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ABSTRACT One of the main pathogens affecting rainbow trout (Oncorhynchus mykiss) farming is the
facultative intracellular bacteria Piscirickettsia salmonis. Current treatments, such as antibiotics and vaccines,
have not had the expected effectiveness in field conditions. Genetic improvement by means of selection for
resistance is proposed as a viable alternative for control. Genomic information can be used to identify the
genomic regions associated with resistance and enhance the genetic evaluation methods to speed up the
genetic improvement for the trait. The objectives of this study were to i) identify the genomic regions
associated with resistance to P. salmonis; and ii) identify candidate genes associated with the trait in rainbow
trout. We experimentally challenged 2,130 rainbow trout with P. salmonis and genotyped them with a 57 K
single nucleotide polymorphism (SNP) array. Resistance to P. salmonis was defined as time to death
(TD) and as binary survival (BS). Significant heritabilities were estimated for TD and BS (0.48 6 0.04 and
0.34 6 0.04, respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for samples and
genotypes. Using a single-step genome wide association analysis (ssGWAS) we identified four genomic
regions explaining over 1% of the genetic variance for TD and three for BS. Interestingly, the same genomic
region located on Omy27 was found to explain the highest proportion of genetic variance for both traits
(2.4 and 1.5% for TD and BS, respectively). The identified SNP in this region is located within an exon of a
gene related with actin cytoskeletal organization, a protein exploited by P. salmonis during infection. Other
important candidate genes identified are related with innate immune response and oxidative stress. The
moderate heritability values estimated in the present study show it is possible to improve resistance to
P. salmonis through artificial selection in the rainbow trout population studied here. Furthermore, our results
suggest a polygenic genetic architecture for the trait and provide novel insights into the candidate genes
underpinning resistance to P. salmonis in O. mykiss.
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As in any intensive animal production system, infectious diseases are
one of the main threats affecting the success and sustainability of
aquaculture (Yáñez et al. 2014a). In the case of salmonid production,
one of the major pathogens affecting productivity is the facultative
intracellular bacteria Pisciricketssia salmonis, etiological agent of salmo-
nid rickettsial syndrome (SRS). This bacterium was first identified in
1989 in Chile, in a farmed coho salmon (Oncorhynchus kisutch) pop-
ulation (Cvitanich et al. 1991). Since then, mortalities resulting from SRS
havebeen also identified in Atlantic salmon (Salmo salar) and rainbow
trout (Oncorhynchus mykiss) in several countries, such as Scotland,

Ireland, Norway and Chile (Fryer and Hedrick 2003). In Chile, SRS
was responsible for 20.7, 67.9 and 92.6% of the mortalities associ-
ated with infectious diseases in S. salar, O. kisutch and O. mykiss,
species respectively (Sernapesca 2018). To date, strategies for
P. salmonis control and treatment are mainly based on vaccines and
antibiotics. The effectiveness of both approaches has not been ade-
quate (Rozas and Enríquez 2014). Therefore, it has been estimated
that economic losses due to SRS mortalities, reached up to US$450
million in Chile in 2012 (Camussetti et al. 2015). However, variables
such as laboratory diagnosis screening expenses or loss of quality of
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the harvested fish and products were not considered, implying that
the economic impact could be even higher.

Therefore, selective breeding could be a feasible alternative to
enhance disease resistance; reducing mortality rates caused by
P. salmonis, as well as improving animal health and productivity
(Bishop and Woolliams 2014: Yáñez and Martínez 2010). How-
ever, the main requisite to include a trait into a genetic program is
the presence of significant additive genetic variance for that par-
ticular trait within the population (Falconer and Mackay 1996).
Previous studies estimated heritability values ranging from 0.11
to 0.41 for P. salmonis resistance in Atlantic salmon and
coho salmon (Yáñez et al. 2013; Yáñez et al. 2016a; Barría et al.
2018a). In the case of rainbow trout, Yoshida et al. (2018a) esti-
mated heritabilities ranging from 0.39 to 0.57 for resistance to
P. salmonis using day of death and 0.54 to 0.62 for binary survival
as trait definitions. Altogether, these results demonstrate the pos-
sibility of improving this trait by means of artificial selection in
different salmonid species.

The development of next generation sequencing technologies has
facilitated the identification of thousands of single nucleotide poly-
morphisms (SNPs) segregating along the genome of several animals,
including aquaculture species (Yáñez et al. 2015). Thus, using a
genotyping by sequencing (GBS) approach in conjunction with
genome-wide association studies, some authors evaluated genomic
regions associated with resistance to bacterial infections in aquacul-
ture species (Liu et al. 2015; Palti et al. 2015a; Palaiokostas et al.
2016; Barría et al. 2018a). However, in salmonid species, the use of
SNP panels has been the most used alternative for genotyping a high
number of individuals with thousands of genetic variants simulta-
neously. This has been made simpler by the development of high
density SNP arrays for Atlantic salmon (Houston et al. 2014; Yáñez
et al. 2016b) and rainbow trout (Palti et al. 2015b). The use of
these SNP panels have also allowed the comparison of the accu-
racy of estimated breeding values (EBV) using genomic selection
to pedigree-based genetic evaluations for resistance to infectious
diseases in Atlantic salmon (Ødegård et al. 2014; Tsai et al. 2016; Bangera
et al. 2017; Correa et al. 2017), coho salmon (Barría et al. 2018a) and
rainbow trout (Vallejo et al. 2016; Vallejo et al. 2017a; Yoshida et al.
2018a; 2018b). SNP arrays have also enabled the dissection of the ge-
netic architecture of resistance to bacterial diseases in salmonids. For
instance, genomic regions and candidate genes associated with resis-
tance to P. salmonis in Atlantic and coho salmon (Correa et al. 2015;
Barría et al. 2018a), and bacterial cold water disease (BCWD) in rain-
bow trout (Vallejo et al. 2017b) have been identified.

To date there are no studies aimed at identifying genomic regions or
candidate genes associated with resistance to P. salmonis in rainbow
trout populations. Therefore, the main objectives of the current study
were to i) identify genomic regions associated with resistance to
P. salmonis in a farmed rainbow trout population, and ii) identify
candidate genes associated with the trait.

MATERIALS AND METHODS

Population and experimental challenge
The population used in this study was comprised by a rainbow trout
(Oncorhynchus mykiss) broodstock (year-class 2011), owned by Aguas
Claras (Puerto Montt, Chile) and belonging to a genetic improvement
program run by Aquainnovo (Puerto Montt, Chile). This population
was artificially selected for growth, appearance-related traits and car-
cass quality for three generations. For a detailed description about rear-
ing conditions and population management please see Flores-Mara
et al. (2017), Rodríguez et al. (2018) and Neto et al. (2019).

Fish from 105 full-sib families (48 half-sib families) with an average
weight of 7.0 6 1.5 g, were PIT-tagged for individual traceability of
families. After tagging, fish were maintained in a single tank until
they were transferred to Aquainnovo’s Aquaculture Technology Center
Patagonia in August 2012. Fish were acclimated for 20 days in a 15m3

tank, prior to experimental challenge. A random sample of fish were
selected to evaluate the sanitary status of the population by means of
qRT-PCR for Infectious Salmon Anemia virus (ISAV), Infectious Pan-
creatic Necrosis virus (IPNV), and Renibacterium salmoninarum, and
culture for Flavobacterium spp. Later, a total of 2,130 juveniles (with an
average of 23 individuals per family and ranging from 17 to 27 fish per
family), were intraperitoneally (IP) injected with 0.2ml of a lethal dose
(LD50) of a LF-89 strain of P. salmonis inoculum. Post injection, fish
were equally distributed into three different tanks, considering similar
family distribution into each replicate (with 5 to 9 fish per family in
each tank). Environmental parameters were measured throughout the
experiment and the challenge continued until the mortality curve
showed a plateau. Daily mortality was recorded, and body weight
was measured for each fish at time of death or at the end of the
experiment (FW). Surviving fish were killed and body weight was also
recorded. Fin clips from all fish were sampled and stored in 95% eth-
anol at -80� until they were genotyped.

Genotyping
The genomic DNA from the sampled fin clips was extracted using a
commercial kit (DNeasy Blood & Tissue Kit, Qiagen), following the
manufacturer’s instructions. Genotyping was performed using a com-
mercial 57K SNP array (Affymetrix AxiomTMmyDesignTM) developed
by the National Center for Cool and Cold water Aquaculture at USDA
and Aquagen (Palti et al. 2015b).

Quality control (QC) was assessed through Affymetrix’s Axiom
Analysis Software, using default settings. Then, a second QC using Plink
software (Purcell et al. 2007) was applied to remove SNPs with a geno-
type call rate lower than 0.90, minor allele frequency (MAF), 0.01 and
deviated from Hardy-Weinberg Equilibrium (P, 1x1026). Individuals
with a call rate lower than 0.90 were also removed from further analyses.

Trait definition
Resistance to P. salmonis was defined as time to death (TD), measured
in days, with values ranging from 1 until the end of challenge test.
Additionally, resistance to P. salmonis was also defined as binary sur-
vival (BS), with a value of 1 or 0 based on if the fish died or survived
until the end of the challenge.
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Genome-Wide association study
A single-step GWAS (ssGWAS) analysis was performed to identify
genomic regions associatedwith resistance toP. salmonis. This approach
considered fish with both phenotypes and genotypes and also indi-
viduals with phenotypes but no genotypes in the analysis (Wang et al.
2012). The pedigree and genotypic data in ssGWAS are connected
through the Hmatrix. Thus, the Hmatrix combines both the pedigree
and the genomic relationship matrices (Aguilar et al. 2010). Thus, the
inverse of the H matrix is:

H21 ¼ A21 þ
�
0 0
0 G21 2A21

22

�

where A21 is the inverse of the numerator relationship matrix,
considering all the phenotyped animals, A21

22 is the inverse of the
pedigree-based relationship matrix considering only the genotyped
animals, and G21 is the inverse genomic relationship matrix. The
following model was used for GWAS analysis:

y ¼ Xbþ Zaþ e

where y is the vector of phenotypes (for TS and BS), b is the vector of
fixed effects (tank as factor and final body weight as a covariate), a is
the vector of random animal effects (including the genotype infor-
mation), e is the vector of residuals, and X and Z are the incidence
matrices for fixed and random effects, respectively.

The variance of a and e are estimated as follow:

var ¼
�
a
e

�
¼

�
Hs2

a 0
0 Is2

e

�

where I is the identity matrix and s2
a and s2

e are the genetic additive
and residual variances, respectively.

A linearmodel (AIREML) anda thresholdmodel (THRGIBBS1F90)
were used for TD and BS, respectively. Both models were fitted using
BLUPF90 programs (Misztal et al. 2018). For the latter, a total of
200,000 Markov Chain Monte Carlo (MCMC) iterations were used,
the first 20,000 were discarded as burn-in iterations and from the
remaining 180,000 samples, we saved one from every 50. Therefore,
the analyses included 3,600 independent samples.

For TS and BS, the heritability was estimated as follows:

h2 ¼ s2
a

s2
a þ s2

e

where s2
a is the additive genetic variance estimated using the H ma-

trix, and s2
e is the residual variance.

The genetic correlation between both resistance definitions was
calculated using the following formula indicated by Falconer and
MacKay (1996):

rTD;BS ¼ saTDaBSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
aTDs

2
aBS

q

where saTDaBS is the additive genetic covariance between resistance as
TD and as BS, while s2

aTD and s2
aBS correspond to the additive genetic

variance of TD and BS, respectively.
To identify genomic regions associated with each trait, we estimated

the percentage of the genetic variance (PGV) explained by windows of
20 adjacent SNPs. Then, if a 20 SNP window explained more than 1%
of the PGV, we considered that region as associated with resistance to
P. salmonis, as proposed by Gonzalez-Pena et al. (2016).

Candidate genes
The candidate genes were identified by searching 500kb up and down-
stream from the SNP explaining the highest PGV within each associated
window. For this purpose,weused the last versionof theOncorhynchus
mykiss reference genome (GCA_002163495.1). The criteria for select-
ing candidate genes lies in the function of the protein that encodes
each gene found, mainly related to immune response, DNA repair,
stress response and similar pathways.

Linkage disequilibrium
Whole genome linkage disequilibrium (LD) was calculated using Plink
v 1.09 and measured as Pearson’s squared correlation (r2) among SNP
genotypes. The pair-wise LD was estimated based on the formula pro-
posed by Hill and Robertson (1968) and estimated for each SNP pair.
Based on the physical distance among these SNP pairs, we created bins
of 100kb. The decay and extent of the LD was visualized by plotting the
mean r2 for each bin, from 0 to 10Mb.

The LD within 1Mb window of specific genomic regions (500kb
upstream and 500kB downstream from the SNP of interest) was
estimated as the average r2 among all the SNPs located in the window.

Data availability
Rawgenotypes, phenotypedata and the locationof eachSNPused in this
study in theOncorhynchus mykiss genome are available from the online
repository figshare (https://doi.org/10.6084/m9.figshare.8146076).
Table S1 containing all the genes located within 1Mb windows
surrounding the SNPs explaining the highest proportion of genetic
variance is available at the same link mentioned above.

RESULTS

Descriptive statistics and heritabilities
Summary statistics for resistance to P. salmonis measured as TD and
BS, and for FW are shown in Table 1. The first death was recorded
on day 10 post intraperitoneal injection; the last on day 32. Average
TD was 23.26 (SD = 7.86) days. At the end of the experimental chal-
lenge the proportion of non-survivor fish, taking into account the
105 challenged families, was 0.59 (SD = 0.49). Furthermore, the cumu-
lative mortality ranged from 7.7 to 100%, indicating considerable phe-
notypic variation for resistance to P. salmonis among families in the
rainbow trout population. Cumulative mortality within each replicate
tank was 59.4, 65.1 and 64.7%. Mortality peaked on days 12, 15 and
19 post injection. Average final body weight was 173.80 (SD = 52.27) g.
This trait ranged considerably among challenged fish, with a minimum
of 46.10g and maximum 448g.

Variance components for TD and BS are shown in Table 2. Signif-
icant heritability values were estimated for both trait definitions. Thus,
0.48 6 0.04 and 0.34 6 0.04 were estimated for TD and BS, respec-
tively. Furthermore, a high genetic correlation was found between both
traits (-0.96 6 0.01).

Genome-wide association study
From all genotyped animals, 2,047 passed quality control (representing
97.10%of the total).A totalof26,068SNPsremained in the set for further
analyses (�64.68%). Figure 1 shows the Manhattan plot for the pro-
portion of variation explained for resistance to P. salmonismeasured as
TD and BS. We identified four genomic regions associated with
resistance as TD. These regions were located on Omy03, Omy14,
Omy24 and Omy27. For BS, we identified three genomic regions
associated with the trait. These were found on Omy05, Omy27
and Omy30. The genomic region located on Omy27 was found to
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be associated with resistance to P. salmonis for both TD and BS. In
both cases, this common genomic region explains the highest pro-
portion of genetic variance for each trait, with 2.4 and 1.5% for TD
and BS, respectively. The SNP explaining the highest proportion of
the genetic variance (Affx-88923370) is the same for both TD and
BS (Table 3).

Using the O. mykiss reference genome (GCA_002163495) we iden-
tified candidate genes associated with resistance to P. salmonis. Table 3
shows a summary of the genes located proximate to the SNPs explain-
ing the highest proportion of the genetic variance within each genomic
region.

Among the candidate genes flanking the most important SNP on
Omy03 for TD, we found Gluthatione S-transferease kappa 1 (gstk1)
and Interleukin-11 (il11). These genes are involved in the response to
oxidative stress and the immune response to bacterial infections, re-
spectively (Oruc et al. 2004; Wang et al. 2005). On Omy14, we found
the Toll-like receptor 4 (tlr4) gene, which has been suggested
to act as a bacteria sensor (Palti 2011). On Omy24, we found
alpha-2-macroglobulin-like (a2m), which is part of a broad-
spectrum protease inhibitor, and it has been suggested to play a
role in the defense against Cryptobia salmositica in rainbow trout
(Zuo and Woo 1997).

Also, we found POU class 2 associating factor 1 (pou2af1), which has
been described as a coactivator of transcription factors that regulate
immunoglobulin expression of B cells (Teitell 2003), and NF-kappa-B
inhibitor zeta-like (nfkbiz), a regulator of pathogen recognition,
phagocytosis and production of cytokines by dendritic cells (Rozas-Serri
et al. 2017).

For BS, on Omy05 we found fas ligand (faslg), whose protein
has been suggested as an important mediator of anti-bacterial in-
nate immune response, by inducing apoptosis of target cells
and recruiting phagocytic cells (Kaur et al. 2004). On the same
chromosome we found Peroxiredoxin-6-like (prdx6), one of the six
different isoforms that conforms the peroxiredoxins group, which
are antioxidants proteins that protect cells from oxidative damage
and is likely to be involved in protective response against a bac-
terial infection in Scophthalmus maximus (Zheng et al. 2010).

On Omy29, MAPK12 was found; previous studies described
that MAPK12 is involved on the signaling pathways responsible
for TNF-a secretion from rainbow trout macrophages (Roher
et al. 2011). Glutaminase kidney isoform, mitochondrial-like (gls)
was also found on Omy29, which is part of a family of enzymes
that play a role in nucleotide, amino acid and urea biosynthesis
(Kumada et al. 1993).

On Omy27 we found genes related with innate immune re-
sponse regulation and some molecules related with metabolic
processes and apoptosis. However, the SNP explaining the highest
proportion of genetic variance is located within an exon of the
gene Smoothelin protein 2 (Smtnl2) which remains poorly charac-
terized both in humans and fishes, but it is believed to have a role
in actin cytoskeleton organization.

The complete list of genes located within the 1Mb window flanking
the SNPs explaining the highest proportion of genetic variance for
resistance to P. salmonis, is shown in Table S1.

The LD was estimated for each window containing SNPs associ-
ated with P. salmonis resistance. Table 4 shows the number of SNPs
along the 1Mb windows associated with the trait, which varied from
7 (Omy03) to 32 (Omy29). Regarding the average r2, estimations varied
from 0.21 to 0.69 for almost all the associated windows. However, the
genomic regions located on Omy03 and Omy14 showed a value of 0.14
and 0.18, respectively, below the 0.2 threshold suggested by (Meuwissen
et al. 2001).

DISCUSSION
In the current study we show significant genetic variation for resistance
to P. salmonis in a farmed rainbow trout population. Amoderate to high
heritability was estimated for resistance as TD (0.48) and BS (0.34).
These estimates are higher than those reported in previous studies
carried out for resistance to other bacterial diseases in aquaculture
species, with heritabilities ranging from 0.22 to 0.38 (Ødegård et al.
2006; Palaiokostas et al. 2016; Vallejo et al. 2017b). In the case of
P. salmonis resistance, several studies have evaluated the presence of
genetic variation in different salmonid species. Thus, similar esti-
mates have been shown for Atlantic salmon, when using pedigree
or genomic data, with values ranging from 0.19 to 0.39 (Yáñez
et al. 2013; Yáñez et al. 2014b; Correa et al. 2015; Bangera et al.
2017). In the case of coho salmon, heritability estimates range from
0.16 to 0.27 when resistance is defined as a linear or binary trait
(Yáñez et al. 2016a; Barría et al. 2018a).

Recent studies in rainbow trout, using pedigree and genome-based
genetic evaluation approaches, estimated heritabilities ranging from
0.39 to 0.57 for TD and from 0.54 to 0.62 for BS (Yoshida et al. 2018a);
values which are within the range of our estimations. Moreover, our
results suggest a higher effect of the additive genetic component on the
phenotypic variance for resistance toP. salmonis in rainbow trout when
compared to S. salar and O. kisutch, which would imply potentially
faster genetic progress for the improvement of resistance to P. salmonis
by means of artificial selection in the rainbow trout population used in
the present study.

The current rainbow trout population was founded by using 18 sires
and 48 dams in 2005 (Bassini et al. 2019; Flores-Mara et al. 2017),
representing more animals than those that were used for establishing
a coho salmon breeding population in Chile in 1997 (Barría et al. 2019;
Dufflocq et al. 2016; Yáñez et al. 2014a). Thus, the higher heritability
estimates for P. salmonis resistance in rainbow trout than in coho
salmon, could be explained by i) a major genetic variability due the
higher number of animals and ii) a fixation of the alleles on the coho
salmon population as result of a higher number generations under
artificial selection.

Theeffectof thegenetic architectureofa trait (amongothervariables)
on the accuracy of breeding values obtained through genomic selection

n■ Table 1 Summary statistics for time to death (TD), binary
survival (BS) and final weight (FW) measured in 2,130 rainbow
trout individuals after an experimental challenge against
Piscirickettsia salmonis

Trait Mean SD CV(%) Min Max

TD (days) 23.26 7.86 33.27 10 32
BS 0.59 0.49 0.83 0 1
FW (g) 173.80 52.27 30.07 46.10 448

n■ Table 2 Genetic parameters and heritabilities for resistance to
Piscirickettsia salmonis defined as time to death (TD) and binary
survival (BS)

Trait s2
a
a s2

e
b h2(SE)c

TD 25.95 28.92 0.48(0.04)
BS 6.27x1022 1.21x1021 0.34(0.04)

a
Additive genetic variance.

b
Residual variance.

c
Heritability and standard error.
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(GS) is widely known (Daetwyler et al. 2008; Goddard 2009). Previous
studies in salmonid species (Atlantic salmon and coho salmon), suggest
that resistance to P. salmonis is a polygenic trait (Correa et al. 2015;
Barría et al. 2018a). Based on the 26K SNPs which passed QC, our
study similarly suggests a polygenic nature for resistance to P. salmonis
resistance in rainbow trout (i.e., several loci involved with the trait, with
a small effect each). Thus, it is expected that, when comparing genome-
based Best Linear Unbiased Predictor (GBLUP) method against a
Bayesian approach (e.g. Bayes C), the former would show increased
accuracy of the estimated breeding values over the latter (Habier et al.
2007; Hayes et al. 2009) for the current rainbow trout population.
Nonetheless, as predicted by Yoshida et al. (2018b) this was true only
at low SNP densities (i.e., 0.5 to 10 K). When 20K and 27K were used,
Bayes C outperformed GBLUP accuracies. The authors suggested that
this could be due to an oligogenic architecture of the resistance trait, or
that Bayes C had higher effectiveness in capturing the linkage disequi-
librium between the SNPs and a QTL when more SNPs were used.

Although a high genetic correlation between TD and BS was found,
only one common genomic region surpassed the 1% threshold for both
traits (Omy27). The relatively low correspondence between the two
traits in terms of the identified QTL might be partially explained based
on the different approaches used for estimation of QTL. While for TD
we fitted a linear model, for BS we fitted a threshold model. Thus, QTL

detected in the observed scale in the case of TD might not be detected
on the underlying scale for BS and vice versa.However, there are several
genomic regions in common (e.g., Omy13, Omy19, Omy26) below the
1% threshold for TD and BS, and other in which the threshold was
surpassed only in one trait (e.g., Omy03, Omy05, Omy14). Thus, in-
creasing the statistical power might allow increasing the number of
common regions associated to P. salmonis resistance.

Based on the underlying genetic architecture of the resistance trait in
the current population, here we used a single-step GWAS approach
which converts the genomic breeding values of genotyped animals
obtained by single step genomic evaluation into SNP effects (Wang
et al. 2012). This approach uses available pedigree data and besides
including animals with both phenotype and genotype data, it also
allows including animals with only phenotype records (those ani-
mals with missing genotype). This method is also adapted to esti-
mate SNP effects and variances with fast computing times,
generating robust estimates with practical simplicity. The use of
20 SNPs sliding windows may improve the accuracy and precision
on identifying QTL when compared with a SNP-by-SNP approach
(Wang et al. 2012; Zhang et al. 2016).

The use of a uniform-sized sliding-window approach, instead of
using adjacent windows, allowed us to accounting for the linkage
disequilibrium among the markers. The selection of an optimal

Figure 1 Genome-wide association analysis for resistance to Piscirickettsia salmonis in rainbow trout (Oncorhynchus mykiss). Resistance was
defined as time to death (A) and as binary survival (B).

Volume 9 November 2019 | GWAS for SRS Resistance in Rainbow Trout | 3837



window size is complicated and it depends on the population under
study (Tang et al. 2009). A 20 SNPs per window has been frequently
used for the identification of genomic regions associated with dif-
ferent traits in different rainbow trout breeding populations
(Gonzalez-Pena et al. 2016; Neto et al. 2019). Although Gonzalez-
Pena et al. (2016) used adjacent windows, the authors found that
using a 20-SNPs sized window showed the lowest signal-to-noise-
ratio than when using higher SNPs number. Thus we used a similar
windows size for comparative purposes with previous studies in
rainbow trout populations.

As showed byWang et al. (2012), power and precision of ssGWAS,
evaluated by the correlation between true simulated QTL effects and
the sum of m adjacent SNPs, is high (up to 0.81 6 0.02) when using
1500 genotyped animals, indicating a high correspondence between
true and estimatedQTL.Here, we used 2047 fish with genotypes, which
may be generating a similar or somewhat higher statistical power
and precision than the one presented by Wang et al. (2012). This
accuracy was maximum when m = 8 SNPs and decreased sharply
when m = 40 SNPs. When m = 16 SNPs the estimated accuracy
reached up to 0.80 6 0.03. Thus, we assume that the likelihood of
the identified QTL being true positives can be also considered high
(�0.80). Furthermore, Zhang et al. (2016) suggested that using SNP
windows is a better approach than using single SNP, given that the
true number of QTL is unknown. Thus, we believe that using a
20 SNPs windows-size represents an appropriate approach for iden-
tifying genomic regions and genes likely associated with resistance
to P. salmonis.

Resistance to bacterial infections implies a modulation of the
host immune response to inhibit or reduce the replication rate of the

pathogen (Doeschl-Wilson andKyriazakis 2012). The infection process
caused by P. salmonis uses clathrin for internalization and then the
actin cytoskeleton for vacuole generation (Ramírez et al. 2015). Simi-
lar pathways have been observed in other mammalian intracellular
gram-negative bacteria (Manon et al. 2012; Valencia-Gallardo
et al. 2015). Within the region associated with TD on Omy03 we
identified a gene coding for the receptor DC-SIGN related with the
immune response and expressed on macrophage and dendritic-cell
surfaces (Ahmed et al. 2015). It has been previously described that
Mycobacterium tuberculosis, interferes with the Toll-like receptor
signaling by DC-SIGN, inhibiting interleukin-12 production
(Gorvel et al. 2014), a proinflammatory cytokine, which plays a
key role in the performance of phagocytes in teleost fish (Álvarez
et al. 2016).

As mentioned before, endocytosis mediated by clathrin is the main
pathway used by P. salmonis for cell invasion. Clathrin recruits,
among other cell components, AP-2; which is regulated by
NECAP-1 (Ritter et al. 2013), a gene flanking the SNP explaining
the highest proportion of genetic variance in Omy03 for resistance
measured as TD. Similarly, on this chromosome we also found the
gene glutathione S-transferase kappa 1 (gstk1), which is a member
of the glutathione S-transferase family (GST), involved in cellu-
lar detoxification, and expressed in cells to reduce oxidative stress-
related damage (Morel and Aninat 2011), a consequence of P. salmonis
infection (Rozas and Enríquez 2014), and differentially expressed in
Atlantic salmon after P. salmonis exposure (Rise et al. 2004). A candidate
gene related to resistance measured as BS found on Omy05 is, the fas
ligand gene (faslg), a member of the TNF superfamily. The Fas/FasL
pathway is essential for immune system regulation, including apoptosis

n■ Table 3 Top markers associated with Piscirickettsia salmonis resistance defined as TD and BS in rainbow trout

Ranking Name Chra Pos (Bp) Alleleb -log(pval) PGVc Genesd

Time to death
1 Affx-88923370 27 9998276 A / G 5.65 2.43 usp2, nlrc3, tap, pitpna
2 Affx-88916453 3 14818380 T / C 1.56 1.41 stl2, aicda, il11, gstk1
3 Affx-88922612 14 10975036 T / G 3.12 1.21 tlr4, tax1bp1, satb1
4 Affx-88927397 24 11828385 C / A 1.55 1.02 a2m, pou2af1, nfkbiz

Binary survival
1 Affx-88923370 27 9998276 A / G NAe 1.50 usp2, nlrc3, tap, pitpna
2 Affx-88951679 5 68055053 T / C NA 1.12 faslg, prdx6, plpp6
3 Affx-88908715 29 32519588 C / T NA 1.01 mapk12, gls

a
Chromosome.

b
Resistant/Susceptible allele.

c
Percentage of genetic variance.

d
Summary of the genes located within 1Mb window.

e
Not assessed.

n■ Table 4 Estimated average linkage disequilibrium (measured as r2) for the regions flanking the top markers associated with P. salmonis
resistance as time to death (TD) and binary survival (BS)

Ranking Name Chra Window size (Bp) Number of SNPsb r2

Time to death
1 Affx-88923370 27 1189027 30 0.21
2 Affx-88916453 03 1037096 07 0.14
3 Affx-88922612 14 972244 29 0.18
4 Affx-88927397 24 1283717 24 0.32

Binary survival
1 Affx-88923370 27 1189027 30 0.21
2 Affx-88951679 05 985641 22 0.69
3 Affx-88908715 29 1020166 32 0.24

a
Chromosome.

b
Number of SNPs markers within the window.
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induced by T cell activation and cytotoxic T lymphocytes (Siegel
et al. 2000).

For both resistance definitions, the same chromosome and identical
SNP was identified as the marker explaining the highest genetic var-
iation for the trait, which makes this QTL an interesting region.
Within this region we found the gene phosphatidylinositol transfer
protein alpha (pitpna), which belongs to the phosphatidylinositol
family (ptdlns) (Piscatelli et al. 2016), responsible for phospholipid
transfer between cellular membranes (Thornbrough et al. 2016),
which in turn are regulators of cell signal transduction, membrane
trafficking and cytoskeleton organization (Hilbi and Haas 2012).
The latter process is affected by P. salmonis once inside the macro-
phages (Ramírez et al. 2015). Similar to P. salmonis, Legionella
pneumophila also replicates inside macrophages, and manipulates
the vesicle generation inside the cell by joining with ptdlns 5 (Hilbi
and Haas 2012).

Additionally, in this regionwe found the genenlr family carddomain
containing 3 (nlrc3). Previously, Álvarez et al. (2017) described differ-
ential expression of nlrc3 in rainbow trout in response to bacterial
lipopolysaccharides (lps), specifically in the skin, liver and gills. This
pattern has also been observed in Atlantic salmon during an infection
with P. salmonis (Tacchi et al. 2011), and is therefore a potential mech-
anism used by this bacteria to evade the immune response.

The gene tapsain (tap) is also involved in the immune response,
transporting cytosolic peptides generated by the proteasome to load on
MHC class I (Procko et al. 2005). On Omy27, we found a gene
that encodes a protein related to tapsain (TAPBPR), which negatively
regulates tap; generating a reduction in immune response efficiency
(Boyle et al. 2013).

Similar to what has been found in a farmed Atlantic salmon
population (Barría et al. 2018b), LD of 0.2 was estimated at min-
imum marker distance of �50Kb (Supplementary Figure 1). Based
on O. mykiss genome length of 2.2Gb, we estimate that at least
44K SNPs would be necessary to perform a proper whole genome
association scan. Despite the 26K SNPs used in the current study is
below this number, it shed light into the genomic regions likely
associated with P. salmonis resistance in a farmed rainbow trout
population.

Among the genomic regions of interest, a high variation in average
LDwas estimated (from0.14 to 0.69).However, it should benoticed that
these values comprises a 1Mbwindow-size. Similarly, Vallejo et al. 2018
found high levels of LD ranging between 0.21 to 0.44 across the
rainbow trout genome. The candidate genes associated with resistance
to P. salmonis are at a smaller distance with respect to the associated
SNP, which in turn is located in the midpoint of the interval. Thus, a
higher correlation between the SNP genotypes and the putative genes
are expected within the evaluated genomic regions.

We expect that in the near future, the identification and validation of
causative mutations affecting some of the candidate genes presented
here, bymeans of functional studies, will provide a better understanding
of resistance against this and other infectious diseases in rainbow trout
and other salmonid species. These studies will be facilitated through
international collaborative initiatives such as the FunctionalAnnotation
of All Salmonid Genomes, FAASG (Macqueen et al. 2017).

CONCLUSIONS
To the best of our knowledge this is the first report identifying candi-
date genes related to resistance to P. salmonis in a farmed rainbow
trout population. Genes likely related with resistance were identi-
fied close to SNPs explaining the highest proportion of genetic
variance. Furthermore, we identified one common genomic region

associated with resistance using both a linear and binary trait. Our
results show that this trait is controlled by multiple genes each
with a small effect. Therefore, a genomic selection approach is
suggested as the best method to improve this trait by means of
artificial selection.
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