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Abstract

The small GTPase proteins RhoA and RhoC are essential for tumor invasion and/or metastasis in 

breast carcinomas. However, it is poorly understood how RhoA and RhoC are activated in breast 

cancer cells. Here we describe the role of MyoGEF in regulating RhoA and RhoC activation as 

well as cell polarity and invasion in an invasive breast cancer cell line MDA-MB-231. RNA-

interference (RNAi)-mediated depletion of MyoGEF in MDA-MB-231 cells not only suppresses 

the activation of RhoA and RhoC, but also decreases cell polarity and invasion activity. The 

dominant negative mutants of RhoA and RhoC, but not Rac1 and Cdc42, dramatically decrease 

actin polymerization induced by MyoGEF. In addition, MyoGEF colocalizes with nonmuscle 

myosin IIA (NMIIA) to the front of migrating cells, and depletion of NMIIA by RNAi disrupts the 

polarized localization of MyoGEF at the cell leading edge, suggesting a role for NMIIA in 

regulating MyoGEF localization and function. Moreover, MyoGEF protein levels significantly 

increase in infiltrating ductal carcinomas as well as in invasive breast cancer cell lines. Taken 

together, our results suggest that MyoGEF cooperates with NMIIA to regulate the polarity and 

invasion activity of breast cancer cells through activation of RhoA and RhoC.
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INTRODUCTION

Cell migration plays a critical role in normal physiological processes such as embryogenesis, 

immune surveillance, and angiogenesis, as well as in pathological processes such as tumor 

invasion and metastasis (Burridge and Wennerberg, 2004; Jaffe and Hall, 2005). Cell 

migration involves lamellipodia formation and membrane protrusion at the front and 

retraction of the rear part of migrating cells. Actin polymerization at the front of migrating 

cells is critically important for membrane protrusion while myosin-based contractility is 

required for the retraction of the rear of migrating cells (Lauffenburger and Horwitz, 1996; 

Raftopoulou and Hall, 2004; Ridley et al., 2003; Webb et al., 2002).
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The small GTPase proteins such as Rac1, Cdc42, and RhoA are key regulators of the actin 

cytoskeleton. RhoA stimulates the assembly of contractile actomyosin filaments and 

associated focal adhesion complexes (Ridley and Hall, 1992). Rac1 induces the formation of 

lamellipodia and membrane ruffles (Ridley et al., 1992), whereas Cdc42 induces filopodia 

(Kozma et al., 1995). Both lamellipodia and filopodia are actin-rich membrane protrusions, 

which define the leading edge of a migrating cell. Earlier studies suggest that Rac1 and 

Cdc42 are restricted to the front of migrating cells and are responsible for membrane 

protrusion, whereas RhoA is localized to the rear of migrating cells and is responsible for 

tail retraction (Kraynov et al., 2000; Nalbant et al., 2004; Raftopoulou and Hall, 2004; 

Sastry et al., 2006).

However, studies using fluorescence resonance energy transfer (FRET) to monitor the 

distribution of active RhoA in randomly migrating cells concluded that active RhoA also 

localizes to the front of migrating cells (Kurokawa and Matsuda, 2005; Pertz et al., 2006), 

consistent with findings that RhoA can induce membrane protrusion and ruffling in 

epithelial cells (Kawano et al., 1999; O'Connor et al., 2000). It is now believed that active 

RhoA can localize to the front of migrating cells in a cell type and/or signal specific manner. 

In randomly migrating cells, high levels of active RhoA are found at the cell leading edge. 

In contrast, low levels of active RhoA are found in platelet-derived growth factor (PDGF)-

induced membrane protrusions (Pertz et al., 2006).

Tumor invasion and metastasis involve uncontrolled cell migration. Accumulating evidence 

suggests that activation of small GTPase proteins RhoA and RhoC is critical for tumor 

invasion and/or metastasis in breast carcinoma (Clark et al., 2000; Hakem et al., 2005; Kleer 

et al., 2005; Kleer et al., 2002; Kleer et al., 2004; Kusama et al., 2006; Pille et al., 2005; 

Simpson et al., 2004; van Golen et al., 1999; van Golen et al., 2000). RhoA and RhoC are 

activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-

activating proteins (GAPs). However, the GEFs that are responsible for RhoA/RhoC 

activation in breast cancer cells remain to be identified. In this article, we have demonstrated 

that MyoGEF can activate RhoA and RhoC in an invasive breast cancer cell line MDA-

MB-231 cells. MyoGEF colocalizes with nonmuscle myosin IIA (NMIIA) to the front of 

migrating cells. In addition, depletion of MyoGEF in MDA-MB-231 cells by RNAi impairs 

cell polarity and invasion. Further, MyoGEF is highly expressed in invasive breast cancer 

cell lines as well as in infiltrating ductal carcinomas. Our results indicate that MyoGEF 

plays an important role in regulating the polarity and invasion activity of invasive breast 

cancer cells by activating RhoA/RhoC.

RESULTS

MyoGEF is required for the invasion activity of MDA-MB-231 cells

To correlate the expression level of MyoGEF with the invasive potential of breast cancer 

cells, immunoblot analysis with an antibody specific for MyoGEF was carried out to 

examine MyoGEF protein levels in breast cancer cell lines. As shown in Figure 1A, 

MyoGEF is highly expressed in invasive breast cancer cells MDA-MB-231 and MDA-

MB-435S, but is not detectable in noninvasive (MDA-MB-361 and MCF-7) or poorly 

invasive (MDA-MB-468) breast cancer cells. This finding indicates that MyoGEF may play 
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a critical role in regulating the invasion activity of breast cancer cells. Therefore, we used 

RNAi to deplete MyoGEF in MDA-MD-231 cells and then examined the effect of MyoGEF 

depletion on the invasion activity of MDA-MB-231 cells. At 48 h after transfection with 

control or MyoGEF siRNA, transfected MDA-MB-231 cells were subjected to Matrigel 

invasion assays. As shown in Figures 1C and 1D, depletion of MyoGEF dramatically 

inhibited MDA-MB-231 cell invasion activity. Nonmuscle myosin II (NMII) has also been 

implicated as an important regulator of cell invasion and migration (Conti and Adelstein, 

2008; Lo et al., 2004; Meshel et al., 2005; Vicente-Manzanares et al., 2007). In addition, 

MyoGEF can interact with NMIIA (Wu et al., 2006). Therefore, we also depleted both 

NMIIA and MyoGEF to examine whether NMIIA and MyoGEF synergistically regulate cell 

invasion. As shown in Figures 1C and 1D, RNAi-mediated depletion of both NMIIA and 

MyoGEF further decreased the invasion activity of MDA-MB-231 cells, suggesting that 

MyoGEF and NMIIA may cooperate in regulating breast cancer cell invasion.

We then asked whether MyoGEF protein levels increase in invasive breast carcinomas. To 

this end, we carried out immunohistochemistry with MyoGEF antibody to examine 

MyoGEF protein levels in a human breast cancer tissue array (US Biomax, Inc.). This tissue 

array contains 21 cases of infiltrating ductal carcinomas with normal and adjacent tissues. 

As shown in Figure 1E, MyoGEF protein levels significantly increase in infiltrating ductal 

carcinomas as compared to normal or adjacent breast tissues (compare panels a and c with 

panel b). We found that 17 out of the 21 cases of infiltrating ductal carcinomas (n=17/21 

cases) show a dramatic increase in MyoGEF protein levels.

Activation of RhoA and RhoC by MyoGEF

To determine whether MyoGEF can activate RhoA and RhoC in breast cancer cells, MDA-

MB-231 cells treated with control or MyoGEF siRNAs were subjected to RBD (rhotekin 

Rho-binding domain) or PBD (PAK1/p21 binding domain) pull-down assays to estimate the 

activity of the small GTPase proteins, including RhoA, RhoC, Rac1, and Cdc42. RBD binds 

to activated (GTP-bound) RhoA and RhoC, whereas PBD binds to activated (GTP-bound) 

Rac1 and Cdc42 (Abe et al., 2000; Arthur et al., 2002; Liu and Burridge, 2000). As shown 

in Figures 2C and 2D, RBD-conjugated agarose beads could precipitate a significant amount 

of GTP-RhoA and RhoC from MDA-MB-231 cells treated with control siRNA (lane 1 in 

Figures 2C and 2D), whereas depletion of MyoGEF by RNAi dramatically decreased the 

amount of active RhoA and RhoC precipitated by RBD-beads (lane 2 in Figures 2C and 

2D). In contrast, MyoGEF depletion did not dramatically affect the amount of active Rac1 

and Cdc42 pulled down by PBD-conjugated agarose beads (Figures 2E and 2F). These 

results suggest that MyoGEF can activate RhoA and RhoC, but not Rac1 and Cdc42, in 

MDA-MB-231 cells.

To further characterize the in vitro activity of MyoGEF towards RhoA, RhoC, Rac1, and 

Cdc42, HeLa cells expressing Myc-MyoGEF was subjected to immunoprecipitation with 

anti-Myc-antibody, and then the immunoprecipitated Myc-MyoGEF was used for the 

analysis of MyoGEF activity towards RhoA, RhoC, Rac1, or Cdc42 with a fluorescence-

based GTPase in vitro assay. As shown in Figure 3, Myc-MyoGEF could activate RhoA 

(3A), RhoC (3B), and Rac1 (3C), but not Cdc42 (3D). Consistent with these findings, in 
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vitro pull-down assays demonstrated that full-length MyoGEF (ThioHis-MyoGEF) or a 

truncated MyoGEF fragment 71-388 (GST-71-388; containing the DH domain) could bind 

to RhoA and RhoC that were preloaded with GTP or GDP (Figures 3E and 3F), indicating 

that MyoGEF could bind to GTP- and GDP-bound RhoA and RhoC. In contrast, MyoGEF 

only bound to Rac1 that was preloaded with GTP (Figure 3G), suggesting that MyoGEF 

differentially bound to the active form of Rac1 (GTP-Rac1). However, RNAi-mediated 

depletion of MyoGEF in HeLa and MDA-MB-231 cells decreased the amount of activated 

RhoA/RhoC (but not Rac1and Cdc42) (Figure 2) (Wu et al., 2006). Therefore, our results 

indicate that RhoA and RhoC are most likely the physiological effectors of MyoGEF.

MyoGEF colocalizes with actin-myosin filaments at the cell leading edge

To determine the localization of MyoGEF in migrating MDA-MB-231 cells, 

immunofluorescence with anti-MyoGEF antibody was carried out in fixed MDA-MB-231 

cells after ~6 h of culture on fibronectin-coated coverslips. As shown in Figure 4A, 

endogenous MyoGEF colocalized with actin filaments at the front of migrating cells 

(arrowheads in panels a-c and a'-c'). Consistent with these observations, exogenously 

expressed GFP-MyoGEF also colocalized with actin filaments at the cell leading edge 

(Figure 4C, panels a-c and a'-c'). It should be noted that expression of exogenous GFP-

MyoGEF could induce the formation of thick actin bundles (panels b' and c'). In addition, 

GFP-MyoGEF formed filament-like structures that overlap with these thick actin bundles 

(arrowheads in panel c'). These results indicate that MyoGEF can localize to the cell leading 

edge, where it induces actin filament formation.

NMII has been shown to localize to the cell leading edge, and it plays a critical role in 

regulating cell polarity and motility (Conti and Adelstein, 2008; Kolega, 2006; Sandquist et 

al., 2006; Vicente-Manzanares et al., 2007). We also reported previously that MyoGEF 

interacts with NMIIA (Wu et al., 2006). Therefore, we also examined whether MyoGEF and 

NMIIA colocalized in randomly migrating MDA-MB-231 cells. MDA-MB-231 cells 

expressing GFP-tagged nonmuscle myosin heavy chain IIA (GFP-IIA) were subjected to 

immunofluorescence with anti-MyoGEF antibody. As shown in Figure 4D, MyoGEF 

colocalized with GFP-IIA at the cell leading edge (arrowheads in panels a'-d'). Consistently, 

exogenously expressed GFP-MyoGEF also colocalized with endogenous NMIIA in 

transfected MDA-MB-231 cells as indicated in Figure 4E (arrowheads in panels a'-d').

MyoGEF preferentially interacts with NMIIA in MDA-MB-231 cells

We previously showed that MyoGEF interacts with NMIIA in vitro (Wu et al., 2006). Three 

isoforms of the nonmuscle myosin heavy chain (NMHC), IIA, IIB, and IIC, have been 

identified in humans and mice (Bresnick, 1999; Conti and Adelstein, 2008; Golomb et al., 

2004; Krendel and Mooseker, 2005; Sellers, 2000). MDA-MB-231 cells express IIA and 

IIB, but not IIC (Betapudi et al., 2006). To confirm the interaction between MyoGEF and 

NMII, MDA-MB-231 cells expressing Myc-MyoGEF were subjected to 

immunoprecipitation with anti-Myc antibody followed by immunoblot analysis with anti-

IIA or anti-IIB antibodies. As shown in Figure 5A, endogenous NMIIA, but not NMIIB, 

could be co-immunoprecipitated with Myc-MyoGEF from total cell lysates of transfected 

MDA-MB-231 cells, indicating that MyoGEF can preferentially interact with NMIIA in 
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MDA-MB-231 cells. To further characterize the interaction between MyoGEF and NMIIA, 

we generated different truncated versions of MyoGEF (Figure 5B). Plasmids encoding these 

Myc-tagged MyoGEF fragments were transfected into a HeLa cell line that only expresses 

NMIIA, but not NMIIB and NMIIC (Wei and Adelstein, 2000). As shown in Figure 5C, 

Myc-MyoGEF full-length, Myc-PH, Myc-1-409, and Myc-1-500 could immunoprecipitate a 

significant amount of NMIIA, suggesting that the PH domain as well as the 351-409 region 

that is C-terminal to the DH domain are required for interaction with NMIIA.

Depletion of MyoGEF by RNAi impairs cell polarity

Rho GTPase signaling is essential for cell polarity and cell migration (Ridley et al., 2003). 

Localization of MyoGEF to the cell leading edge (Figure 4) suggests that MyoGEF may 

play a role in regulating cell polarity. Therefore, we examined whether depletion of 

MyoGEF had an impact on the polarity of MDA-MB-231 cells. As shown in Figures 6A and 

6B, only ~25% of MDA-MB-231 cells treated with control siRNA (n=200 cells) remain 

unpolarized after 6 h of culture on fibronectin-coated coverslips. However, ~60% of MDA-

MB-231 cells (n=250 cells) did not polarize following MyoGEF depletion (Figures 6A and 

6B). Consistent with these findings, MyoGEF localized to the cell leading edge in MDA-

MB-231 cells transfected with control siRNA, and these cells showed polarized actin 

polymerization (Figure 6C; arrowheads in panels a-c). In contrast, depletion of MyoGEF by 

RNAi decreased MyoGEF protein levels (Figure 6C; compare panel b with panel e), and 

MyoGEF-depleted cells did not show polarized actin organization (panels d and f). Notably, 

actin filaments were predominantly assembled at the periphery of MyoGEF-depleted cells 

(Figure 6C; panels d and f). These results suggest that MyoGEF is required for cell 

polarization in MDA-MB-231 cells, even though MyoGEF-depletion did not dramatically 

decrease actin filament formation (based on the intensity of actin filament staining; data not 

shown).

We then examined the effect of MyoGEF-depletion on myosin filament organization. MDA-

MB-231 cells treated with control siRNA (siCont) were able to polarize, and a significant 

amount of p-MRLC (phosphorylated myosin regulatory light chain), NMIIA, and NMIIB 

localized at the cell leading edge of randomly migrating cells (arrowheads in Figure 6D, a-c 

and Figure 6E, a-c). In contrast, cells treated with MyoGEF siRNA did not polarize (Figure 

6D, d-f and Figure 6E, d-f). NMIIA and NMIIB filaments were predominantly assembled at 

the periphery of MyoGEF-depleted cells (arrowheads in Figure 6De and Figure 6Ee). 

Consistently, p-MRLC staining was also found predominantly at the cell periphery 

(arrowheads in Figure 6Dd and Figure 6Ed). However, we did not observe a dramatic 

decrease in NMIIA, NMIIB, and p-MRLC staining. These results suggest that MyoGEF 

depletion impairs cell polarity as well as polarized actin-myosin organization without having 

an obvious effect on overall actin-myosin filament formation.

NMII filaments are required for polarized distribution of MyoGEF

NMII plays a central role in regulating cell polarity and motility (Conti and Adelstein, 2008; 

Lo et al., 2004; Meshel et al., 2005; Vicente-Manzanares et al., 2007). In addition, MyoGEF 

can bind to NMIIA (Figure 5) (Wu et al., 2006). Further, MyoGEF and NMIIA colocalize to 

the cell leading edge in MDA-MB-231 cells (Figure 4). Therefore, we used RNAi to deplete 
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NMIIA in MDA-MB-231 cells and then carried out immunofluorescence with anti-MyoGEF 

antibody to examine the effect of NMIIA depletion on MyoGEF localization. As shown in 

Figure 7A, depletion of NMIIA by RNAi led to cell spreading indiscriminately and the 

disruption of polarized MyoGEF localization (arrowheads in Figure 7Ab). In contrast, 

depletion of NMIIB did not impair cell polarity and the polarized distribution of MyoGEF in 

MDA-MB-231 cells (data not shown), even though it has been demonstrated that depletion 

of NMIIB also decreases MDA-MB-231 cell migration (Betapudi et al., 2006). These results 

indicate that NMIIA is required for polarized localization of MyoGEF during cell migration.

To further confirm that NMIIA is required for MyoGEF function in other epithelial cells, we 

transfected NMIIA siRNA and a plasmid encoding GFP-MyoGEF into a HeLa cell line that 

expresses only NMIIA (Golomb et al., 2004; Wei and Adelstein, 2000), and then examined 

the formation of actin-myosin bundles induced by exogenously expressed GFP-MyoGEF. 

As shown in Figure 7C, GFP-MyoGEF induced the formation of massive myosin bundles in 

the presence of control siRNA (arrowheads in panels a-c), and GFP-MyoGEF colocalized 

with these NMIIA bundles (arrowheads in panel c). In contrast, RNAi-mediated depletion of 

NMIIA completely abrogated the formation of massive myosin bundles induced by GFP-

MyoGEF (Figure 7C; panels d-f). We also examined the effect of NMIIA depletion on the 

formation of actin bundles induced by GFP-MyoGEF. As shown in Figure 7D, depletion of 

NMIIA by siRNA dramatically reduced the formation of massive actin bundles induced by 

GFP-MyoGEF (compare panels a-c with panels d-f). These results suggest that the presence 

of NMIIA and MyoGEF-myosin II interaction may be critical for MyoGEF localization and 

function.

Expression of dominant negative mutants N19RhoA or N19RhoC interferes with MyoGEF-
induced actin polymerization

To determine whether RhoA and/or RhoC are required for MyoGEF-induced actin bundles, 

a plasmid encoding GFP-MyoGEF was co-transfected into HeLa cells with plasmids 

encoding the dominant negative mutants of the small GTPase proteins RhoA, RhoC, Rac1, 

or Cdc42. Actin filaments were visualized by staining with rhodamine-conjugated 

phalloidin. Co-transfection of an empty vector did not affect the formation of massive actin 

bundles induced by GFP-MyoGEF (Figure 8; arrowheads in panel b). In contrast, 

transfection with plasmids encoding N19RhoA (d-f) or N19RhoC (g-i) significantly 

decreased the formation of massive actin bundles induced by GFP-MyoGEF (compare 

panels e and h with panel b). These findings indicate that RhoA or RhoC is required for 

MyoGEF-induced actin bundles. However, expression of dominant negative mutants 

N17Rac1 or N17Cdc42 did not significantly decrease the formation of actin bundles induced 

by GFP-MyoGEF (Figure 8; panels j-o), even though expression of N17Rac1 induced the 

formation of filopodia in GFP-MyoGEF-expressing cells, and it appeared that GFP-

MyoGEF predominantly localized to cell periphery in the presence of N17Rac1 (compare 

panels a-c with panels j-i). In addition, MyoGEF can specifically bind to GTP-Rac1 (see 

Figure 3G). Therefore, our results suggest that MyoGEF may act as a downstream effector 

of Rac1 or as a carrier of GTP-Rac1 to potential target sites. Interestingly, it has been 

reported previously that a Rho-specific GEF, DBL's big sister (DBS), can bind to GTP-Rac1 

and act as a downstream effector of GTP-Rac1 (Cheng et al., 2004). However, it is yet to be 
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determined whether MyoGEF activity towards RhoA and RhoC can be regulated by Rac 

signaling.

DISCUSSION

In this article, we have demonstrated that MyoGEF can activate RhoA and RhoC in a breast 

cancer cell line MDA-MB-231. We also show that MyoGEF plays a role in regulating the 

polarity and invasion activity of MDA-MB-231 cells. In addition, polarized distribution of 

MyoGEF at the cell leading edge is dependent on the integrity of the actin-myosin 

cytoskeleton. Importantly, MyoGEF is highly expressed in invasive (MDA-MB-231 and 

MDA-MB-435s) breast cancer cells, but is not detectable in noninvasive (MDA-MB-361 

and MCF-7) or poorly invasive (MDA-MB-468) breast cancer cells. Expression of dominant 

negative mutants N19RhoA or N19RhoC interferes with the formation of MyoGEF-induced 

actin-myosin bundles. Our results suggest that MyoGEF and NMII cooperate to regulate cell 

polarity and motility in invasive breast cancer cells.

Rho GTPase signaling has been implicated in regulating cell polarity and motility (Arthur 

and Burridge, 2001; Kurokawa et al., 2005; Worthylake and Burridge, 2003; Yamana et al., 

2006). Rac1 is widely considered as a key regulator of cell migration in different cell lines 

and organisms (Ridley, 2001; Ridley et al., 2003). However, accumulating evidence also 

suggests that Rac1 activity is not required for cell migration in a number of cell lines, such 

as colon carcinoma cells, rat fibroblast, and macrophages (Ahram et al., 2000; O'Connor et 

al., 2000; Wells et al., 2004). Instead, it has been demonstrated that RhoC is a key pro-

metastatic protein that is essential for cell migration and invasion in breast cancer cells 

(Clark et al., 2000; Hakem et al., 2005; Kleer et al., 2005; Simpson et al., 2004; van Golen 

et al., 2000).

However, it is poorly understood whether there are specific GEFs that are responsible for 

RhoA and/or RhoC activation in breast cancer cells. We have shown that MyoGEF can 

activate both RhoA and RhoC in MDA-MB-231 cells (Figures 2 and 3). Depletion of 

MyoGEF by RNAi impairs cell polarity and invasion activity (Figures 1 and 6). Thus, our 

findings point to a mechanism by which MyoGEF regulates the polarity and invasion 

activity of MDA-MB-231 cells through activation of RhoA and/or RhoC. Although a 

number of studies suggest an essential role for RhoC in breast cancer metastasis, our results 

show that MyoGEF can activate both RhoA and RhoC in MDA-MB-231 cells. It remains to 

be determined whether both RhoA and RhoC are required for MyoGEF-mediated regulation 

of cell migration. Nonetheless, a line of evidence suggests that RhoA also plays a critical 

role in regulating the motility and invasion of MDA-MB-231 cells (Kusama et al., 2006; 

Pille et al., 2005; Pille et al., 2006; Sahai et al., 2007). Therefore, it is likely that both RhoA 

and RhoC are important for MyoGEF-mediated regulation of MDA-MB-231 cell invasion. 

Another possibility is that MyoGEF-RhoA and MyoGEF-RhoC may differentially function 

in different breast cancer cells.

RhoA and RhoC can induce actin-myosin filament formation through activation of ROCK 

and mDia. ROCK inhibits myosin phosphatase and directly phosphorylates myosin 

regulatory light chains, resulting in an increase in myosin contractile activity (Kimura et al., 
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1996; Matsui et al., 1996). mDia can induce actin polymerization through association with 

the barbed end of growing actin filaments (Chang and Peter, 2002; Higashida et al., 2004; Li 

and Higgs, 2003; Tominaga et al., 2000; Watanabe et al., 1999; Zigmond, 2004). We 

observed the reorganization of the actin-myosin cytoskeleton following MyoGEF depletion, 

even though depletion of MyoGEF does not dramatically reduce actinmyosin filament 

formation (Figure 6). It is likely that other actin-myosin promoting pathways can 

compensate for the loss of RhoA/RhoC activity resulting from MyoGEF depletion. For 

instance, in addition to ROCK, myosin light chain kinase (MLCK) can also phosphorylate 

MRLC, thus increasing the phosphorylation of MRLC as well as myosin contractile activity. 

Importantly, it has been reported that MLCK predominantly phosphorylates MRLC at the 

cell periphery, whereas ROCK is responsible for MRLC phosphorylation in the cell center 

(Totsukawa et al., 2004). Consistent with this conclusion, we found that actin-myosin 

filaments are predominantly assembled at the cell periphery in MyoGEF-depleted cells 

(Figure 6).

Although Rho-ROCK signaling has been implicated in cell motility in a number of cell lines 

as well as in animal models, our results indicated that treatment with Y27632 does not affect 

cell polarity and polarized distribution of MyoGEF in MDA-MB-231 cells (data not shown). 

Instead, MDA-MB-231 cells often show an elongated morphology indicating that the tail 

retraction is not completed in the presence of Y27632 (data not shown), whereas depletion 

of MyoGEF impairs cell polarity, leading to rounded cell morphology (Figure 6). These 

results suggest that Rho-ROCK signaling may be dispensable for MyoGEF function in 

regulating cell polarity and invasion activity. These observations are consistent with the 

finding that RhoA-ROCK is required for the invasion activity of MDA-MB-435S but not 

MDA-MB-231 cells (Demou et al., 2005). Furthermore, a correlation between the invasion 

activity of different tumor cells and the requirement of Rho-ROCK signaling has been 

suggested (Sahai and Marshall, 2003). One of the future challenges is to determine whether 

Rho-mDia signaling is required for MyoGEF function in the regulation of cell polarity and 

invasion.

NMII plays an essential role in the regulation of cell polarity and cell migration. MyoGEF 

interacts with NMIIA and both proteins colocalize at the cell leading edge (Figure 4). 

Disruption of NMIIA by RNAi impairs cell polarity as well as polarized distribution of 

MyoGEF (Figure 7). In addition, exogenously expressed GFP-MyoGEF forms filament-like 

structures that overlap with actinmyosin bundles (Figure 4). Depletion of NMIIA completely 

abrogates the formation of MyoGEF-induced massive actin bundles (Figure 7C). These 

findings indicate that NMIIA may act as a scaffold to anchor MyoGEF to the cell leading 

edge. In turn, MyoGEF locally activates RhoA and/or RhoC at the front of migrating cells, 

thereby forming a positive MyoGEF-NMIIA loop and promoting cell polarization and 

invasion.

MATERIALS AND METHODS

Plasmids and cell culture

pEGFP-MyoGEF, pCS3-MyoGEF, and pEGFP-NMHC-IIA were described previously (Wei 

and Adelstein, 2000; Wu et al., 2006). MyoGEF fragments were cloned into XhoI/XbaI sites 
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of pCS3+MT vector. Breast cancer cell lines MDA-MB-231, MDA-MB-435S, MDA-

MB-361, MDA-MB-468, and MCF-7 were purchased from ATCC (Manassas, VA). MDA-

MB-231, MDA-MB-435S, MDA-MB-361, and MDA-MB-468 were grown in Leibovitz's 

L-15 Medium supplemented with 10% fetal bovine serum. HeLa cells were purchased from 

Clontech. HeLa and MCF-7 cells were grown in DMEM supplemented with 10% fetal 

bovine serum. Transfection was done with Lipofectamine 2000 according to the 

manufacturer's instructions (Invitrogen, Carlsbad, CA). MyoGEF siRNA has been described 

previously (Wu et al., 2006).

Immunoprecipitation and immunoblotting

Immunoprecipitation was carried out as described previously (Asiedu et al., 2008; Asiedu et 

al., 2009; Wei, 2005), excepting that 2 mM ATP and 2mM MgCl2 were included in the lysis 

buffer. The following primary antibodies were used: mouse anti-Myc (9E10, 1:2000; Santa 

Cruz Biotechnology, Santa Cruz, CA), rabbit anti-β-tubulin (1:2000; Santa Cruz), mouse 

anti-RhoA (1:200; Santa Cruz), goat anti-RhoC (1:100; Santa Cruz), mouse anti-NMIIB 

(1:1000; Developmental Studies Hybridoma Bank, Iowa City, IA), and rabbit anti-MyoGEF 

(1:200).

Immunofluorescence

Immunofluorescence was carried out as described previously (Asiedu et al., 2009). MDA-

MB-231 cells transfected with plasmids or siRNA were trypsinized, cultured on coverslips 

for an additional 6-12 h, and then fixed with 4% paraformaldehyde. The primary antibodies 

used for immunofluorescence were as follows: rabbit polyclonal NMIIA antibody (1:1000), 

mouse monoclonal p-MRLC antibody (1:200; Cell Signaling, Beverly, MA), and rabbit 

polyclonal MyoGEF antibody (1:100). The secondary antibodies rhodamine goat anti-mouse 

IgG (1:500) and rhodamine goat anti-rabbit IgG (1:500) were purchased from Invitrogen. 

The nuclei were visualized by DAPI (Sigma, St. Louis, MO). Actin filaments were stained 

with rhodamine-phalloidin (Invitrogen). Images were taken using a Leica DMI 6000 B 

microscope (Leica, Deerfield, IL) and processed by blind deconvolution. To determine the 

cell polarity, long (L) and short (S) axes of individual cells were measured using the NIH 

ImageJ program. Cells were counted as polarized (L/S ratio > 2.0) or nonpolarized (L/S 

<2.0).

Immunohistochemistry

The breast cancer tissue arrays were purchased from US Biomax (US Biomax, Inc., 

Rockville, MD; Cat # BC08032). After incubation at 60°C for 2h, the paraffin-embedded 

sections were deparaffinized in three changes of xylene and then rehydrated using graded 

alcohols. Antigen retrieval were done with 10 mM citrate buffer, pH 6, in the microwave for 

30 min and allowed to cool to room temperature followed by a PBS wash. The slides were 

then blocked with normal goat serum and incubated with anti-MyoGEF antibody (1:100) at 

room temperature for 1h. Preimmune serum was used on a duplicate slide in place of 

MyoGEF antibody as a negative control. After washing three times with PBS, the slides 

were incubated with biotinylated secondary goat anti-rabbit antibody at room temperature 

for 30 min. After washing three times with PBS, the slides were stained with the ABC/DAB 
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Elite kit (goat IgG type; Vectorlabs, Burlingame, CA). Finally, the slides were 

counterstained with hematoxylin, dehydrated, cleared, and then mounted with Permount 

mounting medium (Fisher Scientific, Pittsburgh, PA).

Matrigel invasion assays

Transfected MDA-MB-231 cells were trypsinized and approximately 1×105 cells (in 

Leibovitz's L-15 medium containing 3% of BSA) were seeded on the upper wells of Biocoat 

Matrigel chambers (BD Biosciences, Bedford, MA). The lower wells were filled with 

Leibovitz's L-15 medium containing 10% FBS. The transfected cells then underwent 

chemoattracting across the matrigel and filter (pore size: 8 μ) to the lower surface of the 

transwells for 22 h. The nonmigrating cells on the upper chambers were removed by a 

cotton swab. The migrating cells on the lower surface were fixed in 4% paraformaldehyde, 

stained with 1% crystal violet, and then photographed with a 20x objective. Data were 

collected from three independent experiments, each done in triplicate.

RhoA, RhoC, Rac1, and Cdc42 activation assays

RhoA, RhoC, Rac1, and Cdc42 activation assays were described previously (Asiedu et al., 

2008; Glaven et al., 1999; Liu and Burridge, 2000; Wu et al., 2006).

In vitro guanine nucleotide exchange analysis

The GEF exchange assay was described previously (Asiedu et al., 2008).
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Figure 1. MyoGEF is required for the invasion activity of MDA-MB-231 cells
(A) Immunoblot analysis with anti-MyoGEF antibody shows that MyoGEF is expressed in 

MDA-MB-231 and MDA-MB-435S cells, but not in MDA-MB-361, MDA-MB-468, and 

MCF-7 cells. (B) Immunoblot analysis confirms the depletion of MyoGEF in MDA-

MB-231 cells by RNAi. (C) MDA-MB-231 cells depleted of MyoGEF and/or NMIIA were 

subjected to Matrigel invasion assays. (D) Images in (C) were quantitated by using the NIH 

ImageJ program. (E) Immunohistochemical analysis of a breast cancer tissue array with 

MyoGEF antibody. Three arrays were analyzed independently and similar results were 

obtained. Immunohistochemistry with preimmune serum shows light, background straining 

(data not shown). Images in (C) and (E) were taken by using a 20x objective (Leica DMI 

6000 B microscope).
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Figure 2. Depletion of MyoGEF represses RhoA and RhoC activation in MDA-MB-231 cells
(A) Immunoblot analysis confirms the depletion of MyoGEF in MDA-MB-231 cells by 

RNAi. (B) The image in (A) was quantitated by using the NIH ImageJ program to estimate 

the efficiency of MyoGEF depletion in MDA-MB-231 cells by RNAi. (C-F) Depletion of 

MyoGEF decreases the amount of active RhoA (C) and RhoC (D), but not Rac1 (E) and 

CDc42 (F), in MDA-MB-231 cells. ~6% of transfected cell lysates were used as control to 

estimate the amount of total RhoA, RhoC, Rac1, and Cdc42. (G) The images in (C), (D), 

(E), and (F) were quantitated by using the NIH ImageJ program.
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Figure 3. In vitro activation of RhoA, RhoC, and Rac1, but not Cdc42, by MyoGEF
(A-D) The immunoprecipitated Myc-MyoGEF from transfected HeLa cells could activate 

RhoA (A), RhoC( B), and Rac1 (C), but not Cdc42 (D) in a fluorescence-based GEF assay. 

(E) ThioHis-MyoGEF (full-length) could bind both GDP-RhoA (lane 4) and GTP-RhoA 

(lane 5). (F) A MyoGEF fragment (amino acids 71-388) that contain the DH domain could 

bind both GDP-RhoC (lane 4) and GTP-RhoC (lane 5). (G) ThioHis-MyoGEF could bind 

GTP-Rac1 (lane 5) but not GDP-Rac1 (lane 4). D, preloaded with GDP; T, preloaded with 

GTP.
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Figure 4. MyoGEF colocalizes with actin-myosin filaments at the cell leading edge
(A) MDA-MB-231 cells were subjected to immunofluorescence with anti-MyoGEF 

antibody (green) and rhodaminephalloidin (red). (B) Immunoblot analysis of total cell 

lysates from MDA-MB-231 with anti-MyoGEF antibody. Note that a single band was 

recognized by MyoGEF antibody in MDA-MB-231 cell lysates. (C) Exogenously expressed 

GFP-MyoGEF (green) colocalizes with actin filaments (red) in transfected MDA-MB-231 

cells. (D) Exogenously expressed GFP-IIA (green) colocalizes with endogenous MyoGEF 

(red) at the cell leading edge of transfected MDA-MB-231 cells. (E) Exogenously expressed 

GFP-MyoGEF (green) colocalizes with endogenous NMIIA (red) at the cell leading edge of 

transfected MDA-MB-231 cells. Bars, 10 μm.
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Figure 5. MyoGEF interacts with NMIIA
(A) MDA-MB-231 cells expressing Myc-MyoGEF were subjected to immunoprecipitation 

with anti-Myc antibody followed by immunoblot analysis with anti-IIA or anti-IIB 

antibodies. Note that Myc-MyoGEF binds to NMIIA but not NMIIB. (B) Schematic 

diagram of MyoGEF fragments that were used in (C). (C) Interactions between Myc-tagged 

MyoGEF fragments and endogenous NMIIA. Full-length MyoGEF (lane 3) as well as 

MyoGEF fragments Myc-PH (lane 5), Myc-1-409 (lane 8), and Myc-1-500 (lane 9) could 

pull down a significant amount of endogenous NMIIA. Note that cell lysate from lane 3 was 

also used for immunoprecipitation with normal IgG (lane 2). ~5% of cell lysates were 

loaded.
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Figure 6. Depletion of MyoGEF by RNAi impairs MDA-MB-231 cell polarity
(A) MDA-MB-231 cells treated with control siRNA (siCont) or MyoGEF siRNA 

(siMyoGEF) for 48 h were trypsinized, replated on fibronectin-coated coverslips, and 

cultured for an additional 6 h. Note that cells depleted of MyoGEF did not polarize. (B) 

Quantitation of nonpolarized MDA-MB-231 cells treated with control or MyoGEF siRNAs. 

(C) MDA-MB-231 cells treated with siCont or siMyoGEF were subjected to 

immunofluorescence with MyoGEF antibody (red) and FITC-phalloidin (green). (D) MDA-

MB-231 cells treated with siCont or siMyoGEF were stained with antibodies specific for p-

MRLC (green) and NMIIA (red). (E) MDA-MB-231 cells treated with siCont or siMyoGEF 

were stained with antibodies specific for p-MRLC (green) and NMIIB (red). Bar in (A), 80 

μm; Bars in (C), (D), and (E), 10 μm
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Figure 7. NMIIA is required for polarized localization of MyoGEF as well as the formation of 
MyoGEF-induced actin bundles
(A) MDA-MB-231 cells treated with control siRNA (siCont; panel a) or NMIIA siRNA 

(siIIA; panel b) were subjected to immunofluorescence with anti-MyoGEF antibody. (B) 

MDA-MB-231 cells treated with siCont or siIIA were subjected to immunoblot analysis 

with antibodies specific for NMIIA or β-tubulin. (C-D) A plasmid encoding GFP-MyoGEF 

was cotransfected into HeLa cells with siCont or siIIA. The transfected cells were subjected 

to immunofluorescence with anti-IIA antibody (C) or phalloidin (D). Bars, 10 μm.
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Figure 8. Expression of dominant negative mutants N19RhoA and N19RhoC inhibits the 
formation of MyoGEF-induced actin bundles
A plasmid encoding GFP-MyoGEF was cotransfected into HeLa cells with an empty vector 

(a-c) or plasmids encoding N19RhoA (d-f), N19RhoC (g-i), N17Rac1 (j-l), or N17Cdc42 

(m-o). Note that co-transfection of N19RhoA or N19RhoC decreases the formation of 

massive actin bundles induced by GFP-MyoGEF. Bars, 60 μm.
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