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Abstract

To explore the conservation of Src homology 3 (SH3) domain-mediated networks in evolu-
tion, we compared the specificity landscape of these domains among four yeast species,
Saccharomyces cerevisiae, Ashbya gossypii, Candida albicans, and Schizosaccharomyces
pombe, encompassing 400 million years of evolution. We first aligned and catalogued the
families of SH3-containing proteins in these four species to determine the relationships be-
tween homologous domains. Then, we tagged and purified all soluble SH3 domains (82 in
total) to perform a quantitative peptide assay (SPOT) for each SH3 domain. All SPOT read-
outs were hierarchically clustered and we observed that the organization of the SH3 speci-
ficity landscape in three distinct profile classes remains conserved across these four yeast
species. We also produced a specificity profile for each SH3 domain from manually aligned
top SPOT hits and compared the within-family binding motif consensus. This analysis re-
vealed a striking example of binding motif divergence in a C. albicans Rvs167 paralog,
which cannot be explained by overall SH3 sequence or interface residue divergence, and
we validated this specificity change with a yeast two-hybrid (Y2H) assay. In addition, we
show that position-weighted matrices (PWM) compiled from SPOT assays can be used for
binding motif screening in potential binding partners and present cases where motifs are ei-
ther conserved or lost among homologous SH3 interacting proteins. Finally, by comparing
pairwise SH3 sequence identity to binding profile correlation we show that for ~75% of all
analyzed families the SH3 specificity profile was remarkably conserved over a large evolu-
tionary distance. Thus, a high sequence identity within an SH3 domain family predicts con-
served binding specificity, whereas divergence in sequence identity often coincided with a
change in binding specificity within this family. As such, our results are important for future
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studies aimed at unraveling complex specificity networks of peptide recognition domains in
higher eukaryotes, including mammals.

Introduction

Peptide recognition modules, like the Src homology 3 (SH3) domains, bind peptide motifs
with low affinity and are predominantly found in signaling pathways, where they mediate tran-
sient protein-protein interactions that regulate cell proliferation and differentiation. These rec-
ognition domains often bind a core motif common to the domain family, surrounded by a
number of specificity-determining residues that minimize cross-reactivity. SH3 domains gen-
erally bind to proline-rich sequences containing a core PXXP motif (where X is any amino
acid) flanked by a positively charged residue [1,2]. Traditionally, these motifs have been further
categorized as a Type I +XXPXXP motif (where + is a positively charged Arg or Lys) or a Type
IT PXXPX+ motif, distinguished by the location of the charged residue relative to the core motif
[3,4]. Later, additional SH3 domain binding motifs were identified, including Type III do-
mains, which bind to a polyproline motif without charged residues [5-8]. It thus became clear
that the specificity landscape of SH3 domains is more diverse than previously appreciated. Re-
cent studies, which capitalize on the continuous advances in high-throughput phage-display li-
brary development and sequencing technologies, generated up to 10 billion random peptides
to explore the SH3 domain recognition landscape in an unbiased fashion and confirmed its
complexity [9-11].

To explore how SH3 domain specificity landscapes evolve, we compared SH3 binding speci-
ficity in four model yeast species that have had their entire genome sequenced and mapped:
Saccharomyces cerevisiae [12], Ashbya gossypii [13], Candida albicans [14], and Schizosaccharo-
myces pombe [15] (Fig 1A). S. cerevisiae is the best studied unicellular eukaryote and it divides
exclusively by budding, hence the name budding yeast. A. gossypii is a filamentous plant patho-
gen belonging to the Saccharomycetes that predates the whole-genome duplication, and is evo-
lutionarily closely related to budding yeast. C. albicans is a human fungal pathogen that can
switch between bud-like and hyphal growth. S. pombe is the second best studied yeast and evo-
lutionarily most distant from the other yeasts. It shows bipolar growth and divides by fission,
hence the name fission yeast. Together, these yeasts encompass roughly 400 million years of
evolution [16].

We first identified all SH3 domains in the aforementioned four yeasts (109 domains), con-
structed multiple structurally informed sequence alignments, and compared the conservation
of documented binding motifs in SH3 sequences [17]. Then, we defined SH3 domain borders
for GST-tagged expression constructs and purified all soluble SH3 domains to perform quanti-
tative peptide binding assays (SH3-SPOT). The quantitative SPOT results for a total of 82 SH3
domains allowed us to compute a pair-wise correlation matrix, which was hierarchically clus-
tered to assess the conservation of general specificity classes across these four species and bind-
ing profile similarities within a single family. In addition, the SH3-SPOT assay data allowed us
to construct position-weighted matrices (PWMs) from top hits, visualized as motif logos, to
more accurately compare specificity conservation within a single family as well as estimate
binding motif conservation in homologous binding partners of SH3 proteins. To validate the
results of the SPOT assay we performed an actin polymerization assay and yeast two-hybrid
(Y2H) assay for the Myo5 and Rvs167 families, respectively, and showed excellent agreement
between these three experiments. Finally, by comparing pairwise SH3 domain sequence
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Fig 1. Approach used to characterize SH3 domain specificity conservation in four model yeasts. (A) Overview of the approach we used to
characterize the SH3 domain specificity landscape in four yeast species that span an evolutionary distance of some 400 Ma. (B) Overview of all SH3 domain
proteins in S. cerevisiae (Sc), A. gossypii (Ag), C. albicans (Ca) and S. pombe (Sp). The dendrogram derived from their full multiple sequence alignment
illustrates the diverging sequence conservation of orthologs and paralogs, analogous to the evolutionary distance among the four different yeasts. Alternating
colors of red and blue indicate conserved families. Previously non-described SH3 domain containing proteins (Scp) that could not be confidently assigned to

a family are shown in grey.

doi:10.1371/journal.pone.0129229.g001

similarity and binding profile correlation within a single family, we aimed to gain insight into
how the intricate relationship between these features has evolved in the context of conserved
SH3 protein homologs in yeasts.

Results and Discussion
Conservation and duplication of SH3 domains

We identified all SH3 domain proteins in the four yeast species (See Materials and Methods)
and investigated whether their overall predicted domain architecture and sequence identity are
conserved (Fig 1B). We found that S. cerevisiae has more duplicated genes (Cdc25/Sdc25, Boi2/
Boil, Lsb4/Lsb3, Lsb1/Pin3, Myo5/Myo3) than the other three species, which is consistent with
the whole-genome duplication event in the S. cerevisiae branch [18,19]. S. pombe, which has
the smallest genome (4,824 protein-coding genes) of these four yeasts [15,20], lacks two homo-
logs (Shol, Fusl) present in the other three species. Besides these two exceptions, we found
that all S. cerevisiae SH3 proteins could be mapped to orthologs in, A. gossypii, C. albicans, and
S. pombe (S1 Table). To facilitate the cross-species comparison in this study, from here on we
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will refer to homologs in A. gossypii (Ag), C. albicans (Ca), and S. pombe (Sp) with names ac-
cording to their S. cerevisiae (Sc) based family names.

With respect to gene duplications, we observed that A. gossypii and C. albicans each have an
additional Bem1 paralog (AgBem1-2 and CaBem1-2) and a Cdc25 paralog (AgCdc25-2 and
CaCdc25-2). Furthermore, the Hofl family has three paralogs in S. pombe (SpHof1, SpHof1-2,
and SpHof1-3), of which the former two have been studied extensively. Their SH3 domains are
collectively essential and functionally interchangeable in S. pombe cytokinesis, recognizing se-
lected Type I interactors with the motif +XLPXXP [21]. The Rvs167 family is most represented
with two additional Rvs167 paralogs (CaRvs167-2 and CaRvs167-3) in C. albicans and one ad-
ditional paralog (AgRvs167-2) encoded by the A. gossypii genome. Unfortunately, we were un-
able to determine whether these duplicated genes originate from a common yeast ancestor and
were lost in S. pombe and S. cerevisiae, or whether the gene duplication occurred independently
in C. albicans and A. gossypii. Interestingly, CaRvs167-3 is observed in a number of yeast spe-
cies closely related to C. albicans, which indicates that the duplication occurred after a specia-
tion event of a common C. albicans ancestor. In a recent study, Wapinski et al. [19] point out
that duplicated genes rarely diverge with respect to biochemical function (neo-functionaliza-
tion) but more commonly specialize in a partial function of the ancestral gene (sub-functionali-
zation). Indeed, cells harboring a deletion of CaRVS167-2 or CaRVS167-3 do not show a
phenotype [22,23], whereas cells with a deletion of CaRVS167 are deficient in endocytosis [24].
Future experiments are needed to explore the precise roles of the individual Rvs167 paralogs in
A. gossypii and C. albicans. Rvs167 proteins have besides an SH3 domain an N-terminal BAR
(Bin, Amphiphysin, Rvs) domain (PFAM 03114; SMART 00721), enabling them to form
homodimers or heterodimers [25,26], and to interact with cellular membranes [27,28]. We
found that the C. albicans genome also contains about three times more BAR-domain contain-
ing proteins (S1 Fig). BAR proteins play an essential role in membrane curvature formation
during clathrin-mediated endocytosis [29]. The duplication of genes encoding proteins with a
BAR-SH3 domain architecture suggests a more tightly regulated and complex system of endo-
cytosis in C. albicans.

Divergence of a specificity-determining sequence motif between homologous domains
often provides strong evidence for altered peptide-ligand recognition. Therefore, we con-
structed multiple sequence alignments for each SH3 domain family (see Materials and Meth-
ods) as an aid to annotate the three main ligand-binding motifs that shape the SH3 binding
pocket and determine specificity (Figs 2 and S2). We identified the presence of the highly con-
served WPY triad that forms a groove binding one of the canonical prolines, and two motifs in
the RT loop: the aromatic motif that usually forms a second proline binding-groove, and the
polar motif, a major specificity-determining factor [30]. We also annotated the loop lengths of
the RT and n-Src loops, based on homology models, as they are known to be determinants for
SH3 specificity as well. Not surprisingly, the majority of conserved SH3 domains also show
highly conserved ligand-binding motifs among homologs in the four species.

SPOT analysis

Next, we performed SPOT peptide assays with all soluble SH3 domain constructs (see Materi-
als and Methods) to compare the binding specificities for homologous domains across the four
species. To probe SH3 binding-specificity in yeast we used an established library of 292 SH3
binding 15-mers, which were previously mined from the S. cerevisiae proteome and tested for
SH3 binding [9]. Of the 109 predicted SH3 domains, 89 domains could be purified in sufficient
amounts for SPOT analysis. We obtained data for 82 domains, resulting in an overall coverage
of ~75% of all SH3 domains across the four species (S2 and S3 Tables; Figures A and B in S1
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Fig 2. Structure-based alignments of SH3 domains and binding site annotations. A structural model of the ScLsb3 SH3 domain (left) (PDB: 1SSH) with
its PxxPxR ligand (yellow) shows the three canonical SH3 domain binding site motifs: the WPY triad (green) and the hydrophobic (red) and polar motifs (blue)
of the RT loop. Structure-based sequence alignments of the highly conserved Rvs167 and Myo5 families, annotated with the three canonical binding motifs
and the three loop locations (grey), reveal an unusually large insertion in the n-Src loop of CaRvs167-3 (right).

doi:10.1371/journal.pone.0129229.9002

File). To accurately compare the results of all SPOT assays for all SH3 domains, we normalized
the dataset in batch by median-scaling the distributions of log-transformed SPOT intensities,
averaged over biological replicates. Then, we computed a pair-wise Pearson correlation matrix
among the SPOT readouts of SH3 domains that were represented in at least 3 out of 4 species
within a family (74 out of 82) and clustered this matrix with a hierarchical clustering algorithm
(see Materials and Methods). The results of the clustered correlation coefficients were repre-
sented in a heat map (Fig 3). We observed that the main clusters on this heat map strikingly
represent the three major SH3 domain specificity classes: Types I, II, and III (poly-proline).
Based on this classification scheme we compared our specificity type assignments to those re-
cently published for S. cerevisiae [9]. Overall we found that the specificity type assignments
were similar, with the exception of those for ScFus1 and ScHsel, which may be due to the use
of a slightly different library of SH3-SPOT peptides. Surprisingly, many domain families clus-
tered very tightly within these broad classes, which suggest that specificity niches, optimized to
minimize cross-reactivity within species, are often conserved over large evolutionary distances.
In our analysis, specificity profiles for most SH3 domain families are well conserved (Abpl,
Bbcl, Boi2, Cyk3, Fusl, Hsel, Lsb1, Lsb4, Myo5, Nbp2, Rvs167, and Shol) while weakened
profile conservation seems to be the exception (Beml, Bzz1, Hofl, and Slal) (Figure C in S1
File). Interestingly, the unusual polyproline-binding signature for the S. cerevisiae myosin SH3
family is highly conserved and also occupies a unique place in the SH3 specificity landscape of
A. gossypii, C. albicans and S. pombe. However, we also observed a number of striking anoma-
lies from the globally clustered profile. For instance, the SH3 domain of AgBem1-2 accumulates
major changes in the main binding pocket without an apparent change in ligand binding speci-
ficity. Another striking example is CaRvs167-3. The C. albicans paralog of the highly conserved
Rvs167 family clearly clusters alongside all Type I motifs (Fig 3). To examine this in more de-
tail, we selected for all Rvs167 domains the top 10 ligands, based on their intensity values, and
aligned them by hand (Figs 4 and S3). In agreement with previously published studies [9,31]
the top binding peptides of all Rvs167 domains could be aligned as a Type I or Type II motif ex-
cept for SpRvs167 and CaRvs167-3. In contrast to most Rvs167 family members, which display
a dominant Type II motif supported by a secondary Type I motif, CaRvs167-3 adopts a domi-
nant Type I-like motif only (Fig 4B). We call this motif Type I-like because, despite the lack of
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Fig 3. Clustering of SH3 SPOT binding profiles reveals conservation of the canonical specificity classes. A clustered heat map of normalized SH3
SPOT binding profile correlations across the four yeast species shows three distinct clusters corresponding to the three canonical SH3 specificity classes:
Type | (+xxPxxP), Type Il (PxxPx+), and Type Il (polyproline), and a generally tight correlation between SH3 domains of the same family.

doi:10.1371/journal.pone.0129229.9003

the first proline, we observe a clear preference for a positively charged residue in the expected
position of a Type I motif. Given that the SH3 domain sequences of CaRvs167-3 and
CaRvs167 are quite similar, except for the presence of a large insertion in the n-Src loop of
CaRvs167-3, we hypothesize that the change in ligand recognition is caused by this loop inser-
tion (Fig 2). Unfortunately, we were unable to expand on this argument in the absence of a
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Fig 4. Within-family comparisons of specificity profiles highlight a novel diverged specificity class for CaRvs167-3. (A) Separately clustered heat
maps of the Rvs167 and Myo5 families show that both families have a high degree of binding profile conservation among orthologs, with the exception of
CaRvs167-3, whose binding profile does not correlate with any of the Rvs167 orthologs. (B) Specificity logos built from manual alignments of the top 10
binding peptides show that, with the exception of SpRv167, all Rvs167 binding peptides could be aligned as Type | and Il profiles (left). The CaRvs167-3
binding profile forms a distinct Type I-like (Type 1¥*) class, characterized by the presence of a hydrophobic residue instead of the first proline. All Myo5
ortholog binding profiles show a clear disposition for a poly-proline motif, devoid of charged residues (right).

doi:10.1371/journal.pone.0129229.9004

three-dimensional structure or a reliable model of the CaRsv167-3 SH3 domain bound to a
Type I-like ligand.

Myo5 and Rvs167 binding validation assays

Ex vivo actin polymerization study for myosins. To experimentally confirm the conser-
vation of the binding specificity of the type I myosin we chose an ex vivo approach established
by Geli and colleagues [32]. This method assesses the ability of sepharose-bound proteins to in-
duce actin polymerization using fluorescently labeled actin. We demonstrate that the SH3-con-
taining C-terminal Myo>5 tails of all four species were able to induce actin polymerization when
incubated with total S. cerevisiae protein extract as revealed by a fluorescence halo formation
around the sepharose beads (Fig 5A). As the interaction of the Myo5 SH3 domain with the
Wiskott-Aldrich syndrome protein [WASP]-interacting protein (WIP) homolog Vrpl was
shown to be essential for the initiation of actin polymerization in S. cerevisiae [32], these data
validate an interaction between ScVrpl and all four Myo5 SH3 domains, confirming an inter-
species conservation of the binding specificity of the type I myosins.

Motif validation for Rvs167 by yeast two-hybrid. To obtain independent experimental
validation for the Rvs167 binding specificity we performed a yeast two-hybrid assay with pep-
tides that showed high intensity values in the SPOT analysis (Fig 5B). We selected the Type II
peptide #66 (SSSSTPPTLPPRRIE) ranking high with the Rvs167 orthologs in the four yeast
species but low with the C. albicans Rvs167-3 paralog, and the non-canonical Type I peptide
#268 (ITHRLRISIPGITGR) ranking high with CaRvs167-3 but low with Rvs167 orthologs (54
Table). A moderate to strong interaction of the four Rvs167 SH3 domains with the Type II pep-
tide #66 was observed whereas CaRvs167-3 did not show an interaction with peptide #66
above background levels. Conversely, CaRvs167-3 interacted strongly with peptide #268 while
none of the Rvs167 orthologs showed an interaction. Neither of the two peptides interacted
with CaRvs167-2, suggesting that this SH3 domain has a different binding specificity or may
not be folded properly. Together, these results confirm the binding specificity of the Rvs167
proteins in the four yeast species towards Type II peptides and suggest that the CaRvs167-3
SH3 domain has a unique specificity.

Predicting conservation of Myo5 and Rvs167 SH3 binding motifs in S.
cerevisiae binding-partner orthologs

Next, we created a position-weighted matrix from the manually constructed alignments for the
Myo5 and Rvs167 families to scan candidate binding partner sequences (see Materials and
Methods) and identify SH3 binding sites, and consequently potential binding events conserved
across orthologous SH3 domains.

The type I myosin interaction with Las17 and Appl. Type I myosins share a conserved
domain organization containing an N-terminal motor domain followed by tail homology do-
mains 1 and 2 (TH1, TH2), an SH3 domain, and an acidic tail [33]. All four yeast species con-
tain one homolog except for S. cerevisiae, which has two functionally redundant type I
myosins, Myo3 and Myo5. The type I myosins have essential functions in endocytosis and
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Fig 5. Myo5 and Rvs167 binding validation. (A) Sepharose-bead bound GST or GST-tagged C-terminal myosin type | tails of ScMyo5 (984—1219),
ScMyo3 (1010-1271), AgMyo5 (1084-1292), CaMyo5 (1004—1316) and SpMyo1 (1967-1217) were incubated with a total protein extract of S. cerevisiae
supplemented with TRITC-labeled actin. The fluorescent halos around the beads (sized 50—150 um) show the ability of the myosin type | tails of the four
different yeast species to recruit active actin polymerization machinery to the beads while the negative control GST does not. Addition of 10 uM Latrunculin A
inhibits actin polymerization. (B) Yeast two-hybrid strains co-transformed with the indicated bait and prey constructs were spotted (~10* cells) on minimal
plates with histidine (His™), without histidine (His™), without histidine containing 2.5, 5, or 10 mM 3-amino-1,2,4-triazole (3AT), or without adenine (Ade™).
Weak interactors activate only the HIS3 reporter and show growth on His™plates, while strong interactors activate both HIS3 and ADE2 reporters and show
growth on His™plates containing 3AT or on Ade plates. Note that CaRvs167-3 SH3 shows weak self-activation as revealed by growth on His plates in the
presence of an empty bait plasmid.

doi:10.1371/journal.pone.0129229.g005

actin cytoskeleton organization, and localize to cortical actin patches [34-38]. The SH3 do-
mains of S. pombe and S.cerevisiae type I myosins induce Arp2/3-complex dependent actin po-
lymerization in vitro [32,39-42], which requires their interaction with the conserved homologs
of Wiskott-Aldrich syndrome protein (WASP) and WASP-interacting protein (WIP) [32,39].
The confirmation that the type I myosins functionally interact with the SCWIP homolog
Vrpl (Fig 5A) prompted us to analyze the interaction with WASP in more detail. The genomes
of the four yeast species each encode one WASP homolog, Las17, which is required for normal
cell growth, actin cytoskeleton organization, endocytosis and hyphal growth [40,43-45]. We
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used the PWM derived from the SH3 domain binding motifs (Fig 4) to scan the proteome se-
quences (see Materials and Methods) and identified the previously mapped binding sites for
ScMyo3 in ScLas17, confirming our motif and approach [20] (Fig 6A). Furthermore, we predict
several additional conserved potential binding sites for all SH3 domains in the central proline-
rich region in agreement with the conserved motifs and functions of the type I myosins. C. albi-
cans and S. pombe have an additional C-terminal motif, suggesting the presence of a new
interaction site.

Furthermore, we looked at the Appl proteins predicted to interact with the SH3 domain of
S. cerevisiae type I myosins [9]. The phosphatidate phosphatase Appl was shown in S. cerevi-
siae to localize to actin patches and interact with Rvs167 and Rvs161. Therefore, it most likely
plays a role in endocytosis [46-48]. We identify one Appl homolog in each species and show
conservation of a potential myosin-binding site in S. cerevisiae, A. gossypii and C. albicans.
However, in S. pombe this motif is absent (Fig 6A), suggesting that SpAppl may not interact
with SpMyol.

On the one hand the type I myosins are conserved in their cellular localization and function.
Also the binding motifs of the myosin SH3 domains are well conserved (Fig 4A), which is sup-
ported by their ability to induce actin polymerization in an S. cerevisiae extract. On the other
hand the actual binding partners may differ as exemplified by the absence of the myosin bind-
ing motif in SpApp1 (Fig 6A), suggesting that a different mechanism may be operating in S.
pombe as compared to the other yeast species analyzed.

The Rvs167 interaction with Abpl and Gyp5. The Rvs167 proteins are characterized by
the presence of an N-terminal BAR domain, a central domain of variable composition, and a
C-terminal SH3 domain. S. cerevisiae rvs167 deletion strains display a pleiotropic phenotype
including growth sensitivity to salt, loss of bipolar bud site selection, and deficiencies in actin
polarization and endocytosis (reviewed in [49]). More recently, Rvs167 has been implicated in
polarized exocytosis [50]. In C. albicans, Rvs167 also plays an important role in endocytosis
and actin polarization [24], but for the S. pombe homolog, called Hob1, current evidence sug-
gests that it is not required for polarization of cortical actin and endocytosis [51,52].

To address conservation of binding specificity among the four yeast species, we selected
three literature-validated interactors of S. cerevisiae Rvs167: the actin binding protein Abp1 as
well as Gyp5 and Gyll, two proteins that regulate Rab GTPases. The Rvs167 SH3 interaction
site was mapped to a proline-rich region (PRR) N-terminal of the SH3 domains in Abp1 using
in vitro binding and yeast two-hybrid assays [53,54]. Similarly, multiple independent ap-
proaches have revealed that the interaction of Gyp5 and Gyll with Rvs167 [31,55-57] requires
the PRRs of Gyp5 and Gyll present in their N-terminal half [50]. We identified Abp1, Gyp5
and Gyl1 orthologs in the three other yeast species, except for a Gyl1 ortholog in A. gossypii,
which appears to be missing. The protein sequences were scanned with the PWM for Rvs167
Type I and Type II motifs (Fig 6B). We identified the previously mapped Type II binding sites
in the PRR of S. cerevisiae Abp1, Gyp5 and Gyll, validating our approach. Conserved Type II
binding sites were also predicted for the Rvs167 SH3 domains of the other three yeast species
in Abpl, Gyll and Gyp5, with the exception of S. pombe Gyp5 proteins, which seem to lack the
Type II (and Type I) motif. In C. albicans Abp1, two additional Type II binding sites N-termi-
nal of the second SH3 domain are predicted as well as two Type I binding sites in the PRR. To-
gether, these results suggest an overall conservation of Rvs167 binding sites in Abp1, which is
consistent with a role of Rvs167 in actin polarization and endocytosis in all four yeast species.
The absence of a binding site in S. pombe Gyp5 proteins may suggest that Rvs167 is not in-
volved in polarized exocytosis in this yeast species. However, further cell biological experiments
are required to address this.
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A Schematic representation of motifs in App1 and Las17 predicted to be bound by the SH3 domain of Myo5
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Fig 6. Scanning of homologous binding partner sequences with SPOT-derived PWMs reveals conservation of binding sites. (A) Sequence scanning
of the ScApp1 and ScLas17 homologs with a PWM of the Myo5 SH3 domains reveals that SpApp1 lost its Myo5 SH3 binding motif. The presence of multiple
polyproline motifs in Las17 is conserved across all four yeasts. (B) Sequence scanning of the ScAbp1 and ScGyp5 homologs shows that both SpGyp5-1 and
SpGyp5-2 lost their Rvs167 SH3 binding motif. All significant hits are indicated by lollipops and colored according to the motif type (Type |, blue; Type I, red;
Typel/ll, blue/red; Type lll, green). Asterisks indicate previously reported interaction sites.

doi:10.1371/journal.pone.0129229.9006
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Overall conservation of the SH3-domain specificity landscape

To evaluate how the SH3-domain specificity landscapes evolved in the four yeast species, we
compared SH3 domain sequence conservation and SPOT profile correlation for every pair of
SH3 domains within a single family (Fig 7). Overall, our data demonstrate a general correlation
between sequence identity and binding specificity. For ~75% of the SH3 families analyzed, the
specificity landscape was remarkably conserved over a large evolutionary distance of 400 Ma,
with a high SH3 domain sequence identity predicting a conserved binding specificity. By con-
trast, the binding specificity was poorly conserved when the SH3 families showed a divergence
in sequence identity, suggesting less evolutionary pressure on the SH3 domain function within
these families. Interestingly, we did not observe a clear distinction between sequence and bind-
ing profile conservation patterns of intra-species versus inter-species comparisons between ho-
mologous SH3 domains, which is likely due to variable evolutionary pressure on these
duplicated or homologous domains. The most striking observations are that, with respect to
overall conservation in a family, the Hofl paralogs have a remarkably conserved binding pro-
file, whereas the binding profile of the CaRvs167-3 paralog changed dramatically, diverging
from a Type II specificity typical for Rvs167 SH3 domains to a Type I-like specificity. This
change in binding specificity cannot be fully explained by general divergence of the CaRvs167-
3 SH3 sequence, but is likely supported by a conserved n-Src loop insertion in the Candida
branch. However, a detailed molecular mechanism and a rationale for neo-functionalization of
this transition remains to be elucidated.

In summary, we show that binding specificities obtained by probing a set of core binding-
motif based peptides with orthologous SH3 domains from related organisms can be used for
the prediction of potential SH3 domain interactors (Fig 6). We argue that the relevance of
these findings goes beyond the improved understanding of SH3 domain network evolution, as
it is likely that similar observations can be made for other common peptide recognition mod-
ules such as PDZ, SH2, and WW domains. As such, this study provides proof of principle for
future analyses aimed at unraveling the complex specificity networks of peptide recognition
modules in higher eukaryotes, including mammals.

Materials and Methods
SH3 domain selection and phylogenetic annotation

To identify all SH3 domain proteins in the four organisms and the homology relations between
them we selected all proteins that contain an SH3 domain by searching the SMART database
[58]. Based on predicted phylogenetic trees by PhylomeDB [59], MetaPhOrs [60] and Synergy
[19], we assigned ortholog and paralog relationships among the different SH3 domain contain-
ing proteins across the four species.

SH3 domain production

To create pGEX2tk-modified, two annealing oligonucleotides containing an Ncol and a NotI
restriction site were ligated into BamHI/EcoRI digested pGEX2tk (GE Healthcare). The SH3
domain boundaries were defined as the union of the domain regions identified by BLAST [61],
PFAM [62], and SMART [58]. DNA fragments encoding the identified domains were ampli-
fied from S. cerevisiae, A. gossypii, C. albicans and S. pombe genomic DNA by the polymerase
chain reaction (PCR), cloned into the EMBL plasmid pETM30 and subcloned between the
Ncol and Notl sites of pGEX2tk-modified, a vector designed for the expression and purifica-
tion of SH3 domains fused to the C-terminus of glutathione S-transferase (GST).
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Fig 7. Correlation of sequence conservation and SPOT binding profile similarity per SH3 family. The relationship between sequence conservation and
SPOT profile correlation is remarkably conserved for every pair of SH3 domains within an SH3 family. In contrast, CaRvs17-3 is a striking example of binding
divergence, despite sequence conservation, within a single highly conserved SH3 family (lines in the Rvs167 panel). Paralogs and within-gene domain
duplications are marked as intra-species (blue dots) while those between homologs in different species are marked as inter-species (red dots). SH3 families
are ordered from high to low sequence and specificity conservation (left-to-right, top-to-bottom).

doi:10.1371/journal.pone.0129229.9007

E. coli BL21(DE3) was used to express the SH3 domains as GST-fusion proteins. Cells were
lysed by sonication in 2 ml phosphate-buffered saline (PBS) supplemented with Protease
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Inhibitor Cocktail (complete, Roche). The extract was clarified for 15 min at 13,000 rpm and
the domains purified using glutathione Sepharose 4B beads (GE Healthcare) according to the
manufacturer’s instructions. The domains were eluted with reduced glutathione and dialyzed
overnight against PBS containing 10% glycerol. Protein concentrations were determined using
Bradford assay (Thermo Scientific Pierce Coomassie (Bradford) Protein Assay).

Bud14, Cdc25, and Bem1-SH3-2 in the four species and CaScp1 proved to be insoluble or
hard to produce in the quantity required for the SPOT assay (200 pg) (S2 Table).

SH3 SPOT peptide array selection, synthesis and quantification

Cellulose membrane-bound peptides were automatically prepared according to standard
SPOT synthesis protocols using a Spot synthesizer (Abimed) as described in [63]. The software
LISA (Jerini) was used for the generation of the peptide sequence files and all cysteines were re-
placed by serines to exclude false-positive spots. A conservative length of 15-mers was chosen
to ensure efficient coupling steps during peptide synthesis in the absence of extensive HPLC
and MS analyses of probes. The generated arrays of 15-mer peptides were synthesized on cellu-
lose-(3-amino-2-hydroxy-propyl)-ether (CAPE) membranes. CAPE membranes were pre-
pared from 18 x 28 cm Whatman 50 paper as described in detail [31].

The SPOT membrane was rinsed for 5 min with ethanol and washed three times with TBS
(50 mM Tris/HCI, pH 7.6, 150 mM NacCl) for 10 min before blocking with blocking buffer
(TBS, 1 x Blocking Buffer (Sigma B-6429), 0.15 M sucrose) for 3 hours. The SH3 domains were
incubated at 10 pg/ml with the membrane overnight at 4°C in blocking buffer. The membrane
was washed three times with TBS for 10 min. Immuno-detection was done by incubating the
membrane for 2.5 hours with an anti-GST antibody (Sigma G-1160, 1 pug/ml), a secondary
anti-mouse antibody HRP conjugate (Sigma A-5906, 1 ug/ml) and Luminol solution (Thermo
Scientific # 34080). Pictures were taken using a Lumi Imager (Boehringer) and analyzed with
the software Genespotter (Microdiscovery GmbH).

Multiple sequence alignments of family members

All sequences were aligned with T-coffee (version 8.98) sequence alignment software [64]
using the accurate mode. This mode combines information from Hidden Markov model
(HMM) profiles (PSI-coffee) and three-dimensional information from structural templates
(Expresso) with multiple sequence alignments from other alignment tools (ClustalW2) to cre-
ate a highly informed meta-alignment. All multiple sequence alignments were rendered and
edited with Jalview [65] to annotate the motifs. The template structures identified by T-coffee
and detailed description by Fernandez-Ballester et al. [17] were used to visually inspect whether
critical interface residues were spatially conserved.

Genome scanning with PWMs

After manually aligning the top 95% peptides of each SH3 domain, we transformed the align-
ment into a 15 amino acid-wide position-weighted matrix (PWM), corresponding to the se-
quence length of the peptide probes, by computing the normalized observed frequency per
amino acid for each position. Using a sliding window approach we computed a score for each
15-residue partial sequence in a potential binding sequence. A score for a subsequence is ob-
tained by summing the substitution scores, using the PAM250 substitution matrix, of the ob-
served amino acids to the amino acids in the PWM per residue position. To account for PWM
specific score distributions, we computed for each score the probability of observing such a
score given the PWM against a background distribution of 1000 randomly sampled 15-mers.
These p-values were then corrected for multiple hypotheses testing by applying the Benjamini-

PLOS ONE | DOI:10.1371/journal.pone.0129229 June 11,2015 14/20



@’PLOS ‘ ONE

Evolution of the SH3 Domain Specificities in Yeasts

Hochbach correction, which controls the false discovery rate (FDR) and converts p-values to
q-values. Only subsequences with a q-value <0.0001 were retained as sequence matches to the
PWM.

Ex vivo actin polymerization

The coding sequences for the Myosin C-terminal tails were PCR amplified, cloned by restric-
tion digestion into a pGEX plasmid and transformed into E.coli Rosetta cells (Merck). Cultures
were grown at 30°C in LB (1% [w/v] tryptone, 0.5% [w/v] yeast extract, 1% [w/v] NaCl) broth
medium containing 100 mg/l ampicillin and induced at an ODgq of 0.6 with 0.2 mM isopropyl
B-D-thiogalactopyranoside (IPTG) for 3 h. Cells were lysed by sonication as described and
GST fusion proteins were purified using glutathione Sepharose 4B beads (GE Healthcare) ac-
cording to the manufacturer's instructions.

S. cerevisiae cells were grown overnight in YPD (1% [w/v] yeast extract, 2% [w/v] peptone,
2% [w/v] D(+)-glucose) to an ODgp, of approximately 0.8, pelleted by centrifugation and
resuspended in 1 ml of lysis buffer (PBS, 200 mM Sorbitol, Protease Inhibitor Cocktail (com-
plete, Roche)). Upon a 1:1 (v/v) addition of glass beads, cells were vortexed 5 times for 30 s
at 6.5 m/s using FastPrep 120 (MP Biomedicals) at 4°C. Cell debris were removed by centrifu-
gation (13,000 rpm, 15 min) and protein concentration was determined by Bradford assay
(20-30 mg/ml). The cleared lysate was aliquoted by snap freezing in liquid nitrogen and stored
at -80°C.

The actin-polymerization assay was performed according to [32]. Briefly, 7 pl of total yeast
protein extract were mixed with 1 pl of ATP-regenerating system (10 mg/ml creatine kinase,
10 mM ATP, 10 mM MgCl,, 400 mM creatine phosphate) and 1 pl of 0.4 g/l rhodamine-la-
beled actin (Cytoskeleton, Inc.). The polymerization reaction was initiated by adding 1 ul of
50% glutathione-Sepharose beads bound to the corresponding GST fusion protein. Samples
were incubated at RT and visualized using fluorescence microscopy (Zeiss Axiovert 200M)
after 15 min incubation. Latrunculin-A was added to a final concentration of 10 pM prior to
the addition of the glutathione-Sepharose beads.

Yeast two-hybrid assays

Double-stranded annealed oligonucleotides encoding the peptides of interest were cloned be-
tween Ncol and Notl sites of pGBKT7 (multicopy “bait” plasmid, Clontech). SH3 domains
were cloned between Ncol and NotI sites of pYR035, which is pGADT7 (multicopy “prey”
plasmid, Clontech) with a modified multiple cloning site allowing the insertion of NcoI-NotI
fragments. Bait and prey plasmids were co-transformed into the S. cerevisiae yeast two-hybrid
Gold strain (Mata, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4A, gal80A, LYS2::GALI1 s~
Gallpara-His3, GAL2ys-Gal2rsra-Ade2, URA3:MEL1yas-Melrara AURI-C MELI; Clon-
tech) using a lithium acetate procedure [66]. Transformants were selected on minimal glucose
plates (2% [w/v] D(+)-glucose, 0.67% [w/v] Yeast Nitrogen Base without amino acids
[DIFCO], 2% [w/v] agar) lacking tryptophan and leucine. The strength of interaction was as-
sessed by spotting ~10* cells from an exponentially grown culture onto minimal agar plates
without histidine (His™), without histidine and containing different amounts of 3-amino-
1,2,4-triazole (3AT) (Sigma-Aldrich), or without adenine (Ade™). Growth on plates without
adenine indicates a stronger interaction because the ADE2 reporter gene has a weaker GAL
promoter sequence than the HIS3 reporter gene, while the inhibitor 3AT increases the strin-
gency of the histidine selection. Plates were incubated for three days at 28°C before being
photographed.
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S2 Fig. Structure-based sequence alignments of all SH3 domain families. Multiple sequence
alignments of homologous SH3 domain sequences reveal conservation of the three SH3 inter-
face motifs involved in ligand binding: the hydrophobic (red) and polar (blue) motifs in the RT
loop and the WPY triad (green). In addition we report the RT and n-Src loop lengths based on
alignments of structural models for each SH3 sequence.
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S3 Fig. Binding specificity logos for all SH3 domains characterized by the SH3-SPOT pep-
tide assay. Manually curated alignments of the top 10 binding peptides for each SH3 domain
were visualized by Weblogo as specificity profile logos and organized per family of SH3-do-
main containing protein homologs. Note that our specificity profile logos for the SpHof1 and
SpHof1-2 SH3 domains are similar to the +XLPXXP motif observed by Ren and colleagues for
these SH3 domains [21].
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S1 File. SH3 domain specificity mapped by SPOT membranes. Scheme showing the
SH3-SPOT peptide assay layout with antibody and GST background controls alongside an
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all SH3-SPOT assays organized per family of SH3-domain containing protein homologs
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from overall high within-family correlation (top-left) to lower within-family correlation (bot-
tom-right) (Figure C).
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