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Abstract

It has been proposed that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) can reduce the risk of ventricular
arrhythmias in post-MI patients. Abnormal Ca2+ handling has been implicated in the genesis of post-MI ventricular
arrhythmias. Therefore, we tested the hypothesis that dietary n-3 PUFAs alter the vulnerability of ventricular
myocytes to cellular arrhythmia by stabilizing intracellular Ca2+ cycling. To test this hypothesis, we used a canine
model of post-MI ventricular fibrillation (VF) and assigned the animals to either placebo (1 g/day corn oil) or n-3
PUFAs (1-4 g/day) groups. Using Ca2+ imaging techniques, we examined the intracellular Ca2+ handling in myocytes
isolated from post-MI hearts resistant (VF-) and susceptible (VF+) to VF. Frequency of occurrence of diastolic Ca2+

waves (DCWs) in VF+ myocytes from placebo group was significantly higher than in placebo-treated VF- myocytes.
n-3 PUFA treatment did not decrease frequency of DCWs in VF+ myocytes. In contrast, VF- myocytes from the n-3
PUFA group had a significantly higher frequency of DCWs than myocytes from the placebo group. In addition, n-3
PUFA treatment increased beat-to-beat alterations in the amplitude of Ca2+ transients (Ca2+ alternans) in VF-
myocytes. These n-3 PUFAs effects in VF- myocytes were associated with an increased Ca2+ spark frequency and
reduced sarcoplasmic reticulum Ca2+ content, indicative of increased activity of ryanodine receptors. Thus, dietary
n-3 PUFAs do not alleviate intracellular Ca2+ cycling remodeling in myocytes isolated from post-MI VF+ hearts.
Furthermore, dietary n-3 PUFAs increase vulnerability of ventricular myocytes to cellular arrhythmia in post-MI VF-
hearts by destabilizing intracellular Ca2+ handling.
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Introduction

Cardiac arrhythmias are recognized as a major factor
contributing to morbidity and mortality in patients with healed
myocardial infarction (MI). The search for an effective anti-
arrhythmic therapy remains a major unmet challenge. Initial
observational and interventional studies indicated that dietary
omega-3 polyunsaturated fatty acids (n-3 PUFAs) may be
effective in preventing cardiac arrhythmias [1–3]. However,
more recent clinical and animal studies reported mixed results
as to the anti-arrhythmic effects of n-3 PUFAs [4–7]. To explain
the apparent heterogeneity of the results, it has been
suggested that the effectiveness of n-3 PUFAs treatment might

depend on the mechanism of cardiac arrhythmia (triggered vs.
reentry), and on the route of n-3 PUFAs administration
(infused, free circulating vs. dietary, lipid incorporated)[6,8].

Abnormal regulation of intra-myocyte Ca2+ handling observed
in various cardiac disease settings, including post-MI hearts,
has been implicated in the genesis of both triggered and
reentrant arrhythmias [9–13]. Mechanistically, dysregulation of
Ca2+cycling that is manifested by increased frequency of
diastolic Ca2+ waves (DCWs) and Na+/Ca2+ exchanger-
mediated delayed after-depolarizations (DADs) is usually
associated with triggered arrhythmia mechanisms. Additionally,
remodeling of Ca2+ handling that results in increased
susceptibility to beat-to-beat alterations in the amplitude of Ca2+
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transients (Ca2+ alternans), and thereby an increased
dispersion of repolarization, can be linked to reentrant
mechanisms of arrhythmia. Therefore, the overall success of
anti-arrhythmic treatment with n-3 PUFAs may depend upon its
effects on intra-myocyte Ca2+ handling.

In cellular studies, the acute application of free n-3 PUFAs
consistently depressed intracellular Ca2+ handling, by reducing
the frequency Ca2+ sparks [14], Ca2+ after-transients [15] and
Ca2+ influx via the L-type Ca2+ channels [16–19], as well as
decreasing levels of systolic and diastolic Ca2+ [15,17,19], and
inhibiting the activity of reconstituted ryanodine receptors
(RyR2s) [14,20], a sarcoplasmic reticulum Ca2+ release
channel. These data indicate that free n-3 PUFAs can be
effective in suppressing diastolic Ca2+ waves and in preventing
triggered arrhythmia [15,19]. Similarly, dietary n-3 PUFAs were
shown to suppress arrhythmic contractile activity and Ca2+

after-transients in myocytes isolated from control hearts
[21,22]. However the effects of chronic dietary n-3 PUFAs on
intracellular Ca2+ handling in diseased myocytes remain to be
determined.

In the present study, we used a well-characterized canine
model of healed MI [23] to investigate the effects of dietary n-3
PUFAs (1-4 g/day docosahexaenoic acid + eicosapentaenoic
acid ethyl esters) on intracellular Ca2+ cycling in isolated
ventricular myocytes. Using a standardized exercise plus
ischemia test, post-MI animals were stratified for susceptibility
to ventricular fibrillation (VF) into susceptible (VF+) and
resistant (VF-) groups. We show that dietary n-3 PUFAs
produced alterations in intracellular Ca2+ cycling in post-MI
myocytes that are consistent with a pro- rather than an anti-
arrhythmic effect.

Materials and Methods

The principles governing the care and use of animals as
expressed by the Declaration of Helsinki, and as adopted by
the American Physiological Society, were followed at all times
during this study. In addition, the Ohio State University
Institutional Animal Care and Use Committee approved all the
procedures used in this study.

Model
A description of the model, n-3 PUFA treatment protocol, and

previous in vivo results have been described in detail [7].
Briefly, heartworm free mixed breed dogs (2-3 y old) were
anesthetized and instrumented to measure a ventricular
electrogram and coronary blood flow as previously described
[23–25]. A hydraulic vascular occluder was placed around the
left circumflex coronary artery and used to induce acute
myocardial ischemia during the exercise plus ischemia test as
described below. The left anterior descending coronary artery
was also isolated during the instrumentation surgery and a two-
stage occlusion of this artery was then performed
approximately one-third the distance from its origin in order to
produce an anterior wall myocardial infarction (~16% of left
ventricular mass [23]). Three-to-four weeks after the production
of the myocardial infarction, the susceptibility to ventricular
fibrillation (VF) was tested as previously described [23–25].

The animals ran on a motor-driven treadmill while workload
progressively increased until a heart rate of 70% of maximum
(approximately 210 beats/min) had been achieved. During the
last minute (on average during the 18th minute) of exercise, the
left circumflex coronary artery was occluded, the treadmill
stopped and the occlusion maintained for an additional minute
(total occlusion time = 2 min.). The exercise plus ischemia test
reliably induced ventricular flutter that rapidly deteriorated into
VF. Therefore, large defibrillation electrodes were placed
across the animal’s chest so that electrical defibrillation could
be achieved with a minimal delay but only after the animal was
unconscious (10-20 s after the onset of VF). The occlusion was
immediately released if VF occurred.

Omega-3 protocol
The dogs were placed on a diet that did not contain any n-3

PUFAs beginning one week prior to the instrumentation
surgery and were maintained on this diet until the end of the
study (~ 4 months). After the pre-treatment data collection (3 -
4 weeks after the surgery), the dogs were then randomly
assigned to the following groups: placebo (n = 17: VF+, n = 9;
VF-, n = 8); n-3 PUFA (1-4 g/day, n = 45: VF+ n = 22; VF-, n =
23). The dogs were given supplements similar to those used in
the GISSI-Prevenzione study [26]. The n-3 PUFA group
received 465 mg ethyl eicosapentaenoate, EPA + ethyl
docosahexaenoate, DHA, 375 mg per 1 g capsule (Lovaza®,
GlaxoSmithKline, Research Triangle Park, NC); doses of 1, 2,
4 grams were given. As no dose-dependent differences were
found, data for all doses were grouped together. The placebo
was corn oil (1 g, 58% linoleic acid + 28% oleic acid). The
capsules were given per os prior to the daily feeding (between
8:00 and 10:00 AM each day, 7 days per week for 3 months).
As previously reported [7,27], dietary EPA +DHA ethyl esters
elicited significant increases in left ventricle n-3 PUFA content,
reaching a peak between 8 and 12 weeks.

Cellular Ca2+ imaging
Myocytes were isolated distant from the infarction zone of

the left ventricular midmyocardium as described previously
[28]. For present study cells were isolated from normal control
dogs (n=8, no surgery, no MI, untreated), n-3 PUFAs treated
sham controls (n=3, no MI), untreated VF- (n=2), placebo
treated VF- (n=3) and VF+ (n=3) dogs, and n-3 PUFAs treated
VF- (n=3) and VF+ (n=4) dogs. Electrical field stimulation
experiments were performed using the following external
solution (in mM): 140 NaCl, 5.4 KCl, 2.0 CaCl2, 0.5 MgCl2, 10
HEPES, and 5.6 glucose (pH 7.4). Intracellular Ca2+ imaging
was performed using an Olympus Fluoview 1000 confocal
microscope. Rhod-2 Ca2+ indicator was used to monitor
cytosolic Ca2+ in intact myocytes. Cells were incubated with 10
µM Rhod-2 AM (Life Technologies, Grand Island, NY) for 25
min at room temperature. Amplitude of Ca2+ alternans was
defined as 100-(A2/A1)*100 (%), where A1 and A2 are
amplitudes of two consecutive Ca2+ transients. Ca2+ sparks
were studied in saponin-permeabilized myocytes using 30 µM
Fluo-3 (Life Technologies, Grand Island, NY) and the following
intracellular solution: (mM) 120 potassium aspartate, 20 KCl, 3
MgATP, 10 phosphocreatine, 5 U ml-1 creatine phosphokinase,
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0.5 EGTA (pCa 7) and 20 HEPES (pH 7.2). Ca2+ sparks were
detected and analyzed using a computer algorithm described
previously [29]. Image processing and analysis was performed
using ImageJ (National Institutes of Health; http://
rsbweb.nih.gov/ij/) and Origin 7.0 (OriginLab Corporation,
Northampton, MA) programs.

Western Blotting
The levels of proteins involved in Ca2+ cycling and their

phosphorylation were assessed by immunoblot analysis using
20-40 mg of homogenates from left ventricular tissue samples
as described previously [30]. Primary antibodies used were:
anti-phospholamban(PLB), anti- Na+/Ca2+ exchanger(NCX1),
and anti-phospho-PLB-S16 from Millipore (Billerica, MA); anti-
SERCA2a from Sigma-Aldrich (St.Luis, MO); anti-RyR2 and
anti-Cav1.2 from ThermoScientific (Waltham, MA); anti-
phospho-PLB-T17 from Santa Cruz (Dallas, TX). Anti-phospho-
RyR2-S2030 antibody was raised against (CG)
TIRGRLLS(PO4)LVEKVTYLKKCONH2 (YenZym Abs, South
San Francisco, CA). Custom-made anti-phospho-RyR2-S2808
and anti-phospho-RyR2-S2814 were from Phosphosolutions
(Aurora, CO)[30]. Anti- glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) antibody was from Abcam
(Cambridge, MA). Expression levels of RyR2, SERCA2A, PLB,
Cav1.2 channels, and NCX1 were assessed after normalization
to the loading control, GAPDH. Phosphorylation levels of RyR2
and PLB were analyzed following normalization to RyR2 or
PLB protein levels assessed from gels run in parallel. Blots
were developed with Super Signal West Pico (Pierce) and
quantified using ImageJ (National Institutes of Health) and
Origin 7 (OriginLab, Northampton, MA) software.

Statistical Analysis
Results are presented as mean±S.E.M. Statistical

significance was evaluated using either Student's t test or one
way ANOVA with Tukey’s post hoc test. The proportion of cells
displaying DCWs or Ca2+ alternans was compared using
Fisher's exact test. A P value of <0.05 was considered
significant.

Results

Dietary n-3 PUFAs do not stabilize intracellular Ca2+

cycling in VF+ myocytes and increase susceptibility of
VF- myocytes to pro-arrhythmic diastolic Ca2+ waves

Recordings of cytosolic Ca2+ in field-stimulated myocytes in
the presence of β-adrenergic receptor agonist isoproterenol
(100 nM) were used to analyze susceptibility of ventricular
myocytes to DCWs. On average, the frequency of occurrence
of DCWs was not different in untreated controls and VF-
myocytes from placebo group (Figure 1 A, B, D). DCWs were
more frequent (P<0.05) in field-stimulated VF+ myocytes from
the placebo-treated group than in VF- myocytes from
corresponding group (Figure 1 B-E). n-3 PUFA treatment did
not affect the rate of the occurrence of DCWs either in control
(P=0.5) or in VF+ (P=0.2) myocytes (Figure 1 A, C, D, E).
Conversely, in VF- myocytes n-3 PUFA treatment significantly

increased (P<0.05 vs. placebo) frequency of DCWs (Figure 1
B, D). Furthermore, the proportion of myocytes displaying
DCWs increased more than three-fold (P<0.01) in VF-myocytes
treated with n-3 PUFAs when compared to placebo-treated
cells (Figure 1 E).

Dietary n-3 PUFAs increase susceptibility of VF-
myocytes to pro-arrhythmic Ca2+ alternans

To investigate whether the effects of dietary n-3 PUFAs on
VF- myocytes were associated with Ca2+-dependent
arrhythmogenic substrate, we studied the amplitude and rate-
dependence of Ca2+ alternans in VF- myocytes from placebo
and n-3 PUFA group [9,31]. As demonstrated in Figure 2, both
untreated controls and placebo-treated VF- myocytes did not
normally exhibit Ca2+ alternans at 0.5 and 1 Hz frequency of
field stimulation. In contrast, following n-3 PUFA treatment 75
% of VF- myocytes displayed Ca2+ alternans at 1 Hz (Figure 2
B). This increase in a number of cells displaying alternans was
also associated with a significant increase (P<0.05 vs. placebo)
in average amplitude of Ca2+ alternans recorded in VF- from
n-3 PUFAs treated group at 1 Hz (Figure 2 B, C, D). These
data suggest that dietary n-3 PUFAs may enhance the dynamic
substrate for arrhythmia in VF- hearts.

Effect of dietary n-3 PUFAs on intracellular Ca2+

handling in VF- myocytes is associated with the
increased ryanodine receptor (RyR2) activity

We further characterized the effect of dietary n-3 PUFAs on
properties of intracellular Ca2+ handling in VF- myocytes by
measuring the frequency of Ca2+ sparks. As shown in Figure 3
and Table 1 Ca2+ sparks frequency was significantly higher in
untreated VF- myocytes when compared to control. However,
even greater increases in Ca2+ spark frequency were observed
in VF- myocytes from the n-3 PUFA treated group (Figure 3 A,
C; table 1). To assess possible mechanisms underlying the n-3
PUFA-induced augmented Ca2+ spark activity in VF- myocytes,
we studied SR Ca2+ content ([Ca2+]SR) by measuring the
amplitude of Ca2+ transients evoked by 10 mM caffeine. As
shown in Figure 3 (B and D), [Ca2+]SR was significantly lower in
n-3 PUFA-treated VF- myocytes compared to untreated control
and VF- myocytes, respectively. More frequent Ca2+ sparks at
lower [Ca2+]SR indicate increased RyR2 functional activity in VF-
myocytes from n-3 PUFA-treated group.

Next, we assessed whether changes in expression and
phosphorylation levels of proteins involved in intracellular Ca2+

cycling occur following chronic dietary supplementation with
n-3 PUFAs. Dietary n-3 PUFAs did not significantly affect
expression of RyR2, SR Ca2+ ATPase, phospholamban (PLB),
alpha subunit of cardiac L-type Ca2+ channels, and Na+/Ca2+

exchanger either in control or in VF- ventricular preparations
(Figure 4 A-C, table 2). We also observed no significant
alterations in RyR2 phosphorylation at well-established
phosphorylation sites (Ser-2808, Ser-2814, and Ser-2030)
[32,33] in n-3 PUFA-treated groups (Figure 4 B, table 2).
Finally, phosphorylation levels of PLB at Ser-16 and Thr-17
were also unaffected by n-3 PUFA treatment (Figure 4 C, table
2).
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Figure 1.  Dietary n-3 PUFAs induce pro-arrhythmic remodeling of intracellular Ca2+ handling in VF-
myocytes.  Representative line-scan images and corresponding profiles of Rhod-2 fluorescence during periodic (0.3 Hz) electrical
stimulation recorded in myocytes from placebo/untreated and n-3 PUFA-treated controls (A), VF- (B) and VF+ (C) groups,
respectively. Data were obtained in the presence of 100 nM isoproterenol, a β-adrenergic receptor agonist. D, Average frequency of
DCWs (per second) was: 0.11±0.03 (n=15) and 0.14±0.03 (n=40) in control untreated and n-3 PUFA-treated myocytes, respectively
(P=0.5); 0.07±0.03 (n=20) and 0.21±0.04 (n=20) in VF- myocytes from placebo and n-3 PUFAs groups, respectively (P=0.014);
0.23±0.05 (n=8) and 0.32±0.05 (n=8), in VF+ myocytes from placebo and n-3 PUFAs groups, respectively (P=0.22). *, P<0.05 vs.
VF- placebo; †, P<0.05 vs. n-3 PUFA-treated controls. E, Bar graph shows proportion of myocytes displaying DCWs. In control
groups DCWs were recorded in 9 out of 15 untreated cells and in 24 out of 40 n-3 PUFA-treated cells, respectively. In VF- groups
DCWs were recorded in 4 out of 20 placebo-treated cells and in 14 out of 20 n-3 PUFA-treated cells, respectively. In VF+ groups
DCWs were recorded in 7 out of 8 placebo-treated cells and in 8 out of 8 n-3 PUFA-treated cells, respectively.
doi: 10.1371/journal.pone.0078414.g001
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Discussion

In the present study we tested the hypothesis that dietary n-3
PUFAs would stabilize intracellular Ca2+ cycling in ventricular
myocytes isolated from post-MI hearts. The major findings are
as follows: a) dietary n-3 PUFAs were not effective in inhibiting

DCWs in ventricular myocytes isolated from VF+ animals; b)
dietary n-3 PUFAs caused marked destabilization of
intracellular Ca2+ cycling in myocytes from VF- animals
manifested as an increased rate of occurrence of DCWs and
increased amplitude of Ca2+ alternans; c) effects of dietary n-3
PUFAs observed in VF- myocytes were associated with

Figure 2.  Dietary n-3 PUFAs increase susceptibility of VF- myocytes to pro-arrhythmic Ca2+ alternans.  Representative line-
scan images and corresponding profiles of Rhod-2 fluorescence recorded in myocytes from indicated groups at 0.5 (A) and 1 Hz (B)
stimulation. Bar graphs show amplitude (C) and incidence (D) of Ca2+ alternans recorded in control untreated myocytes and VF-
myocytes from placebo and n-3 PUFAs groups at 0.5 and 1Hz. Number of myocytes with amplitude of Ca2+ alternans larger than 10
% (numerator) and total number of myocytes studied (denominator) are indicated for each group presented in panel D bar graph. *,
P<0.05 vs. control (1Hz); †, P<0.05 vs. VF- placebo (1Hz).
doi: 10.1371/journal.pone.0078414.g002
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Figure 3.  Dietary n-3 PUFAs increase frequency of Ca2+ sparks in VF- myocytes.  A, Representative line-scan images of Ca2+

sparks recorded in saponin-permeabilized myocytes from indicated groups. Insets show scaled up image of Ca2+ spark with
corresponding time-dependent fluorescence profile. B, Representative traces of Ca2+ transients evoked by 10 mM caffeine recorded
in permeabilized myocytes from indicated groups. C, Average Ca2+ spark frequency (in 100 µm-1*s-1) was 1.23±0.13 (n=52) in
untreated control myocytes, 2.01±0.19 (n=47) and 3.31±0.38 (n=45) in untreated and n-3 PUFA-treated VF- myocytes, respectively.
D, Average amplitude of caffeine-induced Ca2+ transients ([Ca2+]CAFF, ΔF/F0) was 2.76±0.34 (n=7) in untreated control myocytes,
2.19±0.11 (n=5) and 1.42±0.06 (n=4) in untreated and n-3 PUFA-treated VF- myocytes, respectively. *, P<0.05 vs. control; †,
P<0.05 vs. VF- untreated.
doi: 10.1371/journal.pone.0078414.g003
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enhanced RyR2 activity. These cellular findings may explain
our previous in vivo observation that dietary n-3 PUFA not only
failed to reduce the risk for ventricular tachyarrhythmias in VF+
dogs but actually increased arrhythmia formation in VF- dogs
[7].

Intracellular Ca2+ dysregulation is recognized as an important
factor contributing to the genesis of various forms of cardiac
arrhythmias. Remodeling of intracellular Ca2+ cycling leading to
increased occurrences of spontaneous Ca2+ releases and
diastolic Ca2+ waves is typically associated with triggered
arrhythmias [10,11,13]. Alterations in intracellular Ca2+ handling
resulting in beat-to-beat variations in the amplitude of Ca2+

transient (Ca2+ alternans) are believed to contribute to reentrant
excitation, providing an additional form of proarrhythmic
dysregulation [9–11]. Using canine post-MI model of sudden
cardiac death we previously showed that ventricular myocytes
isolated from VF+ hearts had higher susceptibility to both
DCWs [34] and Ca2+ alternans [31] when compared to
myocytes isolated from normal hearts. In the present study
using the same animal model, we investigated the effects of
dietary n-3 PUFAs on intracellular Ca2+ cycling [23]. Dietary
EPA +DHA ethyl esters supplements significantly increased left
ventricular n-3 PUFA content [7,27]. The increased n-3 PUFA
tissue content did not alter the already high propensity of VF+
myocytes for DCWs (Figure 1 C, D). Furthermore dietary n-3
PUFAs increased susceptibility of VF- myocytes to both DCWs
and Ca2+ alternans (Figure 1 A, B, D and Figure 2 B-D).
Although molecular mechanisms responsible for these effects
of n-3 PUFAs remain to be determined, our cellular data
demonstrate that incorporated n-3 PUFAs can be linked to
increased susceptibility to both triggered and reentrant
arrhythmias in post-MI hearts.

It has been previously noted that the physiological effects of
n-3 PUFAs might depend on the route of administration: acute
application of free n-3 PUFAs vs. chronic dietary consumption
that results in increases in both free circulating and lipid
incorporated PUFAs [6,8]. Indeed, most cellular data
supporting an anti-arrhythmic effect of PUFAs were obtained
from studies that evaluated the effects of the acute application
of free n-3 PUFAs. Thus, acute application of free n-3 PUFAs
invariably resulted in inhibitory effects on membrane excitability

Table 1. Properties of Ca2+ sparks in saponin-permeabilized
ventricular myocytes.

 
Control untreated
n=52

VF- untreated
n=47

VF- n-3 PUFAs
n=45

Amplitude (ΔF/F0) 0.74±0.02 0.64±0.01* 0.70±0.01†

Frequency (sparks/100
µm/s)

1.23±0.13 2.01±0.19* 3.31±0.38*†

FDHM (ms) 21.9±0.8 23.8±0.8 18.0±0.4*†

FWHM (µm) 2.07±0.05 1.96±0.04 2.06±0.04
Time to peak (ms) 10.50±0.39 9.71±0.43 8.32±0.27*†

FDHM, full duration at half maximum; FWHM, full width at half maximum. N,
number of cells studied. * P<0.05 vs. control untreated; † P<0.05 vs. VF-
untreated.
doi: 10.1371/journal.pone.0078414.t001

and Ca2+ handling [14–19] [reviewed in 6,35]. Consistent with
these in vitro studies, acute infusion of free n-3 PUFAs reduced
in vivo susceptibility to VF in our canine post-MI model [36].

Animal studies addressing the effects of dietary n-3 PUFAs
have produced more heterogeneous results [reviewed in 6,35].
For example, dietary n-3 PUFAs inhibited ischemia and
reperfusion arrhythmias in rat hearts [37] but promoted
arrhythmias during acute myocardial ischemia in pig hearts [38]
and increased in vivo susceptibility to VF in dogs with healed
MI [7]; the very same animals from which myocytes were
obtained for the present studies. In ventricular myocytes
isolated from control animals, incorporated n-3 PUFAs did not
significantly affect Ca2+ transients under baseline conditions,
but reduced both arrhythmogenic Ca2+ after-transients and
arrhythmic contractile activity evoked by beta-adrenergic
receptor stimulation [21,22]. We previously showed that
incorporated n-3 PUFAs did not change Ca2+ transients under
baseline conditions in myocytes isolated from post-MI canine
hearts [27]. To the best of our knowledge, the present study is
the first to address the effect of dietary n-3 PUFAs on
arrhythmogenic properties of intracellular Ca2+ cycling in the
setting of healed MI with known in vivo susceptibility to cardiac
arrhythmias. In our experiments, dietary n-3 PUFAs resulted in
severe pro-arrhythmic alterations in intracellular Ca2+ cycling in
VF- myocytes (Figures 1-3), whereas susceptibility of VF+
myocytes to DCWs, already high in the placebo group, was not
significantly affected by n-3 PUFAs (Figure 1 C-E). It is
worthwhile to note that dietary n-3 PUFAs did not affect the
stability of intracellular Ca2+ cycling in ventricular myocytes
isolated from controls (Figure 1 A, D, E) suggesting that the
pro-arrhythmic effect may depend on cellular substrate
(magnitude and mechanisms of cellular remodeling due to MI).

The n-3 PUFA influence on ion channel activity has been
attributed to the direct interactions with the channel proteins
and indirect effects on membrane fluidity and intracellular
signaling [5,6,8]. Given that the acute application of n-3 PUFAs
inhibits RyR2s [14,20], enhanced activity of RyR2s observed in
the present study most likely results from indirect effects. We
did not find evidence that dietary n-3 PUFAs alter expression
levels of proteins involved in cardiac Ca2+ cycling including
RyR2 (Figure 4, table 2). Since phosphorylation of RyR2 has
been implicated in abnormal increase of RyR2 activity in
disease states [32,33] and acute application of n-3 PUFAs has
been associated with activation of protein kinase A [39], we
also studied the effects of dietary n-3 PUFAs on
phosphorylation state of RyR2. As illustrated in Figure 4 (B)
and table 2, phosphorylation of established RyR2
phosphorylation sites was not significantly altered by dietary
n-3 PUFAs suggesting that proarrhythmic effects of dietary n-3
PUFAs are not associated with the increased RyR2
phosphorylation. Further research will be needed to determine
molecular mechanisms linking dietary n-3 PUFA and abnormal
RyR2 activity.

Study limitation
We acknowledge that present study has some limitations

that could affect the interpretation of the results. Due to
technical reasons all cellular experiments were performed at
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Figure 4.  Dietary n-3 PUFAs do not affect expression and phosphorylation levels of proteins involved in cardiac Ca2+

cycling.  A-C, Representative immunoblots of left ventricle homogenates prepared from placebo and n-3 PUFA-treated control
(sham) and VF- groups. NCX1, Na+/Ca2+ exchanger type 1; SERCA2a, cardiac isoform of SR Ca2+-ATPase; GAPDH,
Glyceraldehyde 3-phosphate dehydrogenase; PLN, phospholamban; Cav1.2, α1C subunit of L-type Ca2+ channel. Data were
obtained using 2-4 heart samples. Quantitative analysis is presented in Table 2.
doi: 10.1371/journal.pone.0078414.g004
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room temperature (22-24°C) and ambient O2 tension (~20%) in
contrast to physiological temperature (37°C) and O2 tension
(~5%). Therefore, our experimental conditions could influence
dynamics of intracellular Ca2+ cycling, fluidity of the membrane
and potentially could alter the intracellular effects of
incorporated n-3 PUFAs. Finally, efficacy of incorporated n-3
PUFAs may be different in canine and human hearts.

Table 2. Expression and phosphorylation levels of critical
Ca2+ handling proteins in n-3 PUFA-treated control and VF-
preparations.

 
Control n-3 PUFAs (Normalized
to control placebo, %)

VF- n-3 PUFAs (Normalized to
VF- placebo, %)

RyR2 132±18 116±34
RyR2-S2808 75±7 115±27
RyR2-S2814 180±47 97±29
RyR2-S2030 111±26 95±22
SERCA2A 98±35 149±29
PLB 90±7 88±11
PLB-S16 125±49 365±72
PLB-T17 158±19 125±12
Cav1.2 135±33 145±49
NCX 87±20 139±53

Data were obtained from 2-4 experiments. No significant differences (P>0.05) were
observed in protein expression or protein phosphorylation levels between placebo
and n-3 PUFAs treatments.
doi: 10.1371/journal.pone.0078414.t002

Conclusions

In the present study, we have demonstrated that increases in
left ventricle n-3 PUFA content mediated by dietary intake of
EPA +DHA ethyl esters similar to those noted in patients
[26,40] were associated with a significant increases in
frequency of Ca2+ sparks in myocytes from post-MI (VF-)
hearts. The increased frequency of Ca2+ sparks along with the
reduced SR Ca2+ content observed in VF- myocytes suggest
that incorporated n-3 PUFAs increased sensitivity of ryanodine
receptors to SR Ca2+ in diseased hearts. We further
demonstrated that dietary n-3 PUFA supplements were
associated with a high predisposition of both VF- and VF+
myocytes to DCWs in response to β-adrenergic receptor
stimulation. Thus, we conclude that incorporated n-3 PUFAs
produce disturbances in Ca2+ cycling that would increase rather
than decrease the risk for ventricular tachyarrhythmias in post-
MI hearts.
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