shaking at 90 rpm for 2 min.
• Using wide bore tips (3.2 mm tip diameter), gently mixed the

samples by three repeated cycles of aspiration and dispensing,

then transfer samples to a 96-well filter plate (Agilent, Cat.

#201702-100) and allowed to settle in the filter plate for 2 min.
• Use the filter press to push the lysate solutions through the filter

plate into a new 96-well deep well plate (Eppendorf, cat.

#951033588) at 20 psi for 180 s followed by 65 psi for 30 s.
• Transfer the cleared lysate solutions to a 96-well glass fiber bind-

ing plate (Nunc, cat. #278010) and use the filter press to push the

solutions through the binding plate at 40 psi for 60 s.
• Add 900 µl Binding Buffer (Qiagen, cat. #19066) to each well and

use the filter press to push buffer through the binding plate at 40

psi for 60 s.
• Add 900 µl Wash Buffer (8 mmol/l Tris–Cl, pH7.5, 80% ethanol)

to each well and use the filter press to push buffer through the

binding plate at 40 psi for 60 s.
• Use the filter press to dry the binding plate by applying 65 psi for

7 min.
• Add 100 µl nuclease-free water (Thermo Scientific, cat. #AM9938)

warmed to 60°C to each well; wait for 5 min.
• Elute DNA from binding plate into a 96-well low-binding elution

plate (Eppendorf, cat. #30603303) using the filter press at 65 psi

for 7 min.

Supernatant removal, cell resuspension, and cell sample transfer

were performed using the automated liquid handler’s 8-channel

head with which each channel is capable of independent movement

and liquid-level sensing to allow for variations in cell culture

volume and density recovered from each sample. Most of the subse-

quent pipetting was performed using the automated liquid handler’s

96-channel head with an offset pickup of 24 pipette tips so that the

timing for each sample was identical. Pipetting the water for elution

was performed using the automated liquid handler’s 8-channel head

to allow for individual channel movement.

For the DNA extracted from Growth Plate 4, the filter press

jammed just before elution, so those samples were eluted by

centrifugation at 1,000 g for 3 min.
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After elution, the concentration of DNA in each sample ranged

from undetectable up to approximately 1.5 ng/µl. This corresponds

to an estimated maximum of 1010 plasmids per sample.

Barcode sequencing
After plasmid extraction, each set of 24 plasmid DNA samples was

prepared for barcode sequencing. Briefly, the plasmid DNA was

linearized with ApaI restriction enzyme. Then, a three-cycle PCR

was performed to amplify the barcodes from the plasmids and

attach sample multiplexing tags so samples from different chemi-

cal environments could be distinguished when pooled and run on

the same sequencing flow cell. Eight forward index primers

(Appendix Table S8) and 12 reverse index primers (Appendix Table

S9) were used to label the amplicons from each sample across the

24 chemical environments and the four time points. After a

magnetic bead-based cleanup step, a second, 15-cycle PCR was run

to attach the standard Illumina paired-end adapter sequences and to

amplify the resulting amplicons for sequencing (Appendix Table

S10). After a second magnetic bead-based cleanup, the 24 samples

from each time point were pooled and stored at 4°C until sequenc-

ing. This entire process was completed using a Hamilton NGS-

STAR-automated liquid handler programmed with a custom

sequencing sample preparation method with the following steps (a

version of the protocol is maintained protocols.io https://doi.org/

10.17504/protocols.io.bjjzkkp6) (preprint: Alperovich et al, 2020b).

The protocol was:

• Prepare Sera-Mag SpeedBeads Carboxyl Magnetic Beads:

o To a 50 ml conical tube, add 9 g PEG-8000, 10 ml of 5 mol/l

NaCl, 500 µl of 1 mol/l Tris–HCl, pH 8, 500 µl of 0.5 mol/l EDTA.

o Add water to a final volume of 45 ml and mix until PEG

dissolves.

o Add 27.5 µl Tween-20 and mix.

o Vortex Sera-mag SpeedBeads to resuspend and transfer 1 ml to

each of two 2 ml microcentrifuge tubes.

o Place SpeedBeads solutions on a magnetic separation rack until

beads are drawn to the magnet and solutions are clear.

o Remove supernatant.

o Add 1 ml 1× TE Buffer to each microcentrifuge tube containing

beads, remove from magnetic stand, and vortex.

o Repeat the TE wash step two additional times, then resuspend

in 1 ml 1× TE buffer,

o After mixing, add both 1 ml SpeedBeads solutions to the 50 ml

conical tube containing the PEG solution.

o Add water to a final volume of 50 ml and mix gently.

o Store in the dark at 4°C until use.
• Transfer 35 µl of each plasmid DNA sample to a PCR plate (Bio-

Rad, HSP9645).
• Add 4 µl FastDigest Buffer and 1 µl ApaI Restriction Enzyme Solu-

tion for plasmid DNA linearization; mix 3× by repeated aspiration

and dispense.

o Prepare a mixture of 4:1 of FastDigest Buffer:ApaI beforehand to

expedite process.
• Incubate samples in PCR plate in automated thermocycler at 37°C
for 15 min.

• Add 2.5 µl Forward Index Primer and 2.5 µl Reverse Index Primer

to each sample (20 µmol/l stock primer solutions, primer

sequences are listed in Appendix Tables S7 and S8).

o The Forward and Reverse Index Primers attach sample multiplex-

ing tags to the resulting amplicons so that the different samples

can be distinguished when they are pooled and run on the same

Illumina platform sequencing flow cell. Eight different Forward

Index Primers and 12 different Reverse Index Primers are used to

uniquely label the amplicons from each sample across the 24 dif-

ferent chemical conditions and the four Growth Plates used for

barcode sequencing.
• Add 45 µl Phusion Flash 2× Master Mix to each sample; mix 3×
by repeated aspiration and dispense.

• Run the first PCR in automated thermocycler with the following

conditions:

o Initial denaturation: 98°C for 60 s.

o Three cycles:

▪ Denaturation: 98°C for 10 s.

▪ Annealing: 58°C for 20 s.

▪ Elongation: 72°C for 20 s.

o Final extension: 72°C for 60 s.

o Cooling: 20°C for 15 s.
• During the first PCR, pipette 48 µl Magnetic Bead/PEG-NaCl Stock

into each of 24 wells in a 96-well midi plate (Abgene, cat. #AB-

0765); mix bead stock thoroughly by repeated aspiration and

dispense before each transfer.
• When the first PCR is finished, transfer 80 µl from each PCR reac-

tion to a well in the midi plate; mix PCR solution and bead stock

10× by repeated aspiration and dispense; wait for 5 min.

o During this step the ratio of Bead Stock to PCR volume is 0.6×.
Consequently, because of the relatively low PEG concentration

in the mixture, the 5,500 bp plasmid template binds to the beads.
• Move the midi plate to 96-well magnet base to pull the magnetic

beads out of suspension; wait for 2 min.
• Transfer 128 µl of supernatant from each sample to a clean well in

the midi plate (still on the magnet base); wait an additional 3 min

for final bead separation.
• Transfer 118 µl of supernatant (containing the 218 bp PCR ampli-

con and primers) from each sample to another clean well in the

midi plate; move the midi plate from the magnet base to auto-

mated shaker.
• Add 70.8 µl Magnetic Bead Stock (0.6× of 118 µl supernatant

volume) to each sample; mix supernatant and bead stock 10× by

repeated aspiration and dispense; wait for 5 min. During this step,

only the 206 bp PCR amplicon binds to the beads; the 70 bp

primers remain in the supernatant.
• Move the midi plate back to the magnet base; wait for 5 min.
• Remove and discard the supernatant from each well.
• Add 200 µl 80% ethanol to each magnetic bead pellet; wait 30 s.
• Remove and discard the ethanol supernatant; then, using 50 µl
tips, remove residual supernatant from the bottom of each well.

• Move the midi plate from magnet base to the automated

shaker; allow magnetic bead pellets to dry for 5 min at room

temperature.
• Add 35 µl nuclease-free water to each sample; resuspend beads by

5× repeated aspiration and dispense.
• Mix samples by shaking at 1,800 rpm for 10 s; wait for 5 min.
• Move the midi plate back to the magnet base; wait for 5 min.
• During 5-min wait, pipette 33 µl Phusion Flash 2× Master Mix and

1.5 µl of each secondary PCR primer (20 µmol/l) into each of 24

wells in a PCR plate.
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• After 5-min wait, transfer 30 µl of each supernatant from the midi

plate (on magnet base) to the PCR plate.
• Run the second PCR in the automated thermocycler with the

following conditions:

o Initial denaturation: 98°C for 60 s.

o 15 cycles:

▪ Denaturation: 98°C for 10 s.

▪ Annealing and elongation: 72°C for 30 s.

o Final extension: 72°C for 120 s.

o Cooling: 15°C for 20 s.
• During the second PCR, pipette 66 µl (1.1× of the 60 µl PCR

volume) Magnetic Bead Stock into each of 24 clean wells in the

midi plate (on the automated shaker); mix bead stock well by

repeated aspiration and dispense before each transfer.
• When the second PCR is finished, transfer 60 µl from each PCR to

a well in the midi plate; mix the PCR solution and bead stock 10×
by repeated aspiration and dispensing; wait for 5 min.

o During this step the ratio of Bead Stock to PCR volume is 1.1,

the 306 bp PCR amplicon binds to the beads while the 70 bp

primers remain in the supernatant.
• Move the midi plate back to the magnet base; wait for 4 min.
• Remove and discard the supernatant from each well.
• Add 200 µl 80% ethanol to each magnetic bead pellet; wait 30 s.
• Remove and discard the ethanol supernatant.
• Move the midi plate from the magnet base to the automated

shaker; allow magnetic bead pellets to dry for 5 min at room

temperature.
• Add 50 µl Elution Buffer (10 mmol/l Tris–Cl, pH 8.0) to each

sample; resuspend beads by 5× repeated aspiration and dispense.
• Mix samples by shaking at 1,800 rpm for 10 s; wait for 5 min.
• Move the midi plate back to the magnet base; wait for 5 min.
• Transfer the supernatant from each of the 24 samples to a single

pooled sequencing sample, one pooled sample per input growth

plate.

After each 24-sample sequencing sample preparation, we trans-

ferred the resulting pooled samples to a 2-ml microcentrifuge tube

and placed the tube on a magnetic separation rack until the remain-

ing beads were drawn to the magnet (approximately 5 min). We

then transferred the fully clarified samples to a new 2-ml microcen-

trifuge tube and stored them at 4°C. We stored the pooled sequenc-

ing samples for each growth plate separately until needed for

sequencing. The concentration of DNA in each pooled sequencing

sample ranged from 10 to 16 ng/µl. DNA concentrations throughout

were determined by fluorimetry (Thermo Fisher Scientific, Cat. #

Q33231).

For sequencing, DNA was diluted to 5 nmol/l and combined with

20% phiX control DNA. DNA from each of the 4 time points was

sequenced in a separate lane on an Illumina HiSeqX using paired-

end mode with 150 bp in each direction.

To count DNA barcodes and estimate the fitness associated with

each LacI variant, the sequencing data were analyzed using custom

software written in C# and Python, and the Bartender1.1 barcode

clustering algorithm (Zhao et al, 2018) (https://github.com/

djross22/nist_lacI_landscape_analysis).

The sequence of the nominal Illumina compatible amplicon

was (with Illumina adapters and flow cell binding sequences in

italics):

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC

TCTTCCGATCTZZZZZZZZXXXXXXXXXXCATCGGTGAGCCCGGGCT

GTCGGCGTNNTNNNANNTNNNANNTNNNANNTNNNANNTNNN

ANNATATGCCAGCAGGCCGGCCACGCTNNTNNNANNTNNNANN

ANNNANNTNNNANNTNNNANNCGGTGGCCCGGGCGGCCGCAC

GATGCGTCCGGCGTAGAGGXXXXXXXXXXZZZZZZZZAGATCGGAA

GAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCTTCT

GCTTG

The nominal forward and reverse reads from paired-end barcode

sequencing were:

ZZZZZZZZXXXXXXXXXXCATCGGTGAGCCCGGGCTGTCGGCGTNN

TNNNANNTNNNANNTNNNANNTNNNANNTNNNANNATATG

and

ZZZZZZZZXXXXXXXXXXCCTCTACGCCGGACGCATCGTGCGGCCGC

CCGGGCCACCGNNTNNNANNTNNNANNTNNNTNNTNNNANNTN

NNANNAGCGT

The Z’s at the beginning of each read are random nucleotides

used as unique molecular identifiers (UMIs) to correct for PCR jack-

potting (Kivioja et al, 2012), the X’s are the sample multiplexing tag

sequences, and the N’s are the random nucleotides of the DNA

barcodes. To minimize the chances of barcode crosstalk, we used

dual barcodes, with independent random barcode sequences on the

forward and reverse reads and 27 random nucleotides in each of the

forward and reverse barcodes.

The raw sequences were parsed, and sequences were kept for

further analysis only if they passed the following quality criteria for

both the forward and reverse reads:

• The four bases after the multiplexing tag (underlined in the

sequences above) must match the nominal sequence with one

allowed mismatch, and the multiplexing tag sequence (X’s in the

sequences above) must match the nominal sequence for one of

the multiplexing tags used with up to three allowed mismatches.
• The five flanking bases before and after the barcodes (bold in the

sequences above) must match the nominal sequence with one

allowed mismatch per set of five bases, and the number of bases

in the barcode must be between 35 and 41 (inclusive).
• The mean Illumina quality score for the barcode and the five

flanking bases before and after the barcode must be greater

than 30.

For the four lanes of HiSeq data, there were 2,024,537,456 raw

reads, of which 1,576,168,836 reads passed the quality criteria

(78%). Note that 20% of the DNA sample loaded onto the HiSeq

instrument was phiX DNA.

True barcode sequences were identified using the Bartender1.1

clustering algorithm (Zhao et al, 2018) with the following parameter

settings: maximum cluster distance = 4, cluster merging thresh-

old = 8, cluster seed length = 5, cluster seed step = 1, and

frequency cutoff = 500. Barcodes from the forward and reverse

reads were clustered independently. The Bartender1.1 clustering

algorithm identified 43,259 distinguishable forward barcode clusters

and 31,055 distinguishable reverse barcode clusters.
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To correct for insertion–deletion read errors, barcode clusters of

different length were considered for merging. First, barcode clusters

with sequences that were sub-strings of one another were automati-

cally merged. Second, pairs of barcode clusters with a DNA

sequence Levenshtein distance of 1 or 2 were merged if the ratio of

the smaller cluster read count to the total read count of both clusters

was < 0.001 and 0.0001, respectively. Third, all barcode clusters

with a Levenshtein distance < 7 from the barcode for the spike-in

control were merged.

After merging barcode clusters of different lengths, there were

43,169 distinguishable forward barcode clusters and 30,931 distin-

guishable reverse barcode clusters. The random positions within the

forward and reverse barcodes had approximately equal probabilities

for each nucleotide, with a mean entropy per position of 1.9799 bits

� 0.0066 bits.

After barcode clustering and merging, the barcode sequencing

reads were sorted based on the sample multiplexing tags and the

barcode read counts were corrected for PCR jackpotting effects. Sets

of multiple barcode reads were treated as PCR jackpot duplicates if

they had the same UMI sequence, the same multiplexing tag, and

the same barcode sequence for both forward and reverse barcode

reads. In the corrected barcode count, each set of PCR jackpot dupli-

cates was counted as a single read. Approximately 15% of the total

barcode sequencing reads were found to be PCR jackpot duplicates.

The forward and reverse barcodes were then combined to give

the DNA barcodes used to measure the relative abundance of each

LacI variant in the library. An additional barcode count threshold

was applied, keeping only DNA barcodes with a total read count

(across all 24 environments and 4 time points) greater than 2,000. A

small number (139) of DNA barcodes were identified as likely

chimeras with forward and reverse barcodes combined from dif-

ferent plasmid templates (Smyth et al, 2010; Schlecht et al, 2017;

Omelina et al, 2019). The likely chimera barcodes were not used in

further analysis.

Finally, 14 pairs of DNA barcodes were found with DNA

sequence Hamming distance of one (across both forward and

reverse barcodes). Only one DNA barcode from each pair was also

found in the long-read sequencing data (see Long-read sequencing

section, below). In addition, the fitness curves (vs IPTG concentra-

tion) were very similar for both barcodes in each pair. Based on

this, the read counts associated with each of those 14 pairs of dual

barcodes were merged, and each pair was treated as a single DNA

barcode.

The final set of 67,730 DNA barcodes was used for all subse-

quent analysis to extract estimates of the fitness and dose-response

curve associated with each barcode.

Long-read sequencing
The full sequence of the library plasmid (pTY1) for every LacI vari-

ant in the library was measured using PacBio circular consensus

HiFi sequencing. The stock of E. coli containing the library was

grown in media and plasmid was purified by miniprep. Purified

plasmid DNA was linearized with BspOI restriction enzyme digest

and submitted for sequencing (University of Maryland Institute of

Genome Sciences). The HiFi sequencing data were used to deter-

mine the consensus lacI sequence for each variant and the corre-

sponding DNA barcode. Of the 67,731 distinct DNA barcodes (see

Barcode sequencing section, above), the HiFi sequencing data were

used to determine the lacI sequences for 63,064 (93%), 3,878 with a

single HiFi lacI read, and 59,186 with multiple HiFi lacI reads.

In addition, the full plasmid sequence was used to detect unin-

tended mutations in the plasmid, i.e., mutations to plasmid regions

other than the lacI CDS. For analysis of the HiFi read data, the full

plasmid sequence was divided into 11 non-overlapping regions that

roughly correspond to different functional elements of the plasmid

(Appendix Table S6), and the sequences for each region were

extracted from the HiFi reads using a custom bioinformatic pipeline

(https://github.com/djross22/nist_lacI_landscape_analysis). The

number of unintended mutations to plasmid regions other than the

lacI CDS was relatively low (Appendix Table S6), so it was not

possible to examine mutational effects with base pair- or residue-

level resolution. However, by pooling the mutational information

for each region, significant region-specific effects could be detected.

To determine if mutations in a region of the plasmid had a signifi-

cant effect, the estimated Hill equation parameters were compared

for all variants with one or more mutations in a given plasmid

region vs all variants with zero mutations in that region. Significant

differences in the geometric mean of one or more Hill equation pa-

rameters were found for variants with mutations in the following

regions: tetA (P-value for log10(G∞): 2 × 10−56), KAN (P-value for

log10(G∞): 4 × 10−11), origin of replication (P-value for log10(G∞):

6 × 10−14), and YFP (P-value for log10(G0): 4 × 10−109; P-value for

log10(G∞): 5 × 10−10; P-value for log10(EC50): 2 × 10−74), where the

P-values given are for Welch’s unequal-variances t-test.

In addition, 43 of the 535 variants with the wild-type LacI amino

acid sequence had mutations in the regulatory region (containing

the PlacI and PtacI promoters, the lacO operator, the riboJ insulator,

and the RBS sites for both lacI and tetA). Of those 43 variants, three

had EC50 values that differed by approximately 2-fold or more from

the geometric mean value for the wild-type EC50. The Kolmogorov-

Smirnov test was used to compare the distributions of EC50 values

between the wild-type variants with and without mutations in the

regulatory region; the results indicated a significant difference (P-

value: 0.024).

To avoid biasing the results of the machine learning and other

quantitative phenotypic analyses, variants were excluded from

those analyses if they had one or more mutations in the non-lacI

regions that show significant mutational effects: tetA, YFP, KAN, the

origin of replication, and the regulatory region. After applying this

data quality filter in addition to those described above, there were

54,162 variants that we used for further quantitative analysis.

Library-scale fitness measurement
The experimental approach for this work was designed to maintain

bacterial cultures in exponential growth phase for the full duration

of the measurements. So, in all analyses, the Malthusian definition

of fitness was used, i.e., fitness is the exponential growth rate (Wu

et al, 2013).

The fitness of cells containing each LacI variant was calculated

from the change in the relative abundance of DNA barcodes over

time. The spike-in control was used to normalize the DNA barcode

count data to enable the determination of the absolute fitness for

each LacI variant in the library.

Briefly, for each LacI variant in each of the 24 chemical environ-

ments, the ratio of the barcode read count to the spike-in read count

was fit to a function assuming exponential growth and a delay in
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the onset of the fitness impact of tetracycline. The fitness associated

with each variant in each of the 24 chemical environments was

determined as a parameter in the corresponding least-squares fit as

detailed below.

The barcode sequencing data were analyzed with a model based

on the assumption that the number of cells containing each LacI

variant grows with an exponential expansion rate that is indepen-

dent of all other variants. So, for each sample, at the end of the incu-

bation cycle for Growth Plate j, the number of cells with LacI

variant i is:

Ni,j ¼Ni,j�1

d
exp μi,jΔt
� �

(1)

where, d (= 10) is the dilution factor used in transferring the cell

culture from Growth Plate j – 1 to Growth Plate j, Δt (≈ 165 min)

is the total incubation time for each growth plate (including time

required for automated cell passaging), and μi,j is the fitness (i.e.

mean exponential growth rate) of cells with LacI variant i in

Growth Plate j. Note that each growth plate was pre-heated to

37°C before transferring cells from the previous growth plate, so

the cell growth rate was assumed to be unaffected by temperature

changes during passaging.

For samples without tetracycline, the chemical composition of the

media was the same for all growth plates, so the fitness is assumed

to be constant, μi,j = μi
0, where μi

0 is the fitness associated with LacI

variant i in the absence of tetracycline. Consequently, the number of

cells in each Growth Plate for samples grown without tetracycline is:

log N0
i,j

� �
¼ log N0

i,0

� �þ j μ0i Δt� log dð Þ� �
(2)

where N0
i,j is the number of cells with LacI variant i at the end of

Growth Plate j for samples grown without tetracycline.

For samples grown with tetracycline, the tetracycline was only

added to the culture media for Growth Plates 2–4. Because of the

mode of action of tetracycline (inhibition of translation), there was a

delay in its effect on cell fitness: Immediately after diluting cells into

Growth Plate 2 (the first plate with tetracycline), the cells still had a

normal level of proteins needed for growth and proliferation and they

continued to grow at nearly the same rate as without tetracycline.

Over time, as the level of proteins required for cell growth decreased

due to tetracycline, the growth rate of the cells decreased. Accord-

ingly, the analysis accounts for the variation in cell fitness (growth

rate) as a function of time after the cells were exposed to tetracycline.

With the assumption that the fitness is approximately proportional to

the number of proteins needed for growth, the fitness as a function of

time is taken to approach the new value with an exponential decay:

μi,j ¼ μ0i þ μteti �μ0i
� �

e�αj (3)

where μi
tet is the steady-state fitness with tetracycline, and α is a tran-

sition rate. The transition rate was kept fixed at α = log(5), deter-

mined from a small-scale calibration measurement. Note that at the

tetracycline concentration used during the library-scale measure-

ment (20 µg/ml), μi
tet was greater than zero even at the lowest G(L)

levels (Appendix Fig S10). From equation (3), the number of cells in

each Growth Plate for samples grown with tetracycline is:

log Ntet
i,j

� �
¼ log Ntet

i,0

� �þ j μteti Δt� log dð Þ� �þΔt
α

μ0i �μteti þ μteti �μ0i
� �

e�αj
� �

:

(4)

The barcode read count for variant i in Growth Plate j was

assumed to be proportional to the cell number:

Ri,j ¼ aibiNi,j (5)

where ai is a proportionality constant associated with variant i,

and bj is a proportionality constant associated with Growth Plate j.

The proportionality constant ai can be different for each variant i

due to differences in PCR amplification efficiency resulting from

variations in the barcode sequences on each amplicon. Similarly,

the proportionality constant bj can be different for each Growth

Plate because of sample-to-sample variations in the DNA extraction

efficiency or differences in PCR efficiency associated with different

sample multiplexing tag sequences.

The logarithm of the read count normalized by the spike-in read

count was used to estimate the fitness of each variant from its asso-

ciated barcode read count:

log ri,j
� �

≡ log
Ri,j

Rspike,j

� �
: (6)

For samples without tetracycline, μi
0 was estimated for each

variant using a weighted linear least-squares fit to the log-count

ratio vs j:

log r0i,j

� �
¼ log r0i,0

� �þ jΔμ0i Δt (7)

where r0i,j≡
ai

aspike

N0
i,0

N0
spike,0

, and Δμ0i ≡μ0i �μ0spike is the difference between

the fitness of variant i and the spike-in fitness without tetracycline.

For samples grown with tetracycline, μi
tet was estimated for each

variant with a weighted least-squares fit to the nonlinear form for

the log-count ratio:

log rteti,j

� �
¼ log rteti,0

� �þ jΔμteti ΔtþΔt
α

Δμ0i �Δμteti þ Δμteti �Δμ0i
� �

e�αj
� �

(8)

where rteti,j ≡
ai

aspike

Ntet
i,0

Ntet
spike,0

, and Δμteti ≡μteti �μtetspike is the difference between

the fitness of variant i and the spike-in fitness with tetracycline.

For the least-squares fits to determine both μ0i and μteti , the fits

were weighted based on the propagated uncertainties of r0i,j and rteti,j

calculated assuming that the uncertainty of each read count was

dominated by Poisson sampling.

For the fitness landscape measurement, there were a large number

of outliers for the read count measurements from three of the

samples: Growth Plate 3, without tetracycline, [IPTG] = 8 µmol/l;

Growth Plate 4, without tetracycline, [IPTG] = 64 µmol/l and

[IPTG] = 2,048 µmol/l. These three samples were excluded from the

analysis.

Dose-response curve measurements
Plasmids pTY1 and pVER were engineered to provide two

independent measurements of the dose-response curve for LacI

variants. First, in pTY1, LacI regulates the expression of a
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tetracycline resistance gene (tetA) that enables determination of the

dose-response from barcode sequencing data by comparing the fit-

ness measured with tetracycline to the fitness measured without

tetracycline. Second, in pVER, LacI regulates the expression of a

fluorescent protein (YFP) that enables direct measurement of the

dose-response curve with flow cytometry.

A set of nine randomly selected LacI variants were used to cali-

brate the estimation of regulated gene expression output from the

barcode sequencing fitness measurements (Appendix Fig S10). The

calibration data consisted of the fitness data for each calibration

variant from the library barcode sequencing measurement (using

the library plasmid, pTY1) and flow cytometry data for each calibra-

tion variant prepared as a clonal culture (using the verification plas-

mid, pVER). These data were fit to a Hill equation model for the

fitness impact of tetracycline as a function of the regulated gene

expression level, G:

μtet

μ0
�1¼Δf

Gnf

G
nf

50þGnf
�1

 !
(9)

where µtet is the fitness with tetracycline, µ0 is the fitness without

tetracycline, Δf is the maximal fitness impact of tetracycline (when

G = 0), G50 is the gene expression level that produces a 50% recov-

ery in fitness, and nf characterizes the steepness of the fitness cali-

bration curve. Because the fitness calibration curve, equation (9),

is nonlinear, it cannot be directly inverted to give the regulated

gene expression level for all possible fitness measurements. So,

two Bayesian inference models were used to estimate the dose-

response curves for every LacI variant in the library using the

barcode sequencing fitness measurements. Source code for both

models is included in the software archive at https://github.com/

djross22/nist_lacI_landscape_analysis. Both inference models used

equation (9) to represent the relationship between fitness and regu-

lated gene expression. The parameters Δf, G50, and nf were

included in both inference models as parameters with informative

priors. Priors for G50 and nf were based on the results of the fit to

the fitness calibration data (Appendix Fig S10: G50 ~ normal

(mean = 13,330, SD = 500), nf ~ normal(mean = 3.24, SD = 0.29).

We chose the prior for Δf based on an examination of μtet=μ0�1

measured with zero IPTG: Δf ~ exponentially-modified-normal

(mean = 0.720, SD = 0.015, rate = 14). The use of a prior for Δf

with a broad right-side tail was important to accommodate variants

in the library for which μtet=μ0�1 was systematically less than

−0.722.
The first Bayesian inference model assumed that the dose-

response curve for each LacI variant was described by the Hill equa-

tion. The Hill equation parameters for each variant, G∞, G0, EC50,

and n and their associated uncertainties were determined using

Bayesian parameter estimation by Markov Chain Monte Carlo

(MCMC) sampling with PyStan (Carpenter et al, 2017). Broad, flat

priors were used for log10(G0), log10(G∞), and log10(EC50), with

error function boundaries to constrain those parameter estimates to

within the measurable range (100 MEF ≤ G0, G∞ ≤ 50,000 MEF;

0.1 µmol/l ≤ EC50,i ≤ 40,000 µmol/l). The prior for ni was a gamma

distribution with shape parameter of 4.0 and inverse scale parame-

ter of 3.33. The inference model was run individually for each LacI

variant, with four independent chains, 1,000 iterations per chain

(500 warmup iterations), and the adapt_delta parameter set to 0.9.

Testing with data from a set of randomly selected variants indicated

that these settings for the Stan sampling algorithm typically

produced a Gelman-Rubin R̂ diagnostic < 1.05 and number of effec-

tive iterations > 100.

The second Bayesian inference model was a non-parametric GP

model (Rasmussen & Williams, 2005) that assumed only that the

dose-response curve for each LacI variant was a smooth function

of IPTG concentration. The GP model was used to determine

which variants had band-pass or band-stop phenotypes. The GP

model was also implemented using MCMC sampling with PyStan

(Carpenter et al, 2017). The GP inference model was run individu-

ally for each variant, with four independent chains, 1,000 itera-

tions per chain (500 warmup iterations), and the adapt_delta

parameter set to 0.9. Testing with data from a set of randomly

selected variants indicated that these settings for the Stan sampling

algorithm of the GP model typically produced a Gelman-Rubin R̂

diagnostic less than 1.02 and number of effective iterations greater

than 200.

Flow cytometry measurements
Over 100 LacI variants from the library were chosen for flow cytom-

etry verification of the dose-response curves. The CDSs of these

variants were chemically synthesized (Twist Bioscience). Each

synthesized sequence was digested with restriction enzymes XhoI

and SgsI, and ligated into the verification plasmid, pVER, and then

transformed into MG1655Δlac. Transformants were plated on LB

agar supplemented with kanamycin and 0.2% glucose. LacI variant

sequences were verified with Sanger sequencing (Psomagen USA).

For flow cytometry measurements of dose-response curves, a

culture of E. coli containing pVER with a chosen variant sequence

was distributed across 12 wells of a 96-well plate and grown to

stationary phase using the automated microbial growth system.

After growth to stationary phase, cultures were diluted 50-fold into

a plate containing the same 12 IPTG concentrations used during the

fitness landscape measurement (0–2,048 µmol/l). In some cases,

higher IPTG concentrations were used to capture the full dose-

response curves of selected variants (e.g., Appendix Figs S5–S8).
Cultures were then grown for 160 min (~ 3.3 generations) before

being diluted 10-fold into the same IPTG gradient and grown for

another 160 min. Then, 5 µl of each culture was diluted into 195 µl
of PBS supplemented with 170 µg/ml chloramphenicol and incu-

bated at room temperature for 30–60 min to halt the translation of

YFP and allow extant YFP to mature in the cells.

Samples were measured on an Attune NxT flow cytometry with

autosampler using a 488 nm excitation laser and a 530 nm � 15

nm band-pass emission filter. Blank samples were measured with

each batch of cell measurements, and an automated gating algo-

rithm was used to discriminate cell events from non-cell events

(Appendix Fig S27A and B). With the Attune cytometer, the area

and height parameters for each detection channel are calibrated to

give the same value for singlet events. So, to identify singlet cell

events and exclude multiplet cell events, a second automated

gating algorithm was applied to select only cells with side scatter

area ≅ side scatter height (Appendix Fig S27C and D). All subse-

quent analysis was performed using the singlet cell event data.

Fluorescence data were calibrated to molecules of equivalent fluo-

rophore (MEF) using fluorescent calibration beads (Spherotech,
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part no. RCP-30-20A). The cytometer was programmed to measure

a 25 µl portion of each cell sample, and the 40-fold dilution used

in the cytometry sample preparation resulted in approximately

20,000 singlet cell measurements per sample. The geometric mean

of the YFP fluorescence was used as a summary statistic to repre-

sent the regulated gene expression level as a function of the input

ligand concentration, [IPTG] for each LacI variant. An autofluores-

cence control (strain MG1655Δlac with a plasmid similar to pVER

but lacking the YFP gene) was also measured with flow cytometry

and analyzed in the same way as other variants. The regulated

gene expression output level for each variant is reported as the

geometric mean of the measured fluorescence for that variant

minus the geometric mean of the measured fluorescence for the

zero-fluorescence control (92 MEF).

Hill equation parameters were estimated from the flow cytometry

data using Bayesian parameter estimation by Markov Chain Monte

Carlo (MCMC) sampling with PyStan (Carpenter et al, 2017). The

Bayesian inference model used for flow cytometry data analysis

assumed that the flow cytometry data resulted from a Hill equa-

tion response plus normally distributed measurement errors. The

model used the same priors for the Hill equation parameters as

described above.

Calculation of abundance for LacI phenotypes
The relative abundance of the various LacI phenotypes

(Appendix Fig S3) was estimated using the results of both Baye-

sian inference models (Hill equation and GP). Variants were

labeled as “flat response” if the Hill equation model and the GP

model agreed (i.e., if the median estimate for the Hill equa-

tion dose-response curve was within the central 90% credible

interval from the GP model at all 12 IPTG concentrations) and if

the posterior probability for G0 > G∞ was between 0.05 and 0.95

(from the Hill equation model inference). Variants were labeled as

having a negative response if the slope, ∂G/∂L, was negative at

one or more IPTG concentrations with 0.95 or higher posterior

probability (from the GP model inference). To avoid false posi-

tives from end effects, this negative slope criteria was only

applied for IPTG concentrations between 2 µmol/l IPTG and

1,024 µmol/l. Variants were labeled as “always on” (the I– pheno-

type from reference (Markiewicz et al, 1994)) if they were flat-

response and if G(0) was greater than 0.25 times the wild-type G∞

value with 0.95 or higher posterior probability (from the GP

model inference). Variants were labeled as “always off” (the IS

phenotype from reference (Markiewicz et al, 1994)) if they were

flat-response but not always on. Variants were labeled as band-

stop or band-pass if the slope, ∂G/∂L, was negative at some IPTG

concentrations and positive at other IPTG concentrations, both

with 0.95 or higher posterior probability (from the GP model

inference). Band-stop and band-pass variants were distinguished

by the ordering of the negative-slope and positive-slope portions

of the dose-response curves. Variants that had a negative response

but that were not band-pass or band-stop, were labeled as

inverted. False-positive rates were estimated for each phenotypic

category by manually examining the fitness vs IPTG data for LacI

variants with less than three substitutions. Typical causes of false-

positive phenotypic labeling included unusually high noise in the

fitness measurement and biased fit results due to outlier fitness

data points. Estimated false-positive rates ranged between 0.001

and 0.005. The relative abundance values shown in Appendix Fig

S3A were corrected for false positives using the estimated rates.

Comparison of synonymous mutations
The library contained a set of 39 variants with the wild-type lacI

CDS (each with a different DNA barcode), and a set of 310 variants

with only synonymous nucleotide changes (i.e., no amino acid

substitutions). Both sets had long-read sequencing coverage for the

entire plasmid and were screened to retain only variants with zero

unintended mutations in the plasmid (i.e., no mutations in regions

of the plasmid other than the lacI CDS). The Hill equation fit results

for those two sets were compared to determine whether synony-

mous nucleotide changes significantly affected the phenotype. The

Kolmogorov-Smirnov test was used to compare the distributions of

Hill equation parameters between these two sets. The resulting P-

values (0.71, 0.40, 0.28, and 0.17 for G0, G∞, EC50, and n, respec-

tively) indicate that there were no significant differences between

them. Additionally, the library contained 40 sets of variants, each

with four or more synonymous CDSs (including the set of synony-

mous wild-type sequences and 39 non-wild-type sequences). A hier-

archical model was used to compare the Hill equation parameters

within each set of synonymous CDSs. Within each set, the uncer-

tainty associated with individual variants was typically larger than

the variant-to-variant variability estimated by the hierarchical

model. Overall, these results indicate that synonymous SNPs did not

measurably impact the LacI phenotype, so only the amino acid

sequences were considered for any subsequent quantitative geno-

type-to-phenotype analysis.

Analysis of single-substitution data
The single amino acid substitution results presented in Figs 3 and,

6B and C, Appendix Figs S17–S20, and included in Dataset EV1 are

a combination of direct experimental observations, DNN model

results, and estimates of G0 for missing substitutions.

For direct experimental observations, multiple LacI variants were

often present in the library with the same single substitution. To

ensure that the highest quality data was used for the single-substitu-

tion analysis, only data for variants with more than 5,000 total

barcode reads were used (see Barcode sequencing section, above).

For each single substitution, if there was only one LacI variant with

more than 5,000 barcode reads, the median and standard deviation

for each parameter were used directly from the Bayesian inference

using the Hill equation model. If there was more than one LacI vari-

ant with a given single substitution and more than 5,000 barcode

reads, the consensus Hill equation parameter values and standard

deviations for that substitution were calculated using a hierarchical

model based on the eight schools model (Rubin, 1981; https://mc-st

an.org/users/documentation/case-studies/divergences_and_bias.html).

The hierarchical model was applied separately for each Hill equa-

tion parameter. The logarithm of the parameter values was used as

input to the hierarchical model, and the input data were centered

and normalized by 1.15 × the minimum measurement uncertainty.

The standard normal distribution was used as a loosely informative

prior for the consensus mean effect, and a half-normal prior

(mean = 0.5, SD = 1) was used for the normalized consensus stan-

dard deviation (i.e., hierarchical standard deviation). These priors

and normalization were chosen so that the model gave intuitively

reasonable results for the consensus of two LacI variants (i.e., close
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to the results for the LacI variant with the lowest measurement

uncertainty). Results for the hierarchical model were determined

using Bayesian parameter estimation by Markov Chain Monte Carlo

(MCMC) sampling with PyStan (Carpenter et al, 2017). MCMC

sampling was run with four independent chains, 10,000 iterations

per chain (5,000 warmup iterations), and the adapt_delta parameter

set to 0.975.

For G0, the direct experimental results were used for the 1,047

substitutions plotted as gray points or red points and error bars in

Fig 3D and Appendix Fig S20. In addition, estimated values were

used for the 83 missing substitutions that have been previously

shown to result in an “always on” LacI phenotype (i.e., the I−

phenotype (Markiewicz et al, 1994; Pace et al, 1997)). For these

substitutions, plotted as pink-gray points and error bars in Fig 3D,

the median value was estimated to be equal to the wild-type value

for G∞ (24,000 MEF), and the geometric standard deviation was esti-

mated to be 4-fold, both based on information from previous publi-

cations (Markiewicz et al, 1994; Pace et al, 1997). Note that these

83 substitutions are completely missing from the experimental land-

scape dataset reported here, i.e., they are not found in any LacI vari-

ant, as single substitutions or in combination with other

substitutions.

For G∞ and EC50, the direct experimental results were used for

the 964 substitutions that are found as single substitutions in the

library and that have a consensus standard deviation for log10(EC50)

less than 0.35. An additional 74 substitutions are found as single

substitutions in the library, but with higher EC50 uncertainty. For

these substitutions, either EC50 is comparable to or higher than the

maximum ligand concentration used for the measurement

(2,048 µmol/l IPTG), or G∞ is comparable to G0 (or both). Conse-

quently, the dose-response curve is flat or nearly flat across the

range of concentrations used, and the Bayesian inference used to

estimate the Hill equation parameters results in EC50 and G∞ esti-

mates with large uncertainties. The DNN model can provide a better

parameter estimate for these flat-response variants because it uses

data and relationships from the full library (e.g., the log-additivity

of EC50) to predict parameter values for each single substitution. So,

the DNN model results were used for these 74 substitutions. Finally,

the DNN model results were used for an additional 953 substitutions

that are found in the library, but only in combination with other

substitutions (i.e., not as single substitutions).

Identification of high-frequency substitutions and structural
features associated with inverted and band-stop phenotypes
The set of 43 strongly inverted LacI variants discussed in the main

text and used for the plots in Fig 5A,C were identified by the follow-

ing criteria: G0/G∞ ≥ 2, G0 > G∞,wt/2, G∞ < G∞,wt/2, and EC50
between 3 µmol/l and 1,000 µmol/l. The set of 31 strong band-stop

variants discussed in the main text and used for the plots in Fig 5B

and D were identified by the following criteria: G0 > G∞,wt/2, Gmin <
G∞,wt/2, and the slope, ∂log(G)/∂log(L), of less than −0.07 at low

IPTG concentrations and greater than zero at higher IPTG concen-

trations, both with 0.95 or higher posterior probability (from the GP

model inference). To avoid false positives due to noise in the DNA

barcode counting, only LacI variants with a total DNA barcode read

count greater than 3,000 were included. Also, the sets of strongly

inverted and strong band-stop variants were manually screened for

additional likely false positives due to outlier fitness data points.

A hypergeometric test was used to determine the amino acid

substitutions that occur more frequently in the set of strongly

inverted or strong band-stop variants than in the full library (the set

of 52,321 variants with more than 3,000 DNA barcode reads and

with the lacI sequences determined by long-read sequencing). For

each possible substitution, the cumulative hypergeometric distribu-

tion was used to calculate the probability of the observed number of

occurrences of that substitution in the set of inverted or band-stop

variants under a null model of no association. This probability was

used as a P-value for the null hypothesis that the observed number

of inverted or band-stop variants with that substitution resulted

from an unbiased random selection of variants from the full library.

Substitutions were considered to occur at significantly higher

frequency if they had a P-value < 0.005 and if they occurred more

than once in the set of inverted or band-stop variants. In the set of

strongly inverted variants, 10 associated (higher frequency) amino

acid substitutions were identified: S70I, K84N, D88Y, V96E, A135T,

V192A, G200S, Q248H, Y273H, and A343G. In the set of strong

band-stop variants, eight associated substitutions were identified:

V4A, A92V, H179Q, R195H, G178D, G265D, D292G, and R351G. To

estimate the number of false positives, random sets of LacI variants

were chosen with the same sample size as the strongly inverted (43)

or the strong band-stop (31) variants and the same significance

criteria was applied. From 300 independent iterations of the random

selection, the estimated mean number of false-positive substitutions

was 2.1 and 2.3 for the inverted and band-stop phenotypes, respec-

tively. Statistics for the test results are given in Appendix Tables S3

and S4.

A similar procedure was used to determine which structural

features within the protein are mutated with higher frequency in the

inverted or band-stop LacI variants. The structural features consid-

ered were the secondary structures from the complete crystal struc-

ture of LacI (Lewis et al, 1996), as well as larger structural features

(N-terminal core domain, C-terminal core domain, DNA-binding

domain, dimer interface) and functional domains (ligand-binding,

core-pivot). All of the domains and features included in the analysis

are listed in Appendix Table S2. The P-value threshold used for

significance was 0.025. For the strongly inverted variants, five

features were identified with a higher frequency of amino acid

substitutions: the dimer interface, residues within 7 �A of the ligand-

binding pocket, helix 5, helix 11, and β-strand I. For the strong

band-stop variants, three features were identified: the C-terminal

core, β-strand J, and helix 9. From 300 independent random selec-

tions of variants from the full library, the estimated mean number of

false-positive features was 0.38 and 0.51 for the inverted and band-

stop phenotypes, respectively. Statistics for the test results are given

in Appendix Tables S3 and S4.

Deep neural network modeling
The dataset was pruned to a set of high-quality sequences for DNN

modeling. Specifically, data for a LacI variant was only used for

modeling if it satisfied the following criteria:

• No mutations were found in the long-read sequencing results for

the regions of the plasmid encoding kanamycin resistance, the

origin of replication, the tetA and YFP genes, and the regulatory

region containing the promoters and ribosomal binding sites for

lacI and tetA (Appendix Table S6).
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• The total number of barcode read counts for a LacI variant was

> 3,000.
• The number of amino acid substitutions was < 14.
• The measurement uncertainty for log10(G∞) was < 0.7.
• The results of the Hill equation model and the GP model agreed at

all 12 IPTG concentrations. More specifically, data were only used

if the median estimate for the dose-response curve from the Hill

equation model was within the central 90% credible interval from

the GP model at all 12 IPTG concentrations.

After applying the quality criteria listed above, 47,462 LacI vari-

ants remained for DNN modeling. The data were used to train the

DNN model to predict the Hill equation parameters G0, G∞, and

EC50 as detailed below.

Amino acid sequences were represented as one-hot encoded

vectors of length L = 2,536, and with mutational paths represented

as K × L tensors for a sequence with K substitutions. The logarithm

of the Hill equation parameter values were normalized to a standard

deviation of 1, and then shifted by the corresponding value of the

wild-type sequence in order to correctly represent the prediction

goal of the change in each parameter relative to wild-type LacI. A

long-term, short-term recurrent neural network was selected for the

underlying model (Hochreiter & Schmidhuber, 1997), with 16

hidden units, a single hidden layer, and hyperbolic tangent (tanh)

non-linearities. Inference was performed in pytorch (preprint:

Paszke et al, 2019) using the Adam optimizer (preprint: Kingma &

Ba, 2017). For EC50 and G0, the contribution of individual data

points to the regression loss were weighted inversely proportional

to their experimental uncertainty. Model selection was performed

with 10-fold cross-validation on the training set (80% of all avail-

able data). Approximate Bayesian inference was performed with the

Bayes-by-backprop approach (preprint: Blundell et al, 2015). Briefly,

this substitutes the point-estimate parameters of the neural network

with variational approximations to a Bayesian model, represented

as a mean and variance of a normal random variable. Effectively,

this only doubles the number of parameters in the model. A mixture

of two normal distributions was used as a prior for each parameter

weight, with the two mixture components having high and low vari-

ance, respectively. This prior emulates a sparsifying spike-slab prior

while remaining tractable for inference based on back propagation.

Posterior means of each weight were used to calculate posterior

predictive means, while Monte Carlo draws from the variational

posterior were used to calculate the model prediction uncertainty

(Appendix Fig S14).

Variational approximations typically underestimate uncertainty.

So, to correct the uncertainty estimates, the model prediction uncer-

tainty obtained from the variational approximation was compared

with the model root-mean-square error (RMSE; i.e., the root-mean-

square difference between the model prediction and the experimen-

tal measurement). For all three Hill equation parameters (G0, G∞,

and EC50), both the prediction uncertainty and the RMSE increase

with the number of amino acid substitutions relative to wild-type

sequence (Appendix Fig S14A and B), and the RMSE at each substi-

tutional distance is an approximately linear function of the median

model uncertainty (Appendix Fig S13C). So, for the single-substitu-

tion analysis (Figs 3 and, 6B and C, Appendix Fig S20, Dataset

EV1), the uncertainties from the variational approximation were

multiplied by a factor of 3.8. This rescaled the uncertainties so that

the median uncertainty was approximately equal to the RMSE for

each substitutional distance.

We compared the performance of the recurrent DNN model

against two alternative models (Appendix Fig S12B). First, we

trained a linear-additive model, which assumes that each parameter

is log-additive and so only learns the average effect of each amino

substitution across the entire dataset. Second, we trained a more

conventional feed-forward neural network. The feed-forward neural

network had four hidden layers, with 32, 64, 64, and 32 hidden

units, respectively. Each hidden layer had a rectified linear unit

(ReLU) non-linearity and a batch-normalization step between each

layer. Both the linear-additive and feed-forward models were

constructed and trained with pytorch (preprint: Paszke et al, 2019),

using the Adam optimizer (preprint: Kingma & Ba, 2017) and a

learning rate of 10−3.

Data availability

Long-read and short-read DNA sequencing: NCBI BioProject PRJNA643436

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA643436).

pTY1 plasmid sequence: NCBI GenBank MT702633 (https://

www.ncbi.nlm.nih.gov/nuccore/MT702633).

pVER plasmid sequence: NCBI GenBank MT702634 (https://

www.ncbi.nlm.nih.gov/nuccore/MT702634).

The processed data table containing comprehensive data and

information for each LacI variant in the library is publicly available

via the NIST Science Data Portal, with the identifier ark:/88434/

mds2-2259 (https://data.nist.gov/od/id/mds2-2259 or https://doi.

org/10.18434/M32259). The data table includes the DNA barcode

sequences, the barcode read counts for each sample and time point

used for the library-scale measurement, fitness estimates for each

barcoded variant across the 24 chemical environments, the results

of both Bayesian inference models (including posterior medians,

covariances, and 0.05, 0.25, 0.75, and 0.95 posterior quantiles), the

LacI CDS and amino acid sequence for each barcoded variant (as

determined by long-read sequencing), the number of LacI CDS reads

in the long-read sequencing dataset for each barcoded variant, and

the number of unintended mutations in other regions of the plasmid

(from the long-read sequencing data).

All data analysis code is available at https://github.com/

djross22/nist_lacI_landscape_analysis.

Expanded View for this article is available online.
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