
ll
OPEN ACCESS
Protocol
Protocol for post-processing of bacterial
pangenome data using Pagoo pipeline
Ignacio Ferrés,

Gregorio Iraola

iferres@pasteur.edu.uy

(I.F.)

giraola@pasteur.edu.uy

(G.I.)

Highlights

Bacterial pangenome

analysis needs the

integration of genetic

and phenotypic data

This protocol shows

how to achieve this

using the Pagoo

software package

Pagoo works in

concert with other

microbial genomics

packages in the R

ecosystem
Multiple downstream analyses are necessary to interpret the output of bacterial pangenome

reconstruction software. This requires integrating diverse kinds of genetic and phenotypic data,

which to date are left to each user’s criterion. To fill this gap, we created Pagoo, a pangenome

post-processing tool that leverages a standardized but flexible and extensible framework for

data integration, analysis, and storage. Here, we provide the protocol for running Pagoo and

performing from simple to more complex comparative analyses on bacterial pangenome data.
Ferrés & Iraola, STAR

Protocols 2, 100802

December 17, 2021 ª 2021

The Author(s).

https://doi.org/10.1016/

j.xpro.2021.100802

mailto:iferres@pasteur.edu.uy
mailto:giraola@pasteur.edu.uy
https://doi.org/10.1016/j.xpro.2021.100802
https://doi.org/10.1016/j.xpro.2021.100802
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100802&domain=pdf

Protocol

Protocol for post-processing of bacterial pangenome
data using Pagoo pipeline

Ignacio Ferrés1,2,5,* and Gregorio Iraola1,2,3,4,6,*

1Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Montevideo 11400, Uruguay

2Center for Innovation in Epidemiological Surveillance, Institut Pasteur Montevideo, Montevideo, Montevideo 11400,
Uruguay

3Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 SA1, UK

4Center for Integrative Biology, Universidad Mayor, Providencia, Santiago de Chile, Chile

5Technical contact

6Lead contact

*Correspondence: iferres@pasteur.edu.uy (I.F.), giraola@pasteur.edu.uy (G.I.)
https://doi.org/10.1016/j.xpro.2021.100802

SUMMARY

Multiple downstream analyses are necessary to interpret the output of bacterial
pangenome reconstruction software. This requires integrating diverse kinds of
genetic and phenotypic data, which to date are left to each user’s criterion. To fill
this gap, we created Pagoo, a pangenome post-processing tool that leverages
a standardized but flexible and extensible framework for data integration,
analysis, and storage. Here, we provide the protocol for running Pagoo and per-
forming from simple to more complex comparative analyses on bacterial pange-
nome data.
For complete details on the use and execution of this protocol, please refer to
Ferrés and Iraola (2021).

BEFORE YOU BEGIN

Pagoo is designed to take the output generated by pangenome reconstruction software

like Roary (Page et al., 2015), Panaroo (Tonkin-Hill et al., 2020), PEPPAN (Zhou et al., 2020)

or panX (Ding et al., 2018). This protocol explains how to use built-in functions from Pagoo

to automatically load and analyze output files produced by these pangenome reconstruction

tools as they are widely used by the community. The output of any of these software tools

can be loaded by Pagoo as a set of tables and genetic sequences. Hence, for starting using

Pagoo, pangenome reconstruction needs to be performed on a set of genomes using any

preferred tool.

Pangenome reconstruction

Timing: 30 min

Here, we provide a full-reproducible example on how to build a pangenome based on 168 previ-

ously published Campylobacter fetus genomes (Iraola et al., 2017). These genomes have been pre-

viously annotated using Prokka (Seemann, 2014) using default parameters (follow the steps

described here to perform genome annotation). In this case, we will use Roary (Page et al., 2015)

with default parameters to reconstruct the pangenome. It is assumed that Roary is installed and

available in the user’s path.

STAR Protocols 2, 100802, December 17, 2021 ª 2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:iferres@pasteur.edu.uy
mailto:giraola@pasteur.edu.uy
https://doi.org/10.1016/j.xpro.2021.100802
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100802&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Download and decompress genomes from inside the R session (Box 1):

2. Run Roary to reconstruct the pangenome:

a. List GFF annotation files and run Roary from inside the R session (Box 2):

Note: Timing of this step depends on the software selected to perform pangenome recon-

struction and the number of genomes to be analyzed.

KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

� Data (output files produced by pangenome reconstruction software - see pangenome reconstruc-

tion in before you begin). As a working example, this protocol uses the dataset listed in the key

resources table.

� Pagoo works in Linux, Mac and Windows systems in which R is installed. This protocol was con-

ducted on Linux (Fedora Generic release 26) and R v4.0.3 using a desktop computer with 64

GB RAM and an Intel Core i7-7700 (3.60GHz) processor.

Box 1

tar_gz <- "cfetus_pangenome.tar.gz"

if (!file.exists(tar_gz)) {

download.file(url = "https://ndownloader.figshare.com/files/26144075",

destfile = tar_gz)

}

untar(tarfile = tar_gz, exdir = "C_fetus")

Box 2

gffs <- list.files(path = "C_fetus",

pattern = "[.]gff$",

recursive = TRUE,

full.names = TRUE)

roary <- paste("roary -f ./C_fetus/roary_output",

paste(gffs, collapse = " "))

system(roary)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GFF3 input files for pangenome
reconstruction

Figshare https://doi.org/10.6084/
m9.figshare.13622354.v1

Software and algorithms

Pagoo Ferrés and Iraola, 2021 https://github.com/iferres/pagoo

Roary Page et al., 2015 https://sanger-pathogens.github.io/Roary

ll
OPEN ACCESS

2 STAR Protocols 2, 100802, December 17, 2021

Protocol

https://ndownloader.figshare.com/files/26144075
https://doi.org/10.6084/m9.figshare.13622354.v1
https://doi.org/10.6084/m9.figshare.13622354.v1
https://github.com/iferres/pagoo
https://sanger-pathogens.github.io/Roary

STEP-BY-STEP METHOD DETAILS

Step 1: Installing Pagoo

Timing: 4 min

Full installation of Pagoo includes downloading the Pagoo package and resolving all its depen-

dencies from CRAN. Alternatively, the last development version of Pagoo can be installed from

GitHub.

1. Install Pagoo from CRAN by running the following code:

2. Alternatively, install Pagoo from GitHub by running the following code:

Step 2: Loading pangenome data from scratch

Timing: 5 min

First, we provide a toy example that describes how to create Pagoo’s data structure from scratch

independently of the pangenome reconstruction software that was used to generate the data.

This toy dataset is included when the user installs Pagoo package.

3. Generate a Pagoo object. To generate a Pagoo object, the only mandatory data structure is a

data.frame with information relating organisms to genes to orthologous clusters. Other optional

data can be also added as additional columns or tables. Load toy example files by running the

code in Box 3:

a. We will see the case_df.tsv file that is the mandatory data.frame. Run the code in Box 4 to load

and inspect it:

install.packages("pagoo")

if (!require("devtools"))

devtools::install_github("iferres/pagoo")

Box 3

library(pagoo)

tgz <- system.file("extdata", "toy_data.tar.gz", package = "pagoo")

untar(tarfile = tgz, exdir = ".")

files <- list.files(full.names = TRUE, pattern = "tsv$|fasta$")

Box 4

data_file <- grep("case_df.tsv", files, value = TRUE)

data <- read.table(data_file, header = TRUE,

sep = "\t", quote = "")

head(data)

gene org cluster annot

1 gene081 organismA OG001 Thioesterase superfamily protein

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 3

Protocol

b. The first column in this file identifies each gene, the second column identifies the organism to

which each gene belongs and the third column shows the orthologous cluster to which each

gene was assigned in the pangenome reconstruction. The fourth column shows the annotation

of each gene (optional as other additional metadata columns that can be added to this table).

With only this data you can start working with Pagoo as follows:

4. Adding metadata to organisms. Relevant data associated to each organism (i.e., geographic

origin, collection date, phenotyping, etc.) can be added to the basic pangenome structure as

detailed in Box 5:

CRITICAL: Beware that organism names provided in orgs_meta$org must coincide with

names provided in the data$org field, in order to correctly map each variable.

Note: If partial metadata is available, for example host data is only available for a subset of

organisms, fields with missing data will be automatically filled with NAs.

5. Adding metadata to orthologous clusters. Relevant data can be also incorporated to each or-

thologous cluster, for example its functional annotation as detailed in Box 6 (see here for a guide

for generating functional annnotations using the eggNOG database and related tools):

Box 5

orgs_file <- grep("case_orgs_meta.tsv", files, value = TRUE)

orgs_meta <- read.table(orgs_file, header = TRUE,

sep = "\t", quote = "")

head(orgs_meta)

org sero country

1 organismA a Westeros

2 organismB b Westeros

3 organismC c Westeros

4 organismD a Essos

5 organismE b Essos

p <- pagoo(data = data)

. Continued

2 gene122 organismB OG001 Thioesterase superfamily

3 gene299 organismC OG001 Thioesterase superfamily protein

4 gene186 organismD OG001 Thioesterase superfamily protein

5 gene076 organismE OG001 Thioesterase superfamily

6 gene352 organismA OG002 Inherit from proNOG: Thioesterase

Box 6

clust_file <- grep("case_clusters_meta.tsv", files, value = TRUE)

clust_meta <- read.table(clust_file, header = TRUE,

sep = "\t", quote = "")

head(clust_meta)

ll
OPEN ACCESS

4 STAR Protocols 2, 100802, December 17, 2021

Protocol

CRITICAL: Again, the column clust_meta$cluster must contain the same identifiers as the

data$cluster column to be able to map one into the other.

6. Adding sequences. If the user wants to add sequences, these must be provided for all organisms

in the dataset. The type of data needed are multi-FASTA files where each individual sequence

represents a gene whose name can be mapped to the data$gene column. Sequences need to

be loaded as a list where each element is named with an organism name that maps to data$org

and org_meta$org. This can be done as described in Box 7:

Note: Pagoo currently supports the incorporation of DNA sequences. However, once se-

quences are incorporated into the Pagoo object, these can be translated and used as protein

sequences for downstream analysis using Biostrings and other R packages.

7. Generate an object with multiple data. Now, we can set up a Pagoo object integrating all this

data, including presence/absence of each orthologous cluster in each organism, gene annota-

tions, functional annotations, organisms metadata and sequences. To build the Pagoo object

run the code in Box 8:

8. Adding more metadata after creating the Pagoo object. The user can add new metadata

as the outcome of downstream analysis or experiments. This can be achieved by adding

new metadata columns either to each gene, cluster or organism defined in the Pagoo

object. By running the following code, we illustrate how to add a new column to the

$organisms field named host that describes the host where each organism was isolated from

(see Box 9):

Box 7

fasta_files <- grep("[.]fasta", files, value = TRUE)

names(fasta_files) <- sub("[.]fasta", "", basename(fasta_files))

library(Biostrings)

sq <- lapply(fasta_files, readDNAStringSet)

Names are the same as in data$org

[1] "organismA" "organismB" "organismC" "organismD" "organismE"

. Continued

cluster kegg cog

1 OG001 <NA> S

2 OG002 <NA> S

3 OG003 <NA> <NA>

4 OG004 <NA> D

5 OG005 K01990 V

6 OG006 <NA> V

Box 8

p <- pagoo(data = data, # Required data

org_meta = orgs_meta, # Organisms metadata

cluster_meta = clust_meta, # Clusters metadata

sequences = sq) # Sequences

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 5

Protocol

CRITICAL: To allow Pagoo to correctly map the data, values in the first column of the

host_df table must be the same as in p$organisms$org, and its column header must

also be named org.

Note: Preparing data from scratch and loading classes can be relatively laborious, but in

real life working datasets this will be rarely needed. To avoid this, Pagoo provides helper

functions that directly parse and read-in output files produced by most widely-used

pangenome reconstruction software, avoiding any formatting or manipulation of data (see

next step).

Step 3: Input from pangenome reconstruction software

Timing: 10 min

Pagoo allows read-in output files produced by most widely-used pangenome reconstruction soft-

ware. Since its publication in 2015, Roary (Page et al., 2015) has been the standard and most cited

software for pangenome reconstruction. More recently, other related software have emerged like

PIRATE (Bayliss et al., 2019), Panaroo (Tonkin-Hill et al., 2020) and PEPPAN (Zhou et al., 2020)

that improved different steps of pangenome reconstruction or provided new analytical approaches.

Also, we have created our own pangenome reconstruction software called Pewit (unpublished but

available at https://github.com/iferres/pewit), which automatically generates a Pagoo-like object

to perform downstream analyses. This object contains all the methods and fields that Pagoo pro-

vides, but adding a set of methods and fields exclusive to Pewit (not covered in this protocol).

Here, we provide full details on how to load output files from Roary and indicate how to load output

files from other above-listed software.

9. To create a pangenome object using Pagoo from output files produced by Roary (as described in

step 2), run the code described in Box 10 assuming you are placed in the output directory gener-

ated by Roary:

Box 9

host_df <- data.frame(org = p$organisms$org,

host = c("Cow", "Dog", "Cat", "Cow", "Sheep"))

p$add_metadata(map = "org", host_df)

p$organisms

org sero country host

1 organismA a Westeros Cow

2 organismB b Westeros Dog

3 organismC c Westeros Cat

4 organismD a Essos Cow

5 organismE b Essos Sheep

Box 10

gffs <- list.files(path = "../gffs/", pattern = "[.]gff$", full.names = TRUE)

gpa_csv <- "gene_presence_absence.csv"

library(pagoo)

p <- roary_2_pagoo(gene_presence_absence_csv = gpa_csv, gffs = gffs)

ll
OPEN ACCESS

6 STAR Protocols 2, 100802, December 17, 2021

Protocol

https://github.com/iferres/pewit

Note: Exactly the same approach can be used to load output files from Panaroo, by using the

analogous function panaroo_2_pagoo(). Other software like PIRATE and PEPPAN provide

scripts (PIRATE_to_roary.pl and PEPPAN_parse.py, respectively) that transform their output

files into Roary’s output format. Then, roary_2_pagoo() function can be used to generate

the pangenome object from PIRATE and PEPPAN once this transformation has been applied.

Step 4: Querying pangenome data

Timing: 10 min

The user can easily explore information that is stored inside the Pagoo object using standard R

notation. Indeed, this object has its own associated data and methods that can be easily queried with

the ’$’ operator. These methods allow for the rapid subsetting, extraction and visualization of pange-

nome data.

10. Summary statistics. A pangenome can be stratified in different gene subsets according to their

frequency. The core genes are defined as those present in every genome (also the term soft core

is typically used for genes occurring in 95%–100% of genomes). The remaining genes are

defined as the accessory genome, that can be subdivided in cloud genes or singletons (present

in only one genome or only in genomes that) and shell genes which are those in the middle. Run

the following code in Box 11 to see this:

11. Core level. The core level defines the minimum number of genomes (as a percentage) in which a

certain gene should be present to be considered a core gene. By default, Pagoo considers as

core genes all those present in at least 95% of organisms. The core level can be modified to

be more or less stringent defining the core genome. Modifying the core level will affect the pan-

genome object state resulting in different core, shell and cloud sets. See this running the com-

mand in Box 12:

Box 11

p$summary_stats

Category Number

1 Total 7326

2 Core 1489

3 Shell 5010

4 Cloud 818

Box 12

p$core_level # [1] 95

p$core_level <- 100 # Change value

p$summary_stats # Updated object

Category Number

1 Total 7326

2 Core 1117

3 Shell 5391

4 Cloud 818

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 7

Protocol

12. Pangenomematrix. The pangenomematrix is one of themost useful things when analyzing pan-

genomes. Typically, it represents organisms in rows and clusters of orthologous genes in col-

umns informing about gene abundance (considering paralogues). The pangenome matrix looks

like the one shown in Box 13 (printing only first 5 rows and columns):

13. Genes metadata. Metadata associated with each individual gene can be accessed by the

$genes suffix. It always contains the gene name, the organism to which it belongs, its assigned

cluster and a gene identifier (gid). Optionally, it can typically include annotation data, genomic

coordinates, etc. Gene metadata is splitted by cluster, so it consists of a list of dataframes (Box

14, showing only the first rows):

14. Clusters metadata.Groups of orthologous genes (clusters) are also stored in Pagoo objects as a

table with a cluster identifier per row, and additional columns as optional metadata (Box 15,

showing only first rows):

Box 13

p$pan_matrix[1:5, 1:5]

aadK aaeA_1 aaeA_2 aat aat_2

16244_6#1 1 0 0 1 0

16244_6#10 0 0 0 1 0

16244_6#11 1 0 0 1 0

16244_6#12 0 0 0 1 0

16244_6#13 1 0 0 1 0

Box 14

p$genes[1]

SplitDataFrameList of length 1

$aadK

DataFrame with 7 rows and 10 columns

cluster org gene gid

<factor> <factor> <factor> <character>

16244_6#1_00636 aadK 16244_6#1 16244_61_00636 16244_6#1__16244_6..

16244_6#11_00101 aadK 16244_6#11 16244_6#11_00101 16244_6#11__16244_6..

16244_6#13_00100 aadK 16244_6#13 16244_6#13_00100 16244_6#13__16244_6#..

Box 15

p$clusters

DataFrame with 7326 rows and 2 columns

cluster Annotation

<factor> <character>

1 aadK hypothetical protein

2 aaeA_1 Ribonuclease P prote..

3 aaeA_2 N-carbamoyl-D-amino..

ll
OPEN ACCESS

8 STAR Protocols 2, 100802, December 17, 2021

Protocol

15. Sequences. Although it is an optional field (it exists only if the user provides this data as an argu-

ment when the object is created), $sequences gives access to sequence data. Sequences are

stored as a DNAStringSetList object as defined in the Biostrings package. The code in Box 16

will list all sequences in clusters (only showing first rows):

Then, you can list all sequences of a single cluster by running the code in Box 17 (only showing first

rows):

CRITICAL: Note that sequence names are created by pasting organism names and gene

names, separated by a string that by default is sep = ’__’ (two underscores). This is the

same as the gid column in the $genes field, and is initially set when a Pagoo object is

created. If you think your dataset contains names with this separator, then you should

set this parameter to another string to avoid conflicts.

Note: Sequences can be written to text as multi-FASTA format files using standard methods

provided by the Biostrings package.

16. Organisms metadata. The $organisms field contains a table with organisms and metadata as

additional columns if provided (Box 18, only showing first rows):

. Continued

4 aat putative ABC transpo..

5 aat_2 hypothetical protein

Box 16

p$sequences

DNAStringSetList of length 7326

[["COQ2"]] 16244_6#1__16244_6#1_01627=ATGGCTAAATTTACTCAAATTTTAAAAGATATAAACGAA.

[["COQ3_1"]] 16244_6#1__16244_6#1_00352=ATGAGTAACGCAAACGCATGGGACGATATGTCAAATT.

[["COQ3_2"]] 16244_6#10__16244_6#10_01654=ATGAAAAAAACGTTTTCATTTGGAAAAAACTGGCT.

[["COQ3_3"]] 16244_6#1__16244_6#1_00772=ATGAAAGAAAAGTTTTTTGAACTAAAAGTTTTAAGCC...

Box 17

p$sequences[["aadK"]]

DNAStringSet object of length 7:

[1] 858 ATGAAAATGAGAACAGAGAAACA...AAAAAGAAAAATATCAAAGATAA 16244_6#1__16244_.

[2] 858 ATGAAAATGAGAACAGAGAAACA...AAAAAGAAAAATATCAAAGATAA 16244_6#11__16244.

[3] 858 ATGAAAATGAGAACAGAGAAACA...AAAAAGAAAAATATCAAAGATAA 16244_6#13__16244.

[4] 858 ATGAAAATGAGAACAGAGAAACA...AAAAAGAAAAATATCAAAGATAA 16244_6#6__16244_.

Box 18

p$organisms

DataFrame with 168 rows and 10 columns

org Accession.Number Identifier Strain Year Country

<factor> <character> <character> <character> <integer> <character>

1 16244_6#1 ERS672242 FR10 2006/367h 2006 France

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 9

Protocol

Step 5: Data subsetting

Timing: 10 min

Data subsetting is a fundamental operation when working with pangenome, enabling structured and

more in depth analyses. Pagoo provides three ways of subsetting: (i) predefined subsets, (ii) classic

R’s subsetting operations using square bracket operators, and (iii) removal or recovering organisms

from the dataset.

17. Predefined subsets. As explained in step 10, elements within a pangenome can be classified

in different compartments given their frequency of occurrence: core, shell and cloud. Pagoo

provides operators to directly access elements in these compartments, independently if

they are genes, clusters or sequences. Look at the following table for all possible

combinations:

a. As seen in the above table, the notation is quite straightforward. See example in Box 19 using

$clusters to illustrate this better:

It can be appreciated that the total number of orthologous clusters in this pangenome is 7326, but

only 1498 represent clusters of core genes.

18. Standard R subsetting notation. Elements represented as matrices or vectors contained in the

Pagoo object can be subsetted using standard R notation using square brackets. Let’s see a

couple of examples.

a. Subsetting the pangenome matrix (Box 20):

$core_* $shell_* $cloud_*

$*_genes $core_genes $shell_genes $cloud_genes

$*_clusters $core_clusters $shell_clusters $cloud_clusters

$*_sequences $core_sequences $shell_sequences $cloud_sequences

. Continued

2 16244_6#10 ERS672251 FR19 2008/755h 2008 France

3 16244_6#11 ERS672252 FR20 2008/898h 2008 France

4 16244_6#12 ERS672253 FR21 2010/41h 2010 France

5 16244_6#13 ERS672254 FR22 2010/524h 2010 France

Box 19

dim(p$clusters)[1]

[1] 7326

dim(p$core_clusters)[1]

[1] 1498

dim(p$shell_clusters)[1]

[1] 5010

dim(p$cloud_clusters)[1]

[1] 818

ll
OPEN ACCESS

10 STAR Protocols 2, 100802, December 17, 2021

Protocol

b. Subsetting core sequences (Box 21):

19. Dropping and recovering organisms. The possibility of hiding certain organisms from the data-

set is useful if we want to remove some genome with abnormal characteristics (i.e., potentially

contaminated), if we want to focus just in a subset of genomes of interest given any metadata

value, or if we included an outgroup for phylogenetic purposes but we want to discard it

from downstream analyses. The following steps show how this works:.

a. We are working with 168 organisms in the dataset, out of which 74 are from human origin (see

Box 22):

b. We will hide these 74 from the dataset (see Box 23):

Note: When the user hides a set of organisms, this will have an impact on all the information

stored in the object. This means that all features associated with these genomes including

genes, sequences, clusters and metadata will be hidden. It is important to note that the

user does not have to reassign the object to a new one, it is self-modified (in place modifica-

tion) according to R6 reference semantics.

c. To recover hidden organisms run the following (see Box 24):

Box 20

p$pan_matrix[1:3, 10:15]

accB accB_1 accC accC_1 accD accD_2

16244_6#1 1 0 1 0 1 0

16244_6#10 1 0 1 0 1 0

16244_6#11 1 0 1 0 1 0

Box 21

p$core_sequences[c(1,30)]

DNAStringSetList of length 2

[["COQ2"]] 16244_6#1__16244_6#1_01627=ATGGCTAAATTTACTCAAATTTTAAAAGATATAAACGAA.

[["ansA"]] 16244_6#1__16244_6#1_00415=ATGTGCTTAAAAAAGGTGTTTATACTTATGCTGATTACG.

Box 22

table(p$organisms$Host)

Bovine Human Monkey Ovine Turtle

78 74 1 13 2

Box 23

to_drop <- which(p$organisms$host=="Human")

p$drop(to_drop)

table(p$organisms$host)

Bovine Monkey Ovine Turtle

78 1 13 2

Box 24

dropped <- p$dropped p$recover(dropped)

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 11

Protocol

Step 6: Built-in methods and visualizations

Timing: 10 min

Pagoo provides basic but fundamental statistical analyses and visualizations for straightforward

exploration of pangenome features. All these methods are embedded in the Pagoo object.

20. Principal Components Analysis (PCA). PCA is a fundamental statistical tool that can be applied

to pangenome data to see how organisms are grouped based on the diversity of their accessory

genes. PCA can be calculated directly from the Pagoo object as follows (Figure 1):

a. Generate a standard PCA object for downstream analysis:

b. Directly visualizing the first 2 PCs using a biplot. This uses the previous method to perform

the PCA but allows you to generate a customizable ggplot2 object on the fly (see Box 25):

pca <- p$pan_pca()

Figure 1. Principal components analysis

A PCA is generated directly from the gene presence/absence matrix and in this case organisms are colored by host of

origin.

Box 25

p$gg_pca(color = "Host", size = 4) +

theme_bw(base_size = 15) +

scale_color_brewer(palette = "Set2")

ll
OPEN ACCESS

12 STAR Protocols 2, 100802, December 17, 2021

Protocol

21. Rarefaction curves. Pangenome curves (Figure 2) show the number of gene clusters that are

subsequently discovered as more genomes are added to the dataset. If the pangenome is

open, more novel accessory genes will be discovered as new genomes are added and the

size of the core genome will tend to decrease. Pagoo applies the Power-law distribution to fit

the pangenome size and the Exponential decay function to fit the core genome size. Run this

method and customize results as shown in Box 26:

22. Other methods. Pagoo provides further methods for summary statistics whose application is

analogous to the above described ones. These include pie charts using $gg_pie(), gene pres-

ence/absence bin maps using $gg_binmap() and gene frequency bar plots using $gg_barplot().

23. Dynamic visualization. The above-mentioned plots for summary statistics can be deployed

through a R Shiny application, allowing responsive and dynamic exploration of pangenome

data. The application can be run as follows:

Box 26

p$gg_curves(size = 2) +

ggtitle("Pangenome curves") +

geom_point(alpha = 0.1, size = 4) +

theme_bw(base_size = 15) + ylim(0, 5000) +

scale_color_brewer(palette = "Accent")

Figure 2. Pangenome curves

Pangenome curves show the accessory and core genome size and are indicative of the gene pool size in a certain

dataset.

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 13

Protocol

CAUTION: The method described in step 23 (R-Shiny application) is currently not intended for very

large datasets, as it may render slow. We recommend it to work with dozens to hundreds of ge-

nomes. For bigger pangenomes we recommend the use of the R command line.

Note: An online example for a set of 69 genomes can be found here.

Step 7: Downstream analyses using recipes

Timing: 20 min

Here we show how Pagoo can interact with other R or external tools to generate more complex an-

alyses. We introduce the concept of Pagoo recipes, that are concise pieces of code to complete

different tasks. By using these recipes (or creating new ones) the user can take full profit of function-

alities provided by Pagoo to perform a variety of analyses including phylogenetics, pangenome-

wide association studies, sequence comparisons, ecological measures, preparation of publica-

tion-quality figures, among others. In this protocol, we provide a couple of examples of how to

create these recipes, which can be found on GitHub.

24. Publication quality figures. The following recipe (Box 27) allows to produce a pub-

lication quality figure showing pangenome main features using the previously

p$runShinyApp()

Figure 3. Visualization of pangenome features

Pagoo can be integrated with other R packages to produce publication-quality figures in a simple way. In this case, the

figure shows an assembly of different analyses that summarize general features of this example pangenome: (A)

pangenome curves, (B) gene frequency plots, (C) Accessory genes PCA and (D) pie chart with gene subsets.

ll
OPEN ACCESS

14 STAR Protocols 2, 100802, December 17, 2021

Protocol

mentioned methods (result shown in Figure 3), directly from the Pagoo object in the

R session:

Box 27

1. Pangenome curves

panel1 <- p$gg_curves() +

scale_color_manual(values = c("black", "black")) +

geom_point(alpha = .05, size = 4, color = "grey") +

theme_bw(base_size = 15) +

labs(subtitle = "A") +

theme(legend.position = "none",

axis.title = element_text(size = 12),

axis.text = element_text(size = 12))

2. Gene frequency bar plots

panel2 <- p$gg_barplot() +

theme_bw(base_size = 15) +

labs(subtitle = "B") +

theme(axis.title = element_text(size = 12),

axis.text = element_text(size = 12)) +

geom_bar(stat = "identity", color = "black", fill = "black")

3. PCA of accessory genes colored by host

panel3 <- p$gg_pca(color = "Host", size = 4) +

theme_bw(base_size = 15) +

labs(subtitle = "C") +

guides(color = guide_legend(nrow = 2, byrow = T)) +

theme(legend.position = "bottom",

legend.title = element_blank(),

legend.text = element_text(size = 10),

axis.title = element_text(size = 12),

axis.text = element_text(size = 12))

4. Pie chart of core and accessory genes

panel4 <- p$gg_pie() + theme_bw(base_size = 15) +

scale_fill_brewer(palette = "Blues") +

scale_x_discrete(breaks = c(0, 25, 50, 75)) + labs(subtitle = "D") +

theme(legend.position = "bottom", legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.margin = margin(0, 0, 13, 0), legend.box.margin = margin(0, 0, 5, 0),

axis.title = element_blank(), axis.ticks = element_blank(),

axis.text.x = element_blank())

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 15

Protocol

Note: Pagoo includes a responsive visualization dashboard through a R-Shiny application that

allows the user to explore pangenome characteristics and perform standard comparative an-

alyses like those shown in Figure 3. For a pangenome object named p, deploy the Shiny appli-

cation running p$runShinyApp().

25. Core genome phylogeny and population structure. The following recipe (Box 28) shows how to

build a phylogenetic tree directly from the Pagoo object by using concatenated alignments of

each individual core gene. This is performed by interacting with diverse R packages like Bio-

strings and DECIPHER (Wright, 2015) for sequence handling and alignment, phangorn (Schliep,

2011) for phylogenetic reconstruction, and ggtree (Yu et al., 2017) for tree visualization.

. Continued

5. Use patchwork to arrange plots using math operators

library(patchwork)

figure <- (panel1 + panel2) / (panel3 + panel4)

Box 28

Load required packages

library(magrittr)

library(DECIPHER)

library(Biostrings)

library(phangorn)

library(ggtree)

library(rhierbaps)

Drop Cft and set core level to 100

cft <- p$organisms[which(p$organisms$Subspecies=="Cft"),"org"]

p$drop(cft)

p$core_level <- 100

Align individual core genes

ali <- p$core_seqs_4_phylo() %>%

lapply(DECIPHER::AlignTranslation)

Identify neutral core clusters using Tajima’s D

tajD <- ali %>%

lapply(ape::as.DNAbin) %>%

lapply(pegas::tajima.test) %>%

sapply("[[", "D")

neutral <- which(tajD <= 2 & tajD >= -2)

Concatenate neutral core gene clusters

concat_neu <- ali[neutral] %>%

do.call(Biostrings::xscat, .) %>%

setNames(p$organisms$org) %>%

ll
OPEN ACCESS

16 STAR Protocols 2, 100802, December 17, 2021

Protocol

Results presented in Figure 4 exemplify how a relatively complex task that needs of many steps like

extracting core genes, keeping those that show signal of neutral evolution, aligning and concate-

nating them, determining population structure to finally perform a phylogenetic reconstruction,

can be achieved directly from the Pagoo pangenome object with different sequential code recipes

using different microbial genomics packages within the R environment.

Step 8: Saving and loading pangenome data

Timing: 5 min

Once the pangenome object is created, Pagoo provides two methods for saving and reloading it to

a new R session:

26. Saving as plain text files (Box 29):

. Continued

as("matrix") %>%

tolower()

Find population structure with RhierBAPS

rhb <- hierBAPS(snp.matrix = concat_neu, n.pops = 10,

max.depth = 1, n.extra.rounds = 5)

Add lineage information to organisms metadata

res <- rhb$partition.df

lin <- data.frame(org = as.character(res[, 1]),

lineage = as.factor(res[, 2]))

p$add_metadata(map = "org", data = lin)

Compute phylogeny

tre <- concat_neu %>%

phangorn::phyDat(type = "DNA") %>%

phangorn::dist.ml() %>%

phangorn::NJ()

Draw phylogeny with lineage and host information

gg1 <- ggtree(tre, ladderize = T, layout = "slanted") %<+%

as.data.frame(p$organisms) +

geom_tippoint(aes(color = as.factor(lineage))) +

labs(subtitle = "A") +

scale_color_discrete("Lineage")

gg2 <- ggtree(tre, ladderize = T, layout = "slanted") %<+%

as.data.frame(p$organisms) +

geom_tippoint(aes(colour = as.factor(Host))) +

labs(subtitle = "B") +

scale_colour_discrete("Host")

fig2 <- gg1 + gg2

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 17

Protocol

This will create a directory with 3 text files. The advantage of this approach is that you can analyze it

outside R, the disadvantage is that full reproducibility can be compromised since reading text could

be less stable (classes or number precision can be lost).

27. Saving as R data format (Box 30):

Figure 4. Core genome phylogenies

This shows the output of the above-described recipe aiming to generate a core genome phylogeny directly from the

pangenome object. Panel (A) shows the three colored by lineage defined in the same recipe through a population

structure analysis and panel (B) shows the tree colored by host.

Box 29

outdir <- paste(".", "my_pangenome", sep = "/")

p$write_pangenome(dir = outdir)

list.files(outdir, full.names = TRUE)

[1] "./my_pangenome/clusters.tsv"

[2] "./my_pangenome/data.tsv"

[3] "./my_pangenome/organisms.tsv"

Box 30

rds <- paste("./my_pangenome", "pangenome.RDS", sep = "/")

p$save_pangenomeRDS(file = rds)

p2 <- load_pangenomeRDS(rds)

ll
OPEN ACCESS

18 STAR Protocols 2, 100802, December 17, 2021

Protocol

This solution preserves data structures, such as column data types (numeric, character or factor). So,

this method is more stable (compatible between Pagoo versions), secure (uses the same metadata

classes), and convenient (the exact state of the object can be saved and restored, keeping all mod-

ifications performed to the object during the analysis). Importantly, this option allows to store all

pangenome data in a single and easily shareable file.

Note: Authors recommend using the R data format for saving and loading Pagoo objects.

EXPECTED OUTCOMES

Pangenome analysis is a key approach to explore genetic diversity occurring in bacterial popula-

tions. Despite the availability of many different software tools for pangenome reconstruction, there

are much less alternatives to perform downstream pangenome data analysis in a simple and stan-

dardized way. Pagoo is a flexible and extensible tool that systematize pagenome data in a single

programming environment, allowing dynamic data analysis and integration with widely used pack-

ages for comparative genomics available in the R ecosystem. This protocol aims to be a guide for the

use of Pagoo, providing the user with the fundamental skills to work with pangenome data within the

R environment. Beyond the user will be able to perform standard phylogenetic analyses, genotype-

phenotype association analyses or functional enrichment analyses, Pagoo is an open and flexible

framework that allows the development of newmodules or code recipes to fulfill specific tasks. Addi-

tionally, Pagoo facilitates data storage and sharing, since all data can be saved in a single file that can

be recovered later in an independent R session or written to plain text.

LIMITATIONS

Despite the R ecosystem being vast and currently including dozens of packages that allow perform-

ing diverse comparative genomic analyses, it is possible that the user finds some specific tasks that

are difficult to implement in R or are better covered by other pangenome analysis tools. Pagoo has

been tested with hundreds to few thousands of genomes. A limiting aspect here is the time it can

take to generate the Pagoo object from bigger datasets. This is particularly relevant for dynamic vi-

sualizations that Pagoo provides through its Shiny application.

TROUBLESHOOTING

Problem 1

Copying and modifying the copy of a pangenome object also modifies the original one.

Potential solution

R6 classes are environments which use reference semantics. That means that these kinds of objects

need a special method to get copied and if they are simply assigned to a new variable, this variable

will point to the original one, and will not get duplicated. To avoid this, use the $clone() method to

generate an independent copy of the object.

Problem 2

An error occurs when trying to load a pangenome.

Potential solution

Check that key columns (‘gene’, ‘cluster’, and ‘org’) contain the same elements between the different

tables (gene, cluster and organisms). Pagoo checks that these match each other and raises an error if

there are missing or different key values. See step 2, Boxes 2, 3, 4, 5, 6, 7, 8, and 9.

Problem 3

I dropped some organisms but I don’t remember which ones and also want to recover them.

ll
OPEN ACCESS

STAR Protocols 2, 100802, December 17, 2021 19

Protocol

Potential solution

Use the $dropped field to look if there are some hidden organisms, and then use the $recover()

method to recover them. For example, if all dropped organisms want to be recovered from a pan-

genome object p, then use p$recover(p$dropped). See step 5, section 19.

Problem 4

The state of the pangenome object has changed after saving it and loading in a different R session.

Potential solution

Use save_pangenomeRDS() and load_pangenomeRDS() for saving and loading, respectively. This

will load the pangenome object exactly in the same state as it was saved. See step 8, Box 30.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Gregorio Iraola (giraola@pasteur.edu.uy).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The published article includes all datasets/code generated or analyzed during this study.

ACKNOWLEDGMENTS

This work has been partially funded by Banco de Seguros del Estado (BSE) from Uruguay and Fondo

de Convergencia Estructural del Mercosur (FOCEM) grant COF 03/11. I.F. is funded by grant ANII-

POS_NAC_2018_1_151494 from Agencia Nacional de Investigación e Innovación (ANII), Uruguay.

We thank Pablo Fresia, Andrés Parada, and Daniela Costa for insightful comments and suggestions

during testing of Pagoo.

AUTHOR CONTRIBUTIONS

I.F. and G.I. conceived the idea. I.F. developed software and generated the analytical protocols

described here. I.F. and G.I. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Bayliss, S.C., Thorpe, H.A., Coyle, N.M., Sheppard,
S.K., and Feil, E.J. (2019). PIRATE: A fast and
scalable pangenomics toolbox for clustering
diverged orthologues in bacteria. GigaScience 8,
giz119.

Ding, W., Baumdicker, F., and Neher, R.A. (2018).
panX: pan-genome analysis and exploration.
Nucleic Acids Res. 46, e5.

Ferrés, I., and Iraola, G. (2021). An object-oriented
framework for evolutionary pangenome analysis.
Cell Reports Methods 1, S2667-2375(21)00140-5.

Iraola, G., Forster, S.C., Kumar, N., Lehours,
P., Bekal, S., Garcı́a-Peña, F.J., Paolicchi, F.,
Morsella, C., Hotzel, H., Hsueh, P.-R., et al.
(2017). Distinct Campylobacter fetus
lineages adapted as livestock pathogens
and human pathobionts in the intestinal

microbiota. Nat. Commun. 8,
1367.

Page, A.J., Cummins, C.A., Hunt, M., Wong,
V.K., Reuter, S., Holden, M.T.G., Fookes, M.,
Falush, D., Keane, J.A., and Parkhill, J. (2015).
Roary: rapid large-scale prokaryote pan
genome analysis. Bioinformatics 31, 3691–
3693.

Schliep, K.P. (2011). phangorn: phylogenetic
analysis in R. Bioinformatics 27, 592–593.

Seemann, T. (2014). Prokka: rapid prokaryotic
genome annotation. Bioinformatics 30, 2068–
2069.

Tonkin-Hill, G., MacAlasdair, N., Ruis, C.,
Weimann, A., Horesh, G., Lees, J.A.,
Gladstone, R.A., Lo, S., Beaudoin, C., Floto,

R.A., et al. (2020). Producing polished
prokaryotic pangenomes with the Panaroo
pipeline. Genome Biol. 21, 180.

Wright, E.S. (2015). DECIPHER: harnessing
local sequence context to improve protein
multiple sequence alignment. BMC
Bioinformatics 16, 322.

Yu, G., Smith, D.K., Zhu, H., Guan, Y., and Lam,
T.T.-Y. (2017). ggtree: an r package for visualization
and annotation of phylogenetic trees with their
covariates and other associated data. Methods
Ecol. Evol. 8, 28–36.

Zhou, Z., Charlesworth, J., and Achtman, M. (2020).
Accurate reconstruction of bacterial pan- and core
genomes with PEPPAN. Genome Res. 30, 1667–
1679.

ll
OPEN ACCESS

20 STAR Protocols 2, 100802, December 17, 2021

Protocol

mailto:giraola@pasteur.edu.uy
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref1
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref1
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref1
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref1
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref1
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref2
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref2
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref2
http://refhub.elsevier.com/S2666-1667(21)00508-6/optPWfxPemzPW
http://refhub.elsevier.com/S2666-1667(21)00508-6/optPWfxPemzPW
http://refhub.elsevier.com/S2666-1667(21)00508-6/optPWfxPemzPW
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref3
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref3
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref3
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref3
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref3
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref3
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref3
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref3
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref4
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref4
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref4
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref4
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref4
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref4
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref5
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref5
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref6
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref6
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref6
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref7
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref7
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref7
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref7
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref7
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref7
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref8
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref8
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref8
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref8
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref9
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref9
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref9
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref9
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref9
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref10
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref10
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref10
http://refhub.elsevier.com/S2666-1667(21)00508-6/sref10

	XPRO100802_proof_v2i4.pdf
	Protocol for post-processing of bacterial pangenome data using Pagoo pipeline
	Before you begin
	Pangenome reconstruction

	Key resources table
	Materials and equipment
	Step-by-step method details
	Step 1: Installing Pagoo
	Step 2: Loading pangenome data from scratch
	Step 3: Input from pangenome reconstruction software
	Step 4: Querying pangenome data
	Step 5: Data subsetting
	Step 6: Built-in methods and visualizations
	Step 7: Downstream analyses using recipes
	Step 8: Saving and loading pangenome data

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References

