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Abstract

We report the results of a Phase I dose escalation trial of the multikinase inhibitor sorafenib in 

relapsed/refractory acute leukemias using an intermittent dosing regimen. Fifteen patients with 

advanced leukemia (Acute myeloid leukemia(AML), 2=Acute lymphoblastic leukemia(ALL), 1 

Biphenotypic) and a median age of 63 (range 37–85) years were enrolled and treated on a dose 

escalation trial. Toxicities ≥grade 3 were present in 55% of cycles and the maximum tolerated 

dose (MTD) was determined to be 400mg BID × 21days in a 28 day cycle. Plasma inhibitory 

assays of kinase targets ERK and FLT3-ITD demonstrated excellent target inhibition, with FLT3-

ITD silencing occurring below the MTD. The N-oxide metabolite of sorafenib appeared to be a 

more potent inhibitor of FLT3-ITD than the parent compound. Despite marked ex vivo FLT-3 ITD 

inhibition, no patients met criteria for complete or partial response in this monotherapy study. 

Eleven of fifteen patients experienced stable disease as best response. Although sorafenib 

demonstrated only modest clinical activity as a single agent in this heavily treated population, 

robust inhibition of FLT3 and ERK suggest there may be a potential important role in combination 

therapies.
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INTRODUCTION

Acute leukemia in adults remains difficult to cure with conventional cytotoxic chemotherapy 

with approximately 70% of adult patients diagnosed with AML and ALL dying of the 

disease.(1–2) One recent strategy is based on targeting cellular signal transduction pathways 

found to be mutated or overactive in the malignant clone. Acute leukemia has several 

potential targetable pathways and one pathway of great interest is the Ras/Raf/MEK/Erk 

pathway due to its role in cellular division, differentiation, and apoptosis. This pathway is 

constitutively activated in more than 50% of primary acute myeloid leukemia samples;(3) 

and constitutive activation is associated with an inferior clinical outcome.(4) This pathway 

can be activated by mutations in receptor tyrosine kinases such as FLT3, c-KIT and VEGF.

(5)

Sorafenib is a multi-targeted tyrosine kinase inhibitor, with activity against RAF kinase, 

VEGF receptors, both wild type and ITD(Internal Tandem Duplication)-mutated FLT3, 

PDGF receptors, c-KIT, and RET kinase.(6) Sorafenib was recently approved by the U.S. 

Food and Drug Administration for the treatment of renal cell cancer(7) and hepatocellular 

carcinoma.(8) Preclinical studies of sorafenib in acute leukemia have demonstrated down-

regulation of the MAPK pathway, sensitization to receptor-mediated apoptosis by down-

regulation of Mcl-1(Myeloid cell leukemia-1),(9–10) and growth inhibition of AML cells 

with FLT3-ITD mutations.(11)

Early published clinical studies of sorafenib in AML suggest continuous dosing at a dose 

approved for solid tumors (400mg twice daily) is not tolerated well in patients with AML/

MDS.(12) Sorafenib has been found to occasionally induce hematologic responses and 

complete remissions in select patients with FLT3-ITD AML.(13–14) Based on these data 

and earlier work that suggested improved tolerance in intermittently dosed schedules,(15) 

we undertook a phase I dose escalation trial to determine the dose limiting toxicities (DLT) 

and maximum tolerated dose (MTD) of sorafenib given orally, twice-daily (BID), for either 

14 days or 21 days of a 28-day treatment cycle in patients with refractory acute leukemia. 

We also examined pharmacokinetics, pharmacodynamics, and tumor response. Correlative 

studies included the assessment of target modulation via plasma inhibitory assay (PIA) of 

phosphorylated-ERK (p-ERK) and phosphorylated-FLT3-ITD (p-FLT3) using methods 

previously developed for FLT3 targeted therapies.(16–17) Additionally, we investigated the 

metabolism of sorafenib during intermittent dosing to assess residual active compounds 

found after discontinuation of sorafenib. This examination focused on one metabolite, 

sorafenib N-oxide, which was thought to have biologic properties similar to the parent 

compound(18) and has been reported to represent the most common metabolite representing 

~17% of circulating total drug.(19) Prior investigations of this metabolite have not studied 

its activity against mutated FLT3.
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PATIENTS / METHODS

Patient selection

Patients over the age of 18 years with pathologic confirmation of relapsed or refractory 

AML, or ALL, were considered eligible. Standard end organ function and performance 

status criteria for Phase I investigations were used, including bilirubin <2.0 mg/dL, 

AST/ALT <5× upper limit of normal, and creatinine clearance >60mL/min/1.73m2. Patients 

were required to have a peripheral blast count <30,000/µL and no greater than a 50% 

increase in absolute blast count within the preceding week. Hydroxyurea was allowed up to 

48 hours after starting sorafenib. Protocol and consent form were approved by the Johns 

Hopkins School of Medicine Institutional Review Board. All patients gave informed consent 

according to the Declaration of Helsinki.

Treatment plan

Patients were initiated on twice daily oral tablet dosing of sorafenib for either 14 or 21 

consecutive days of treatment in each 28-day cycle and were managed in the outpatient 

clinic. Table 1 lists the planned dosing levels. All patients were evaluated for DLT for the 

purpose of determining the MTD.

Evaluation of response

Baseline evaluations, including an on-study bone marrow aspirate and biopsy, were 

conducted within 1 week prior to entry into the study. Bone marrow assessments were 

performed on or about cycle 1 day 8 (early treatment assessment), prior to initiation of cycle 

#2 and every two cycles thereafter. Clinical responses for AML and ALL were measured 

according to International Working Group definitions.(20)

Determination of DLT, MTD and Stopping Rules

All patients filled out medication and side effect/toxicity diaries that were reviewed weekly. 

Toxicities were graded according to the National Cancer Institute Common Toxicity 

Criteria, Version 3.0. Dose escalation continued until a DLT occurred in 2 patients out of the 

3 patients in a cohort. When 1 DLT was observed in the first 3 patients during the first 

treatment cycle at a given dose level, 3 additional patients (up to 6 patients in total) were 

treated at that level. When DLTs occurred in the first 2 or 3 patients treated at a given dose 

level, no further dose escalation occurred. The dose immediately below the dose level that 

produced 2 DLTs was considered the maximum tolerated dose (MTD). Patients without 

evidence of disease progression or DLT secondary to therapy were allowed to continue on 

that dose for a total of 6 cycles. No intrapatient dose escalation was permitted.

Pharmacokinetic studies

Serial blood samples were collected in lithium heparin-containing tubes prior to and at 0.25, 

0.5, 1, 2, 4, 6, and 8 hours after the administration of the first dose of sorafenib. Additional 

blood samples were collected prior to administration (Cmin) on day 2, 3, 8, 15 of continuous 

dosing and prior to the start of cycle 2. Samples were processed within 30 minutes of 

collection by centrifugation for 10 minutes at 1,500× g under refrigeration (~4°C). The 
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resultant plasma was stored at −70°C until subsequent analysis for sorafenib and sorafenib 

N-oxide concentrations using a validated liquid chromatography/tandem mass spectrometry 

(LC/MS/MS) method.(21) Briefly, sorafenib and sorafenib N-oxide were extracted from 

plasma using acetonitrile precipitation. Separation of sorafenib, sorafenib N-oxide, and the 

internal standard, [2H3 15N] sorafenib, was achieved on a Waters X-Terra™ C18 (150 mm × 

2.1 mm i.d., 3.5 µm) analytical column using a mobile phase consisting of acetonitrile/10 

mM ammonium acetate (65:35, v/v) containing 0.1% formic acid and isocratic flow at 0.2 

mL/min for 6 minutes. The analytes were monitored by tandem mass spectrometry with 

electrospray positive ionization. Linear calibration curves were generated over the range of 

0.007–7.26 µg/mL(0.02–15.6µM) for sorafenib and 0.01–2.5 µg/mL(0.2–5.2µM) sorafenib 

N-oxide. Plasma samples that were diluted 1:10 (v/v) with pooled plasma were accurately 

quantitated. The accuracy and within- and between-day precisions were within the 

acceptance criteria for bioanalytical assays.(22)

Pharmacokinetic variables were calculated by standard noncompartmental methods using 

WinNonlin professional (version 5.2).(23) Cmax was the observed maximum concentration. 

Tmax was the time point at which the Cmax was observed. Cmin was the observed minimum 

concentration or pre-dose sampling. Cmin was determined to be valid if the interval between 

evening dose and the sample was within an allowed range of 12 ± 2 hours and obtained pre-

dose. AUC(0–8h) was the observed AUC, calculated using a combination of linear and log 

trapezoidal rules. Pharmacokinetic parameters were summarized using descriptive statistics.

Correlative studies

Inhibitors—Sorafenib was provided by Bayer Pharmaceuticals through the Investigational 

Drug Branch, Cancer Treatment Evaluation Program, National Cancer Institute. Sorafenib 

N-oxide was obtained from Toronto Research Chemicals. Sorafenib and sorafenib N-oxide 

were dissolved in DMSO and stored at −80°C as 10 mM stock solutions. All samples in any 

given experiment contained identical concentrations of DMSO.

Cell Culture—All cell lines were cultured in RPMI/10% fetal bovine serum (FBS; 

Invitrogen, Carlsbad, CA) at 37°C in 5% CO2. The TF/ITD cell line was derived by 

transfecting TF-1 cells (growth factor dependent) with an expression vector containing the 

FLT3 coding sequence containing an ITD mutation from an AML patient, as described.(16) 

The resultant TF/ITD line is growth factor independent and expresses constitutively 

phosphorylated FLT3 and ERK 1/2.

Plasma Inhibitory Activity (PIA) Assay—The PIA assay was performed as described 

previously using the TF/ITD cell line as target cell line.(17) Phosphorylated ERK1/2(Cell 

Signaling, Danvers, MA) was assessed in whole cell lysates.

RESULTS

Sorafenib phase I patient characteristics

The patient characteristics are listed in Table 2 and were typical of patients in early phase 

leukemia trials with a median of 3 (range 1–6) prior therapies.
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Sorafenib associated toxicities and Maximum Tolerated Dose

Toxicities (any grade) that were potentially related to therapy were seen in 23 out of 31 

cycles (74%) (Table 3). Grade ≥3 toxicities were experienced in 17 (55%) cycles. Dose 

limiting toxicities at 600mg BID × 14 days were demonstrated in 2/3 patients and included 

elevated transaminases (n=1), and musculoskeletal back pain unimproved with standard 

measures (1). Based on the dose limiting toxicities described at 600mg BID ×14d, the dose 

of 400mg BID × 21d was determined to be the MTD and further dose escalation did not 

occur.

Sorafenib and sorafenib N-oxide pharmacokinetics

All patients were evaluable for pharmacokinetic analysis (Table 4). Sorafenib exhibited a 

variable plasma concentration-time profile with a slow absorption phase followed by a long 

terminal elimination phase thus resulting in a relatively flat concentration-time profile as 

previously described.(24–27) Sorafenib N-oxide exhibited a similar profile with the 

maximum concentration occurring at the same time of after the Tmax for sorafenib.(19) 

Moderate inter-individual variability in pharmacokinetic parameters was noted, with a 

coefficient of variation for the sorafenib AUC(0–8h) and Cmax of up to 95% and 116 %, 

respectively. The variability was higher for the sorafenib N-oxide metabolite with the 

coefficient of variation for AUC(0–8h) and Cmax of up to 129% and 124 %, respectively. 

Sorafenib concentrations were detectable in 33% (1/3) of patients after 14 day break in 

treatment and in 80% (4/5) of patients after a 7 day break. Sorafenib N-oxide was only 

detectable in 40% (2/5) of patients after a 7 day break.

FLT3 and ERK inhibition

We prepared dose response curves assessing inhibitory potency of sorafenib on FLT-3 ITD 

autophosphorylation and ERK phosphorylation using TF-ITD cells in RPMI with 10% FBS. 

Immunoblot analysis revealed an IC50 of 1.2 nM for inhibition of phosphorylated FLT3 in 

media (data not shown). The IC50 for inhibition of phosphorylated ERK was similar 

(0.91nM, data not shown). Previous work with tyrosine kinase inhibitors has shown most 

inhibitors in development are highly protein bound.(16–17, 28) We therefore determined the 

IC50 values of sorafenib for inhibition of phosphorylation of FLT3 and ERK using TF-ITD 

cells, substituting normal human plasma for culture medium. In plasma, the IC50 of 

sorafenib for P-FLT3 inhibition shifts to approximately 308nM (Figure 1A). ERK signaling 

in plasma was more resilient with an IC50 rising to 841nM (Figure 1A).

FLT3 inhibition at trough time points

Pharmacodynamic analysis of FLT3 and ERK targeting was performed on patients 

completing one cycle of therapy (n=9). Direct analysis of leukemic phosphoprotein status 

was difficult as sufficient circulating leukemia cells were not available from most patients at 

each correlative time point due to low white blood count. We examined serial plasma 

specimens collected pretreatment on day 1, day 8, day 15, and day 29 in an inhibitory assay 

(PIA) using a FLT-3 mutant cell line(TF-ITD) to assess target inhibition potential in an ex 

vivo setting. PIA data takes into account protein binding, active metabolite levels, and 

cytokine levels which may influence target sensitivity to inhibition. Each of the patients 
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studied (n=9) achieved complete inhibition of FLT3-ITD phosphorylation in the PIA on 

trough samples drawn while on therapy (Figure 2) suggesting inhibition of FLT3-ITD 

occurs below 400mg BID.

Sorafenib inhibits FLT3 partially through a metabolite

To better understand the activity of sorafenib against FLT3 and ERK, we plotted the results 

of the PIA assays with the pharmacokinetic values obtained at those time points (Figure 3A 

& 3B). We then overlaid the standard curves for sorafenib suppression of FLT3-ITD in 

normal human plasma. Interestingly, we found that nearly all PIA assessments appeared to 

have greater inhibitory activity than predicted by the standard curves with sorafenib alone. 

With the possibility of a drug metabolite contributing to the biologic activity of sorafenib on 

FLT3, we assayed serial plasma samples for sorafenib’s major metabolite, sorafenib N-

oxide. Sorafenib N-oxide on average was found at levels approximately 12% of sorafenib 

levels, (median=8%, range 2%–44%, standard deviation 12%) with marked inter-patient 

variability. We found the N-oxide metabolite to be more potent than sorafenib(~14.59 fold) 

at inhibiting autophosphorylation of FLT3-ITD and ERK in human plasma when assessed 

by western blotting in cell based assay using TF/ITD cells (Figure 1B). To examine the 

additive effect of the presence of the N-oxide metabolite we then replotted the PIA/PK data 

to account for the activity of the N-oxide metabolite of sorafenib by including the sum of the 

parent and metabolite PK values corrected for the increased potency (14.59 fold) of 

sorafenib N-oxide. This created an “adjusted sorafenib concentration” value which more 

closely approximated the sorafenib standard curve for P-FLT3 inhibition and P-ERK 

inhibition (Figure 3C & 3D) for samples in the inhibitory range.

FLT3 inhibitory activity significant and extends up to 7 days post dosing

Plasma samples at trough obtained during the trial resulted in complete FLT3 silencing 

(Figure 2) and the average drug concentrations (Table 4) were well above the FLT3 

predicted inhibitory range (Figure 1). Pharmacodynamic examination of FLT3 inhibitory 

activity in the PIA also revealed 4/5 samples with inhibitory activity at day 29, seven days 

after the last dose (Figure 2) and all four patients received more than one cycle of therapy. In 

two samples the primary FLT3 inhibitory compound at Day 29 when adjusted for potency 

was sorafenib N-oxide (pt016 and pt 17) with levels of sorafenib N-oxide of 0.20 and 0.09 

µg/mL (0.42 and 0.19µM) respectively.

Clinical activity of sorafenib

The best response demonstrated in 11/15 of patients on this trial was stable disease. The 

longest duration of SD was 3 months, experienced by 2 of the patients (13%). While no 

patients met the criteria for complete or partial response, bone marrow blast counts 

decreased in 6/15 (40%) patients after one cycle by an average of 18%. Table 5 represents 

pre and post treatment for all patients on trial. Five of the 9 patients treated on a three week 

schedule of drug showed a decrease in their marrow blasts while only 1 of five evaluable 

patients treated on either of the 2 week schedules showed a decrease. Interestingly, this 

patient was the only one on the 2 week dosing schedules with a FLT3-ITD mutation.
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One of the two ALL patients cleared their peripheral blood blasts while on sorafenib and 

demonstrated progressive improvement in bone marrow blasts from 89% pretreatement to 

47% after cycle 1 and 45% after cycle 2. Interestingly, the patient had a MLL rearranged 

ALL with translocation (4;11). This translocation has been associated with over expression 

of WT FLT3 and in vitro sensitivity to FLT3 inhibitors.(29–30)

DISCUSSION

Sorafenib can inhibit numerous potential pathways in acute leukemia, but despite such broad 

biologic activity, we found relatively limited single-agent clinical activity. The clinical 

activity in our study population was limited to the observation of reduced bone marrow 

blasts in 56% (5/9) of patients treated at 400mg BID × 21 days and 1 patient with FLT3-ITD 

AML treated on the 14 day schedule. Dose escalation beyond 400mg BID was limited due 

to grade 3 and 4 toxicities. Similar clinical activity and toxicity has been reported with 

single agent sorafenib given continuously where 11 out of 20 patients were found to have a 

>50% reduction in peripheral blood blasts and 9 of 11 patients with FLT3-ITD AML had 

measured responses, including one morphologic marrow CR.(31) One potential explanation 

for the lack of improved tolerance to our intermittent dosing was the demonstration of 

prolonged biologic activity after therapy completion.

Interestingly in AML, one target of great importance is FLT3-ITD, and in our study, 

sorafenib demonstrated suppression of FLT3-ITD at dosing below the MTD. Prior studies 

targeting FLT3-ITD with lestaurtinib documented the association of sustained complete or 

near complete inhibition of FLT3-ITD with clinical response;(32) but unlike the use of 

lestaurtinib, sorafenib uniformly suppressed FLT3-ITD in all samples assessed by PIA. This 

finding was somewhat surprising based on sorafenib pharmacokinetics and preclinical 

studies of sorafenib alone; however our correlative studies suggest the sorafenib N-oxide 

metabolite contributes significantly to in vivo FLT3-ITD inhibition. This inhibitory activity 

persisted up to seven days after the completion of drug dosing in several patients. This 

observation is clinically important with preclinical modeling of FLT3 inhibitors in 

combination with cytarabine and daunorubicin demonstrating antagonism when the FLT3 

inhibitor was used prior to the conventional therapy.(33) There may be a need for a wash out 

period prior to the use of cell cycle dependent salvage or even consolidative treatments with 

the concomitant use of sorafenib.

The targeting of signal transduction pathways therapeutically has yet to be broadly 

successful. Even attempts to target a pathway thought to be as tissue specific as mutated 

FLT3 in AML, has proven to be more complicated than many first appreciated. For 

example, the individual type of mutation is certainly critical as preclinical studies suggest 

that patients with a D835Y mutation in FLT3 are unlikely to be sensitive to some FLT3 

inhibitors such as sorafenib.(11) Also, there is evidence that allelic burden of FLT3-ITD is 

important for ex vivo sensitivity of primary leukemia blasts to FLT3 inhibition, and perhaps 

those with high allelic ratio may be a subset that benefits the most from FLT3 targeted 

therapy.(34–35) Additionally, the clinical activity of targeted agents can be influenced by 

protein binding and drug-drug interactions.(32–33) Our study, like others has demonstrated 

the activity of metabolites of the primary agent, may in fact, play a major role in an agent’s 
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biologic activity.(16) Finally, the disease state must also be factored into the equation as 

targeting mutated pathways at the time of minimal residual disease such as post induction, or 

following a stem cell transplant might have the best opportunity to suppress the leukemic 

clone long term.(13) Taken together, future clinical studies of targeted agents must include 

biologic correlatives if we hope to fulfill the hope that the new agents can impact clinical 

outcomes in a more discriminate way.
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Figure 1. Sorafenib N-oxide is a potent FLT3 inhibitor
A. Standard curve generated as described previously(17), from western blot of TF-ITD cells 

in plasma exposed for one hour to increasing concentrations of sorafenib. B. Standard curve 

generated with sorafenib N-oxide in plasma.
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Figure 2. PIA results for patients receiving sorafenib
Plasma was isolated from whole blood samples obtained from patients receiving increasing 

doses of sorafenib on the clinical trial. Samples were obtained immediately prior to dosing 

on Days 1, 8, and 15 and 29 of each cycle. Dose levels 1, 2, and 3 correspond to total daily 

doses of 800, 800, and 1200 mg, respectively (see Table 1). Shown are the results from 

representative patients on successively higher dose levels using the PIA assay on TF-ITD 

cells for phosphorylated FLT3 (left) and ERK (right). For dose level 2 and 3, extra time 

points on Day 1 show complete silencing of FLT3 activity within 2 hours of the first dose 

with maintenance of this inhibition throughout the treatment cycle. Vertical lines have been 

inserted to indicate a repositioned gel lane.
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Figure 3. PIA results compared with standard curve for Sorafenib
A. Plasma was collected from patients receiving sorafenib prior to dosing on day 1, 8, 15, 

and 29. The plasma samples underwent conventional pharmacokinetic analysis of 
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concentrations of sorafenib and sorafenib N-oxide. In parallel, plasma from the same time 

points were examined in PIA assays for assessment of FLT3 and ERK inhibition potential. 

On the × axis the results of the pharmacokinetics are plotted for sorafenib. On the y axis, the 

degree of FLT3 inhibition, as assessed by PIA, is plotted as a percent of control. This data is 

overlaid by the standard curve for sorafenib in plasma as generated in TF-ITD cells(solid 

line, see Figure 1A). B. PIA results, as described in panel A, of P-ERK compared to 

standard curve for sorafenib inhibition of P-ERK(solid line). C. The PIA assay values for 

FLT3 inhibition were replotted after adjusting the “effective” sorafenib concentrations by 

adding the amount sorafenib N-oxide multiplied by its potency factor using the equation: 

Adjusted sorafenib concentration=Sorafenib + (Sorafenib N-Oxide*14.59). D. The same 

experimental data generated from analysis of P-Erk and corrected for sorafenib N-oxide as 

described in panel C.
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Table 1

Dose Escalation Schema

Dose Escalation Schedule

Dose Level Dose of Sorafenib Pts

Level 1 400 mg PO BID × 14 days out of 28 days 3

Level 2 400 mg PO BID × 21 days out of 28 days 9

Level 3 600 mg PO BID × 14 days out of 28 days 3

Level 4 600 mg PO BID × 21 days out of 28 days 0
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Table 2

Patient Characteristics

Characteristic n=15 n (%)

Age, years:

    Median 63

    Range 37–85

Male sex: 8 (53)

ECOG performance status:

    0 4 (27)

    1 9(60)

    2 2(13)

Disease type:

    AML 12 (80)

     AML/MDS 2

     AML/CMML 2

    ALL 2 (13)

    Bilineage 1 (7)

Cytogenetics

    Normal 6 (40)

    complex 6 (40)

    trisomy 21 1 (7)

    trisomy 13 1 (7)

    11q23 1 (7)

FLT3

    Mut(ITD) 2 (13)

Risk markers:

    refractory 2 (13)

    relapsed 5 (33)

    relapsed & refractory 6 (40)

    treatment-related 2 (13)

No. of prior therapies

    Median 3

    range 1–6

Abbreviation: ECOG, Eastern Cooperative Oncology Group; Mut(ITD), mutation(internal tandem duplication)
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Table 3

Grade 3 and 4 Toxicities

Category Grade
400 mg bid ×
14d (cycles=6)

400 mg bid ×
21d (cycles=21)

600 mg bid ×
14d (cycles=4)

n (%) n (%) n (%)

Any 3 3 (50) 10 (48) 4 (100)

4 0 (0) 3 (14) 1 (25)

Constitutional

    Edema (limb) 3 0 (0) 2 (10) 0 (0)

    Fatigue 3 1 (17) 4 (19) 0 (0)

    Muscle weakness 3 0 (0) 2 (10) 0 (0)

Hepatic

    Alkaline phosphatase 3 0 (0) 2 (10) 0 (0)

    ALT/SGPT 3 0 (0) 2 (10) 0 (0)

    ALT/SGPT 4 0 (0) 0 (0) 1 (25)

    AST/SGOT 4 0 (0) 0 (0) 1 (25)

    Bilirubin 4 0 (0) 1 (5) 1 (25)

Infectious

    Febrile neutropenia 3 2 (33) 3 (14) 2 (50)

    Fever (without neutropenia) 3 0 (0) 1 (5) 0 (0)

Dermatologic

    Hand-foot skin reaction 3 0 (0) 1 (5) 0 (0)

Metabolic

    Hypokalemia 3 1 (17) 2 (10) 0 (0)

    Hypophosphatemia 3 0 (0) 1 (5) 0 (0)

    Hypophosphatemia 4 0 (0) 1 (5) 0 (0)

Pain

    Abdomen NOS 3 0 (0) 1 (5) 0 (0)

    Back 3 0 (0) 0 (0) 1 (25)

    Joint 3 0 (0) 1 (5) 0 (0)

n = number of events
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