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Abstract: Should the internal structure of a system matter when it comes to autonomy? While
there is still no consensus on a rigorous, quantifiable definition of autonomy, multiple candidate
measures and related quantities have been proposed across various disciplines, including graph-
theory, information-theory, and complex system science. Here, I review and compare a range of
measures related to autonomy and intelligent behavior. To that end, I analyzed the structural,
information-theoretical, causal, and dynamical properties of simple artificial agents evolved to solve
a spatial navigation task, with or without a need for associative memory. By contrast to standard
artificial neural networks with fixed architectures and node functions, here, independent evolution
simulations produced successful agents with diverse neural architectures and functions. This makes
it possible to distinguish quantities that characterize task demands and input-output behavior, from
those that capture intrinsic differences between substrates, which may help to determine more
stringent requisites for autonomous behavior and the means to measure it.

Keywords: agency; artificial evolution; causation; integrated information; intelligence

1. Introduction

Agents are open systems that dynamically and informationally interact with their
environment. In biological, evolved systems, more intelligent behavior is typically asso-
ciated with greater autonomy from the environment. Simple systems are thought to act
in an automated, reflexive manner, while intelligent organisms perform complex tasks
in an autonomous, context-dependent way, and increasingly rely on internal states, such
as memory, or learned, adjustable preferences. To date, however, a rigorous, quantifiable
definition of “autonomy” and “autonomous actions” remains elusive [1–5].

What is more, our preconceived biological notions are being challenged by recent
advances in artificial intelligence. As functional equivalence between biological brains
and computers seems within reach, striking differences remain regarding their respective
problem-solving algorithms, implementation, and causal structures. In particular, the
classical feed-forward architecture of the most common artificial neural networks (ANNs)
suggests that they are just “machines running through the motions”—not one unified
entity [3,6–10], but a unidirectional chain of events. Yet, they achieve super-human levels
of performance even in tasks that supposedly require creativity and intuition [11]. Does
implementation matter when it comes to autonomy?

Here I will address this question by comparing the structural, informational, dynami-
cal, and causal properties of evolved ANNs based on a range of state-of-the-art measures
that have been proposed as quantities related to intelligence and autonomy, which I will
review below. These quantitative measures specifically capture three aspects of autonomy:
self-determination (how much the system determines its own internal states), closure
(whether the system forms an independent entity from the environment), and agency
(whether a system’s actions are determined by its internal mechanisms, as opposed to
external influences), though other relevant aspects and classifications have been proposed
in the literature [1,2,5,12–14] (see Discussion Section 5).
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The particular ANNs used in this study are simple artificial agents evolved to solve
a spatial navigation task, with or without a need for associative memory [15]. These
agents are equipped with small, discrete neural networks (“Markov Brains”), whose
connectivity and node functions adapted over the course of their evolution [16]. As a result,
independent evolution simulations may produce agents with diverse neural architectures
that all successfully navigate their environment, including feed-forward and recurrent
ANNs. From the outside, the agents’ behavior should thus seem equally “intelligent”.
However, the computational substrates that produced their behavior differ qualitatively in
their neural mechanisms and connectivity.

Based on such a data set of structurally diverse automata, it becomes possible to
distinguish quantities that primarily characterize task demands and input-output behavior
(“what the agent is doing”), from quantities that capture differences between the various
substrates (“how the agent is doing it”), beyond their adaptive performance. Such a dis-
tinction may help to determine more stringent requisites for what counts as autonomous
behavior and the means by which it is measured. In particular, the idea that an autonomous
system must form a unified whole that is to some degree independent of its environment
(yet interacts with it) is widely acknowledged [3,6–10,17–19]. However, structural, informa-
tional, causal, or dynamical measures of “closure” from the environment do not necessarily
go hand in hand. For example, whether a measure is evaluated based on observed activity
(that is, information-theoretically) or system perturbations (for a causal analysis) may
result in significantly different assessments of the degree to which an agent’s internal states
determine its behavior (see also [1]). Which notion of “closure” is the relevant one for
assessing autonomy? In addition, the role of internal states and memory for autonomy and
intelligent behavior still remains unclear. Should memory of environmental states count
towards higher levels of autonomy or should it be discounted [1]? Here, the observed
differences between task conditions with and without associative memory may provide a
quantitative basis for discussion.

Finally, the measures that are compared in this study have been assembled into
an “autonomy” python toolbox available at https://github.com/Albantakis/autonomy
(accessed on 15 September 2021) , which also includes the data set of artificial agents
analyzed in this paper. The toolbox allows the application of the various measures to agent
objects defined by their transition probability matrices and numbers of sensors, motors
and hidden units, as well as other optional features.

2. Quantitative Measures Related to Agency, Autonomy, and Intelligence

In the following I will provide an overview across various measures related to in-
telligence and autonomy compiled across multiple disciplines, including graph-theory,
information-theory, and complex system science. These measures are generally applicable
to any stochastic system V = {V1, V2, . . . , Vn} with finite state space ΩV and current state
vt ∈ ΩV , which is constituted of n random variables Vi and interacts with an environment
E with finite state space ΩE and current state et ∈ ΩE. The system is assumed to be
Markovian. In that case, the system’s dynamics can be described in terms of its transition
probability function

p(vt+1 | vt, et) = P(Vt+1 = vt+1 | Vt = vt, Et = et), vt, vt+1 ∈ ΩV , et ∈ ΩE. (1)

The n random variables that constitute the system can be divided into sensor (S), hid-
den (O), and motor units (M). Throughout this study, the state of the sensor units depends
only on the environment, while the state of the hidden and motor units depends only on
the state of the sensor and hidden units. The motor units thus act on the environment but
do not feed back into the system. This strict distinction between hidden and motor units is
made for conceptual clarity; none of the measures outlined below depend on it. While the
sensor and motor units of an MB thus constitute a Markov Blanket in the traditional, causal
sense [20], they are not Markov Blankets as required according to Friston’s free energy
principle (FEP) formalism [21], because MBs are not self-organizing (see also [22]).

https://github.com/Albantakis/autonomy
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In line with prior work [1], all measures are formulated under the assumption of
discrete states and discrete time for simplicity. While some of the measures could also be
extended to more general dynamical systems, for others neural networks with continuous
states would have to be discretized appropriately in order to analyze them (see also [23]).

Throughout, upper case letters denote variables, while specific states of a variable or
set of variables are denoted by lower case letters.

2.1. Structural and Graph-Theoretical Measures

While the connectivity structure of artificial neural networks is often externally con-
strained, this is not the case for Markov Brains (MBs), the type of ANN used in this study
(see Figure 1). In this way, MBs more closely resemble biological neural circuits [16]. As-
sessing the structural features of such systems may thus provide some insight into the
demands of a given task environment.

The number of functionally relevant units provides a first simple measure to assess
how efficiently a given neural network implements its function and can further be split
into the number of connected sensors, motors, and hidden units. To be functional, sensors
have to output to other nodes, motors have to receive inputs, and hidden nodes have to
receive inputs and output to other nodes in the network.

Similarly, the number of connections between various node classes can be evaluated.
The degree-centrality measures the fraction of nodes to which a node in the network is
connected and is available in the Python network analysis toolbox “NetworkX” [24] along
with numerous other measures to evaluate the structural properties of network graphs.
To date, the “autonomy” toolbox incorporates the average degree-centrality, the average
betweenness-centrality [25] of all functional hidden nodes, and the flow hierarchy [26] as
representative measures on directed graphs. The betweenness-centrality evaluates the sum
of the fraction of all-pairs shortest paths that pass through a node. The flow hierarchy is
defined as the fraction of edges not participating in cycles in a directed graph.

Finally, the largest strongly connected component (LSCC) may serve as a simple
structural measure of integration [27], in line with the notion that an autonomous system
must form an integrated whole. Note that, by definition, the LSCC of a feed-forward ANN
(fANN) is zero, while it includes the entire set of hidden units for an all-to-all connected
recurrent ANN. In the MBs, however, the LSCC may vary across agents and task domains.
For completeness, the largest weakly connected component (LWCC) is also included, which
may indicate modularity if it is smaller than the total number of functional units.

2.2. Information Theoretical Measures

Several recent studies have proposed a connection between information-theoretical
properties and the emergence of autonomous (living) systems [1,4,23,28]. Most of these
measures can be defined based on the entropy of a probability distribution over a random
variable X,

H(X) = − ∑
x∈ΩX

p(x) log2 p(x). (2)

The probability distributions evaluated by the information theoretical quantities
defined below can be obtained from the observed activity of the agents while performing
their tasks. The resulting values thus depend on the accuracy of the sampled probability
distributions, as well as the task environments an agent is evaluated in and are thus not
intrinsic properties of the agent itself.

A simple measure that is commonly used to quantify the complexity of an agent’s
behavior within a given environment is the mutual information (I) between its sensors (S)
and motors (M) [29–31]

ISMMI(St; Mt+d) = H(Mt+d)− H(Mt+d|St) = H(Mt+d) + H(St)− H(Mt+d, St), (3)
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where H(Mt+d, St) denotes the entropy of the joint probability distribution p(Mt+d, St).
Two agents with identical input-output behavior will necessarily have identical ISMMI .
A related quantity termed “empowerment” [32] aims to measure how well an agent can
perceive its own influence on the environment, defined as the channel capacity between an
agent’s actions and subsequent sensor inputs.

The ISMMI is a special case of predictive information Ipred(Vt−1; Vt) [33], and captures
how much information about the motor output at time t + d is present in the agent’s
sensor state at time t (see [34] for an application to an fANN). ISMMI is supposed to be
high if the agent efficiently extracts all relevant information from the sensors in order to
guide its actions. Note, however, that ISMMI may decrease with increasing fitness in tasks
that require memory and also for agents with recurrent architectures that take their own
internal state into account to determine the motor output [30,35]. ISMMI may thus decrease
with increasing autonomy from the environment. An alternative measure is the predictive
information that the system as a whole (V) has about its future states

Ipred(Vt−1; Vt) = H(Vt)− H(Vt|Vt−1) = H(Vt) + H(Vt−1)− H(Vt, Vt−1). (4)

Ipred, also known as time-delayed mutual information (TDMI) [36,37], can be viewed as
the extent to which an agent determines itself [1,38] and has been labeled as the autonomy
measure A∗ [1,4]. However, for agents interacting with their environment, it may be
more appropriate to evaluate Ipred conditioned on the past m states of the environment
(Et−1, . . . , Et−m), which discounts observed correlations between subsequent system states
that are actually due to the environment:

Am = H(Vt|Et−1, . . . , Et−m)− H(Vt|Vt−1, Et−1, . . . , Et−m), (5)

with m > 0 (note that I have shifted the index so that it starts at m = 1 as opposed to m = 0
in the original formulation. A0 in [1] thus corresponds to A1 here).

Bertschinger et al. [1] proposed Am as a tentative, quantitative measure of autonomy,
but also discuss open issues regarding the mutual influence between the environment and
the agent, as well as the problem of identifying the borders of the agent in the first place
(see also: [8,18,23,39]).

Here I implemented a version of Am that uses the agent’s sensors S in place of the
actual environment, as the state of the sensor nodes is set directly by the environment. In
that case, the system V reduces to {O, M}, the set of hidden and motor nodes:

AS
m = H(Ot, Mt|St−1, . . . , St−m)− H(Ot, Mt|Ot−1, Mt−1, St−1, . . . , St−m) (6)

In case of deterministic agents, the second part of Equation (6) reduces to zero such
that AS

m = H(Ot, Mt|St−1, . . . , St−m).
In [18], Bertschinger and Olbrich also proposed a measure to evaluate a system’s

informational closure from the environment. The information flow Jt from the environment
into the system is defined as the conditional mutual information (I) (or transfer entropy [40])
between the current environment state Et and the future system state Vt+1 given the current
system state Vt:

Jt(E→ V) = I(Vt+1, Et|Vt) = H(Et|Vt)− H(Et|Vt, Vt+1)

= H(Vt+1|Vt)− H(Vt+1|Vt, Et).
(7)

Jt(E→ V) = 0 then indicates informational closure from the environment, which is
trivial if the system is independent of the environment and I(Vt+1, Et) = 0. Consequently,
Bertschinger and Olbrich define the non-trivial information closure (NTIC) of a system as
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NTICm = I(Vt, Et−1, . . . , Et−m)− I(Vt, Et−1, . . . , Et−m|Vt−1) = Ipred − Am. (8)

NTIC is meant to capture the extent to which the system models its environment [1]
and has recently been proposed as a quantity that could be connected to a system’s capacity
for consciousness [41]. Note, however, that a large value of NTIC does not ensure a low
information flow from the environment into the system and should thus not be considered
as a replacement for informational closure, but as a complementary measure [18]. As
discussed in [1], NTIC can be negative if the environment and the system jointly determine
the next system state. In the “autonomy” toolbox, Jt(E → V) and NTICm are again
implemented using the agent’s sensor states in place of the actual environment, as for
AS

m above.
In addition to statistical dependencies and information flows between the system

and the environment, the question of when a system “is more than the sum of its parts”
lies at the heart of complex system science [42]. This has led to a number of measures of
information integration that compare the mutual or predictive information of a system to
a partition of the system into two or multiple parts. For recent comparisons of empirical
(observational) measures of information integration see [37,42–44]. Many of these measures
have been conceived as precursory or empirical versions of quantities proposed within
the integrated information theory (IIT) of consciousness [45–48]. Theory-based measures
of integrated information (ϕ and Φ) are, however, intended to be causal, rather than
informational measures, meaning they rely on perturbational rather than observed data
[46,47,49] and will thus be discussed in the next section.

One simple information measure that captures to what extent the system as a whole
(V) is more determined than the sum of its parts (Vi) is the multi-information [50], or total
correlation [51], an extension of the mutual information to multiple variables,

MI(V) = ∑
Vi∈V

H(Vi)− H(V). (9)

The multi-information is zero, if and only if all variables Vi are mutually indepen-
dent [42]. An information-theoretic measure developed to capture the capacity of a system
for both high local segregation and high global integration is the TSE complexity [52]
(named subsequently after the authors of the original publication)

CTSE(V) =
n

∑
k=1

(
H(k, n)− k

n
H(V)

)
, (10)

where H(k, n) is the mean entropy of subsystems of size k in the system with n elements
[52,53]. For an extensive review of proposed multivariate information-theoretical measures
of synergy and redundancy see [54].

As a final information-theoretic approach related to agency and autonomy, I want
to mention the partial information decomposition (PID) framework [55–59]. The PID
framework may be useful in disentangling the contributions of the environment (E) and the
system’s own past state in the Am measure listed above, as it allows to determine which part
of the information is shared (redundant) between the system and the environment, which
information is unique to either, and which part is synergistic [4,39]. The PID framework has
been applied to characterize information-theoretical properties in evolved agents [31], and,
recently, also to Boltzmann machines [60] and convolutional neural networks CNNs [61].
Mediano et al. [62] recently presented an extension of the PID to multiple target variables
to characterize qualitatively different modes of information dynamics.

2.3. Causal Measures

The main difference between the causal measures related to autonomy listed below
and the information-theoretical measures above is that the causal measures rely on interven-
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tional probability distributions instead of observed distributions [1,20,47,63]. Dynamically,
a system may not pass through all of its possible states. However, using system perturba-
tions, it is possible to assess how the system reacts when it is set into any of its possible
states. Causal measures may thus capture the mechanistic structure of the system in a way
that informational measure in general cannot. For example, it is possible to resolve ambi-
guities in the informational measures that arise due to bidirectional interactions between
the agent and the environment through causal interventions [1]. Throughout, the “hat”
symbol (ˆ) over variables or operators indicates interventions.

Effective information EI(V̂t−1, Vt) corresponds to the causal version of Ipred(Vt−1; Vt),
assuming a uniform distribution over all system states at t− 1 [45,64]

EI(V̂t−1, Vt) = |ΩV |−1 ∑
v∈ΩV

DKL( p̂(Vt|vt−1)|| p̂(Vt)), (11)

where p̂ indicates interventional probabilities and DKL denotes the Kullback-Leibler diver-
gence or relative entropy [65]. EI(V̂t−1, Vt) captures the mechanistic constraints that the
system as a whole exerts onto itself, independent of the environment or its observed distri-
bution. EI(V̂t−1, Vt) is related to Â∗, a causal measure of autonomy proposed in [1], which
also evaluates Ipred(V̂(t− 1); Vt). The difference is that for Â∗ the states of Vt−1 are per-
turbed according to their marginal distributions, not maximum entropy as in EI(V̂t−1, Vt).
Along the same lines, Bertschinger et al. [1] also defined a causal version of their Am
measure (Equation (5)).

Within the “autonomy” toolbox, I have implemented an intrinsic version of Âm based
on the maximum entropy interventional distribution, to remove all dependencies on the
dynamics of the environment. For Markovian systems,

ÂS
m = H(Ot, Mt|Ŝt−1, . . . , Ŝt−m)− H(Ot, Mt|V̂t−1). (12)

In deterministic systems, the second term reduces to 0 as in Equation (6). Because the
sensor states at t−m are set to maximum entropy, ÂS

1 = EI(Vt, V̂t−1).
While EI(V̂t−1, Vt) evaluates the system as a whole, the causal framework of integrated

information theory (IIT) [47,48,66] aims to characterize the compositional causal structure of
a system [67]. The main quantity, Φ (“big phi”), measures to what extent the system “exists
for itself” in causal terms, above a background of influences from the environment [3,8].
Within a larger system, the system subset with the largest Φ value is called the “major
complex”. For feed-forward systems Φ = 0 by construction. This is because, according
to IIT, a system only forms an integrated whole if each part of the system has irreducible
causes and effects on the rest of the system, alone or in combination. As the ANNs used in
this study only have recurrent connections among their hidden units, the maximal possible
size of the major complex corresponds to the number of hidden units of the agent.

Regardless of a system’s architecture, the number of internal mechanisms (subset of
system elements with positive integrated information ϕ (“small phi”)) and the sum of their
ϕ values (∑ ϕ) provide a measure of the system’s compositional causal complexity [30,68].
ϕ captures how much a set of elements Y within the system in its current state yt constrains
the system’s previous and next states. In simplified terms,

ϕ(yt) = min
t±1

(
ϕ(yt, ψ∗, Z∗t±1)

)
= min

t±1

(
D

(
p̂(Z∗t±1|yt)

p̂ψ∗(Z∗t±1|yt)

))
, (13)

where ψ∗ partitions (Z∗t±1|yt) into a product distribution (Z∗1,t±1|y1,t)× (Z∗2,t±1|y2,t), D is
the difference measure between the two interventional probability distributions, and the
∗ subscript indicates an optimization over system subsets Zt±1 ⊆ V and a minimization
over possible partitions ψ. A complete description of the ϕ measure according to “IIT 3.0”
can be found in [47,69]. For an updated account that features a new, intrinsic difference
measure, see [49].
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IIT’s causal analysis evaluates the intrinsic constraints a system exerts onto itself.
Recently, we have developed an accompanying account of actual causation (AC) (“what
caused what”) [70] to identify the actual causes of an agent’s actions and quantify their
causal strength (αc). Again in simplified terms,

αc(xt−1, yt) = log2

(
p̂(xt−1 | yt)

p̂ψ∗(xt−1 | yt)

)
, (14)

where xt−1 ⊆ vt−1 and yt ⊆ vt are system subsets whose state is determined by the
transition vt−1 ≺ vt of the system from t − 1 to t, and ψ∗ denotes a minimal partition
of the link between xt−1 and yt. The causal strength αc(xt−1, yt) can be viewed as the
irreducible causal information that an occurrence yt specifies about a possible cause xt−1
(see also [71]). The actual cause x∗t−1 of yt is the one that maximizes αc(xt−1, yt), such
that αc(yt) = αc(x∗t−1, yt) = maxxt(αc(xt−1, yt)). For a rigorous definition of αc based on
product probability distributions, see the original publication [70].

As shown in [72], the AC framework also makes it possible to trace the causes of
an agent’s action back in time (“causes of causes”) and to evaluate the relative causal
contributions of an agent’s internal mechanisms and states to its actions. Specifically, the
average contribution of the hidden units O at time t− 1 to the actual causes of the motor
units M being in state mt can be quantified as

αc(O ≺ M) = ∑
yt⊆mt

SO(αc(yt))

αc(yt)
, (15)

where SO(αc(yt)) is the Shapely value [73] of ot−1 ∩ x∗t−1, the subset of hidden units O in
the actual cause of yt ⊆ mt. The Shapely values are evaluated with αc (Equation (14)) as
the value function. Note that the measure is compositional: the actual causes of all subsets
of yt ⊆ mt are taken into account.

Finally, it is important to emphasize that all IIT derived measures are state-dependent.
It is thus possible to assess their variability within an agent and also to evaluate the agent
at various points in time [72,74] (see [31,39] for state-dependent versions of some of the
above-listed information-theoretical measures). To obtain values for individual agents, the
state-dependent quantities are averaged across all states (for 〈∑ ϕ〉 and 〈Φmax〉) or state
transitions (for 〈αc(O ≺ M)〉) weighted by their probability of occurrence.

All IIT quantities can be computed with PyPhi, a python toolbox developed by the
Tononi lab [69]. The “autonomy” toolbox also contains all causal measures described and
assessed in this study.

2.4. Dynamical Measures

Dynamical systems theory is concerned with characterizing the behavior of complex
systems over time [31,75]. Two main types of analysis can be distinguished: first, one can
assess the dynamical complexity of a system’s trajectories. Second, a system’s long-term
behavior may be analyzed to determine how quickly the system settles into a dynamical
fixed point or limit set.

Characterizing the long-term behavior of open systems is complicated by the fact that
their dynamics are constantly perturbed by the environment. Nevertheless, it is possible to
evaluate the average and maximum transient length before an agent converges to a steady
state if its sensor inputs are kept constant through perturbation [68].

Possible quantifiers of dynamical complexity include the morphological diversity [76]
and information or compression based approximations of the (incomputable) Kolmogorov
complexity (KG) of the systems’ dynamical transients [77–79]. Morphological diversity
measures the number of distinct square patterns in a system’s evolution. As the MBs
investigated here have no explicit topological structure, I will focus instead on a simple
compression based measure of KG, the normalized Lempel–Ziv complexity (nLZ) [77]. LZ-
complexity measures have been applied to investigate the functional complexity of cellular
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automata and small neural networks [80,81], and also to neurophysiological recordings to
assess the level of consciousness in human subjects [82].

To quantify nLZ, an agent’s activity data is first converted into a one-dimensional
string of binary symbols. Here, activity data is generally formatted as a two-dimensional
array at the start, with different time steps along one dimension and system units along
the other. The two-dimensional array may thus be reshaped in time ([V1,t, . . . , V1,t+m; . . . ;
Vn,t, . . . , Vn,t+m]) or space [V1,t, . . . , Vn,t; . . . ; V1,t+m, . . . , Vn,t+m]. The LZ-complexity of
the resulting one-dimensional bit-string corresponds to the number of unique “words” of
any length within the string. To account for biases in the number of binary symbols and
their entropy, this value is then normalized by the average LZ-complexity of a number
of random permutations of the original data string (in the limit of infinite strings, this
normalization factor converges to the string’s bit entropy [82]).

Similar to the choice between observed or perturbational probability distributions that
distinguishes informational from causal measures above, one can evaluate the dynamical
complexity of an agent’s recorded activity while performing the task, or its dynamical
transients upon perturbation.

This leaves four nLZ measures to be evaluated: nLZ_time and nLZ_space are based on
an agent’s recorded activity while performing the task, while nLZ_tr_time and nLZ_tr_space
are based on an agent’s dynamical transients upon perturbation into all possible states
while holding the sensors fixed. The “time” label refers to a reshaping of the activation
data in time, as described above; likewise for “space”.

The “autonomy” toolbox, moreover, allows evaluating the number of unique transi-
tions in an agent’s recorded activity, a simple measure that may be indicative of an agent’s
dynamical complexity [72].

3. Evolution Simulation
3.1. Markov Brains (MBs)

MBs are a class of evolvable artificial neural networks. Their main difference from
conventional ANNs is that instead of a layered architecture, with each node performing
the same function, MBs are networks built from individual computational components
(“neurons”, here limited to binary gates with generalized logic functions) [16]. These
computational components interact with each other, receive inputs from sensors, and
control motor outputs (Figure 1). The connectivity and input-output function of each
neuron is, moreover, subject to evolutionary optimization. Here, MBs are genetically
encoded and evolve through mutation and selection at the level of the genotype.

Software to evolve artificial agents controlled by MBs (and other types of ANNs) in
various task environments is freely available as part of the “MABE” (Modular Agent Based
Evolver) framework [83]. This study employed https://github.com/Hintzelab/MABE/
commits/development,commit834b5b0ea8c3b69ebfeb9c7ecebdb20f726c71f1. (accessed on
2 August 2021) Agents were limited to four hidden units and deterministic gates with
zero initial gates at the beginning of their evolution. Standard settings were used for the
evolution optimization and genome encoding. Dynamically, MBs are fully described by
their transition probability matrix (Equation (1)), which can be obtained from MABE using
the “TPM_world” environment.

Even small, binary, deterministic implementations of MBs are capable of achieving
high performance across a variety of tasks, such as spatial navigation (e.g., passing through
mazes) [29], active perceptual categorization tasks [30,35], or interactive tasks with multiple
agents [27,84,85]. Since the connectivity structure of a MB is evolved, the degree to which
it is feed-forward, modular, or recurrent depends on the specific task environment and
chance (or rather, the random seed). As previously demonstrated, animats that evolved to
more difficult task environments, which required greater context-sensitivity and internal
memory, tended to develop MBs with more recurrent network architectures, stronger
intrinsic causal constraints and higher information integration Φ [30]. However, a greater

https://github.com/Hintzelab/MABE/commits/development,commit 834b5b0ea8c3b69ebfeb9c7ecebdb20f726c71f1
https://github.com/Hintzelab/MABE/commits/development,commit 834b5b0ea8c3b69ebfeb9c7ecebdb20f726c71f1
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number of sensors may offset internal complexity by alleviating the need for memory in
certain task conditions [30,85].

Figure 1. Simulated evolution experiment. (A) Example connectome of a Markov Brain (MB) evolved
in condition A2 (fitness = 0.92, completion = 1.0, generation = 150,000). The MB has four connected
sensors (red), four hidden units (green), and three motor units (blue). Evolutionary optimization
determines both the input-output function of each individual node (here binary and deterministic)
and the MB connectivity. (B) One of the four paths used in the “PathFollow” environment. Green:
start location; yellow: left turn symbols; orange: right turn symbols; and red: goal.

3.2. “PathFollow” Environment

At every generation in the evolution optimization, agents were evaluated within
their task environment. In this study, MBs were trained to solve a spatial navigation task,
MABE’s “PathFollow” world, which was first described in [15] as an associative memory
task (see also https://github.com/Hintzelab/MABE/tree/feature-path_follow_world/
code/World/PathFollowWorld, accessed on 15 September 2021). In this task, the agent is
rewarded for each location visited along a predefined path, with 45◦ turns indicated by
left and right turn symbols (Figure 1B). If an agent reaches the goal before the time out
(number of path locations plus 50 extra steps), the remaining time is added to the number
of visited locations in the fitness function. Finally, there is an “empty space cost” of −0.25
for every step the agent takes off the path, which explains the initial negative fitness values.

The data set analyzed in this study consists of 50 independent evolution simulations
under 3 task conditions that differ in the number of symbols that could indicate a left or
right turn (see Table 1). In the simplest condition (“NA”), the left and right turn symbols are
fixed across trials and generations (“0” for left and “1” for right). This condition does not
require associative memory within a trial. The second condition (“A2”) had the same two
turn symbols, but their meaning (left or right) was randomly assigned in each trial (for each
evaluated path). This required the agents to identify and store the correct association. The
third condition (“A4”) included four random turn symbols, (“00, 01, 10, 11”). In addition,
agents received bit-wise inputs about whether they are on path (S1), off path (S2), or on
a turn location (S3). The remaining sensors encode the turn symbols (one for NA and
A2, and two for A4). All agents were equipped with three motor outputs, with 000 = no
movement, 100 = left, 010 = right, 110 = forward, XX1 = reverse (X = 0 or 1).

Table 1. Agents were evolved under three task conditions. The table highlights the differences
between conditions. All other parameters remained the same.

Condition NA A2 A4

Number of generations 50 k 150 k 150 k
Number of turn symbols 2 2 4

Random turn symbols No Yes Yes
Number of evaluations per generation 1 10 10

Number of available sensors 4 4 5

https://github.com/Hintzelab/MABE/tree/feature-path_follow_world/code/World/PathFollowWorld
https://github.com/Hintzelab/MABE/tree/feature-path_follow_world/code/World/PathFollowWorld
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Agents were tested on each of the four paths included in the MABE PathFollow world
and their flipped versions. In the case of random turn symbols (A2 and A4) the task
evaluation was repeated 10 times per generation to reduce variation in the fitness values
across generations. To ensure independent samples, one agent was chosen from the final
generation in each evolution simulation. For each of these agents it is possible to trace
back their line of descent (LOD) (there is no recombination in this evolution simulation).
Figure 2 shows the average fitness evolution across the 50 LODs for each of the three task
conditions. Note that A2 and A4 agents required more time steps to solve the task, as
they first have to identify the correct turn symbols, or use compensatory strategies. This
explains their lower fitness values even for full path completion.

3.3. Data Analysis

Pearson correlation coefficients were evaluated between selected measures using the
“scipy.stats” Python package. All reported correlation coefficients were highly significant
with p� 1.0× 10−10. Appendix A includes a correlation matrix of all evaluated measures.

Figure 2. Fitness evolution and distribution across task conditions. (A) Fitness evolution across
number of generations. Shaded area indicates 95% confidence interval. (B) Distribution of fitness
values (left) and percentage of path completion (right) in the final generation. Black triangles indicate
mean. Perfect completion was achieved by 50/50 MBs in NA, 31/50 in A2, and 16/50 in A4.

4. Results

As the goal is to compare agents with similarly high task performance but different
network structures, the subsequent analysis is focused on the subset of evolved MBs (final
generation) that completed all of the training maps (50/50 in NA, 31/50 in A2, and 16/50 in
A4). To ensure that the resulting MBs were not overfitted to the particular maps they were
evolved to, all MBs with full completion were successfully tested on a separate set of two
test maps. Note however, that completing the maps does not necessarily require associative
memory in condition A2 or A4, as other, compensatory strategies may be successful, albeit
at a cost of extra time steps. A detailed analysis of the agents’ various evolved behavioral
strategies will be presented in a companion paper.

4.1. Evolved Network Structures

Out of the 97 agents that completed all paths, all but two MBs in condition NA used
all their motor units (the two remaining agents lacked the capacity to move backwards).
By contrast, only 10/50 NA agents and 21/31 A2 agents used all of four available sensors,
which can be explained by the redundancy in input information in the first three sensors.
In the A4 condition, all MBs lacked at least one available sensor and notably either S4 or S5,
which encode the turn symbols. What is more, 2/16 A4 agents evolved to complete the
paths without relying on turn symbols at all, as they lacked both S4 and S5. The average
number of connected hidden units was lower in NA (1.9± 0.6) than in A2 (3.4± 0.5) and
A4 (3.4± 0.5), consistent with a need for more hidden units in the more demanding task
conditions. See Figure 3 for two example connectomes.
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Figure 3. Example connectomes of two A2 MBs with perfect completion, but feed-forward or fully
recurrent connectivity, respectively. (A) MB with only feed-forward connections between units,
although nodes B and C have self-loops. Thus, the length of the LSCC is one for this MB. (B) MB with
recurrent connections between all hidden units and largest possible LSCC length of four hidden units.

The structural measure most directly related to autonomy is the length of the LSCC of a
MB (Figure 4A). Many have argued that an autonomous system must form a unified whole that
can be regarded as separate from the environment (yet interacts with it) [3,6–10]. Interpreted
in structural terms, this would imply that the system must be strongly connected in its
network architecture, which means that every node (causally) connects to every other
node on a directed path. Feed-forward ANNs do not fulfill this condition, since it requires
recurrent connectivity.

The MBs evolved in this study have at most four hidden units that could be strongly
connected (sensors and motors are connected in a feed-forward manner). In the following,
I will distinguish between MBs that have a subset of at least two strongly connected hidden
units and MBs with only feed-forward connections between units (Figure 3).

Figure 4. Structural analysis. (A) Stacked histogram of the LSCC length for the three task conditions.
While most MBs in the NA condition are feed-forward (len_LSCC = 1), both feed-forward and
recurrent architectures evolved in all three task conditions. (B) Distributions of the number of
connected nodes (cN), average degree centrality, average betweenness centrality, and flow hierarchy
are shown across task conditions and color-coded according to the length of their LSCC. MBs evolved
in A2 and A4 were larger than those in NA by approximately two nodes. The other graph-theoretical
measures show little difference between task conditions. As the flow hierarchy depends on cyclical
connectivity, lower values correspond to MBs with larger LSCCs. Please note that throughout,
axis labels correspond to variable names assigned to the various measures in the accompanying
autonomy toolbox.

Specifically, the length of the LSCC of a MB will be indicated by color as in Figure 4B,
to highlight whether or not a particular measure depends on network architecture and in
which way. None of the 97 agents are connected in a purely feed-forward manner, as they
all have at least one hidden unit with a self-loop. Nevertheless, feed-forward and recurrent
network architectures (between nodes) can be found in all task conditions in the set of MBs
with full completion.

Figure 4B provides a summary of the structural properties of the evolved MBs for the
three different task conditions. While A2 and A4 MBs had approximately two more nodes than
NA MBs, more complex graph-theoretical measures did not differ much between conditions.
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4.2. Information Theoretical Analysis

Figure 5 summarizes the information-theoretical properties of the evolved MBs.
The two complimentary measures of autonomy proposed in [1], Am (Equation (5)) and
A∗ = Ipred (Equation (4)) are shown in the first row, in addition to ISMMI (Equation (3)).

Am was evaluated over four time steps of sensor inputs as AS
4 according to

Equation (6). Notably, AS
4 shows very little variance within task condition. While AS

4
remains close to zero in NA, it detected approximately 1 bit of autonomous information
in A2 and A4. In condition A2, this bit likely corresponds to the associative memory, the
internal representation of the turn symbol encoding (whether S4 = 1 means right or left
in a given trial). If A4 agents would solve the “PathFollow” task relying on associative
memory alone, one might expect a higher value of AS

4 in A4 than in A2. However, none
of the A4 MBs actually uses both task symbol sensors. Overall, Am seems to reflect task
demands, rather than agent specific properties, such as the MBs particular implementation
or structural properties of individual MBs, at least in this particular simulation experiment.

Figure 5. Information-theoretical analysis. The complimentary measures of autonomy proposed
in [1], A4 and Ipred, as well as ISMMI identify significant differences across task conditions (top
row). By contrast, the information closure measures, NTIC4 and Jt (here “IC”) (bottom row) do not
differ much between conditions. The multi-information (MI) is higher for A4, than the other two
conditions, with higher values for MBs with len_LSCC > 1.

Mean values of A∗ = Ipred differ significantly between all three task conditions. In
all three conditions, the highest values of Ipred were achieved by MBs with len_LSCC
> 1. Moreover, since the MBs used in this study are deterministic, Ipred is almost perfectly
correlated with system entropy H (ρ = 0.99) (see Appendix B). The correlation between AS

4
and Ipred is high at ρ = 0.85, despite the low within-task variance of AS

4 . The ISMMI , here
evaluated across one time step (d = 1 in Equation (3)), is lowest in condition A2, in line
with the observation that internal memory decreases this measure.

The two complimentary measures of informational closure, NTICm (Equation (8)) and
Jt (Equation (7), “IC” in Figure 5) are shown in the second row of Figure 5, together with
the multi-information MI (Equation (9)). Like Am, NTICm was computed over four time
steps of sensor inputs (m = 4). Differences between task conditions for these measures are
small. MI is larger in A4 than the other two measures. As a “whole-minus-sum” entropy
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measure, MI is correlated with CTSE (ρ = 0.77, see Appendix B). Moreover, MBs with
larger LSCCs have higher values of MI and CTSE across task conditions.

4.3. Causal Analysis

The results of the causal agent analysis are summarized in Figure 6. Âm, the causal
version of Am [1], was evaluated over four time steps of sensor inputs as ÂS

4 (Equation (12)) for
comparison with the corresponding information theoretical quantity AS

4 in Figure 5, which
was based on the agents’ observed distributions. By contrast to AS

4 , the causal version ÂS
4

shows substantial variation within task condition, but is still higher for A2 and A4 MBs
than for NA MBs. The correlation between ÂS

4 and AS
4 is ρ = 0.70.

The effective information EI(Vt, Vt−1) (Equation (11)) is equivalent to ÂS
1 and is also re-

lated to Â∗ as proposed in [1], but imposes a maximum entropy distribution on input states
instead of the marginal observed distribution. The small differences between EI(Vt, Vt−1)
and ÂS

4 are thus due to the additional number of past sensor states taken into account for
ÂS

4 in Equation (12). The correlation between EI(Vt, Vt−1) and ÂS
4 is ρ = 0.93. EI(Vt, Vt−1)

is also correlated to Ipred (ρ = 0.78), which is based on the observed distribution of the
recorded activity.

The higher values of ÂS
4 compared to AS

4 , and also of EI(Vt, Vt−1) compared to Ipred
can be explained by the higher entropy of the perturbational input distributions compared
to the observed distribution (Appendix B), but also reflect a stronger causal influence
between subsequent internal states than can be observed through correlation.

〈∑ ϕ〉 evaluates the compositional causal structure of the MBs, including sensor and
motor units. It is higher for A2 and A4 than NA, and correlates strongly with len_LSCC
(ρ = 0.80).

〈αc(O ≺ M)〉 measures the relative contribution of the agent’s hidden units (O) to the
direct actual causes of its motor outputs. As shown in Figure 6 (“alpha_ratio_hidden”),
〈αc(O ≺ M)〉 varies substantially within task condition. This indicates that the various MBs
evolved to solve the “PathFollow” task do so using a variety of different implementations
and behavioral strategies in all three test conditions. Moreover, 〈αc(O ≺ M)〉 seems
to highlight an aspect of autonomous behavior that is not captured by any of the other
proposed measures of autonomy, since they do not correlate with 〈αc(O ≺ M)〉 (see
Appendix A).

The two remaining IIT-based measures, 〈Φmax〉 and 〈∑ ϕ〉MC are based on the major
complex within a given MB, which corresponds to the maximally integrated subset of
hidden units (evaluated here according to “IIT 3.0” [47,69]). These measures are zero by
definition for feed-forward MBs with len_LSCC < 2, since these types of networks do not
have any integrated subsets. Of those agents with len_LSCC > 1, A2 agents achieved the
highest values of 〈Φmax〉 and 〈∑ ϕ〉MC.
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Figure 6. Causal analysis. The top row shows the causal version of the autonomy measures proposed
in [1], Â4 and EI(Vt, Vt−1), as well as 〈∑ ϕ〉 evaluated for the whole MB including sensors and
motors. Note however, that here Â4 (“A_4c”) and EI(Vt, Vt−1) are based on a maximum entropy
distribution of input states rather than the marginal observed distribution proposed in [1]. For
all three measures, the NA condition had lower values than A2 and A4. The bottom row shows
〈αc(O ≺ M)〉, the relative contribution of the hidden units (O) to the actual causes of the agent’s
motor states (“alpha_ratio_hidden” in the figure), together with 〈Φmax〉 and 〈∑ ϕ〉MC values of
the major complex (the maximally integrated subset of hidden units). 〈αc(O ≺ M)〉 values vary
substantially within task condition rather than across conditions, which indicates a large variety of
behavioral strategies within each task condition. While condition A2 on average has higher values
of 〈Φmax〉 and 〈∑ ϕ〉MC than NA and A4, these IIT measures are zero by definition for MBs with
len_LSCC < 2 and, in general, depend strongly on implementation.

4.4. Dynamical Analysis

Figure 7 shows the results of the dynamical agent analysis. Based on the recorded
activity of each MB performing the “PathFollow” task, I evaluated the number of unique
transitions and the normalized Lempel-Ziv complexity (nLZ) (Figure 7, first two panels,
shown is the nLZ for a spatial reshaping of the activity data to one dimension). The number
of unique transients differs significantly between task conditions and is strongly correlated
with entropy H (ρ = 0.93). Perhaps surprisingly, the activity based nLZ_space is strongly
correlated with ISMMI (ρ = 0.79). A similar pattern across task conditions was also found
for nLZ_time, but with smaller differences between conditions (see Appendix B).

Notably, the normalized Lempel-Ziv complexity of the MBs’ transients upon pertur-
bation into all possible states for fixed sensor inputs (nLZ_tr_space), shows the opposite
ordering of task conditions, being highest in A2. Again, the temporally ordered nLZ upon
perturbation (nLZ_tr_time) behaved analogously to the spatially ordered nLZ, with smaller
differences between A2 and A4 (see Appendix B).

The difference between the activity-based and perturbational nLZ results suggests
that the dynamical complexity of the NA condition is almost fully accounted for by the
environment, whereas the potential for dynamical complexity of A2 and A4 agents is not
exhausted during task performance.

Finally, the average transient length (avTL) is higher for A2 and A4 agents and
correlates strongly with the maximum transient length (mTL) (ρ = 0.87, see Appendix B).
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Figure 7. Dynamical analysis. The first panel shows the number of unique transients per task
condition while performing the task. The middle two panels show the normalized Lempel-Ziv
complexity of the MBs’ recorded activity (nLZ_space) and the MBs’ transients upon perturbation
into all possible initial states for fixed sensor inputs (nLZ_tr_space). Notably, the ordering of
nLZ for recorded activity patterns (nLZ_space) across conditions is reversed under perturbation
(nLZ_tr_space). Average transient length (avTL) is larger for A2 and A4 than NA.

5. Discussion

Autonomy means self-determination. Nevertheless, it has been emphasized repeat-
edly that our notion of autonomy is in fact multi-dimensional, comprising multiple aspects,
and may be evaluated across various domains [1,2,5,12–14]. For example, Moreno et al. [12]
distinguish between “interactive” (cognitive) and “constitutive” (biological) autonomy;
Boden [2,86] highlights three aspects: how much a system’s response to the environ-
ment is mediated by internal mechanisms (self-determination), the extent to which these
internal mechanisms are self-generated (self-generation), and whether they are flexibly
modifiable from within (self-modification); Vakhrameev et al. [5] propose to distinguish
self-generation, self-organization, and self-control. It is thus not surprising that differ-
ent measures focus on different aspects when it comes to determining whether a system
qualifies as an autonomous agent.

The structural, information-theoretical, causal, and dynamical measures related to
autonomy compared above, fall into three conceptual categories: (I) self-determination
(how much the system determines its own internal states), (II) closure (whether the system
forms an independent entity above a background of external influences), and (III) agency
(whether and to what extent the actions of the system are determined by its internal mech-
anisms, as opposed to external influences) (Figure 8). Self-determination is captured in
different ways by Am, Ipred, Âm, EI(Vt, Vt−1), as well as nLZ evaluated based on perturba-
tional transients. To what extent a system is structurally, informationally, or causally closed
is evaluated by len_LSCC, informational closure Jt, NTICm, and 〈Φmax〉, respectively. In
addition, MI and CTSE evaluate whether a system is more than the sum of its parts in
information-theoretical terms. While I have listed the integrated information 〈Φmax〉 of
a system [47] as a measure of causal closure, it also requires causal self-determination
and captures the notion of a system “being more than the sum of its parts”. Specifically,
Φ quantifies how much the various parts of a system constrain each other alone and
in combination, irreducibly, above a background of external influences. Arguably, any
system with 〈Φmax〉 > 0 thus possesses some amount of self-determination, closure, and
self-organization [5]. Finally, 〈αc(O ≺ M)〉 captures to what extent an agent’s actions are
(directly) caused from within.

In the following, I will (1) briefly outline the scope and limitations of this study, (2)
highlight related work, including several measures not included in the comparison above,
(3) question the tension between memory and self-determination that underlies some of the
evaluated measures, and (4) discuss conceptual differences between information-theoretical
and causal measures of autonomy.
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Figure 8. Example networks with different amounts of autonomy. (A) The scatter plot of 〈αc(O ≺
M)〉 (alpha_ratio_hidden) against ÂS

4 , color-coded by the amount of 〈Φmax〉 compares three causal
measures of autonomy that represent agency, self-determination, and causal closure, respectively.
(B) Connectome of A2 MB with high values for three orthogonal measures of autonomy, 〈αc(O ≺ M)〉,
ÂS

4 , and 〈Φmax〉. (C) Connectome of NA MB with low ÂS
4 and 〈Φmax〉 = 0, but high 〈αc(O ≺ M)〉.

(D) Connectome of NA MB with low 〈αc(O ≺ M)〉, but intermediate ÂS
4 and 〈Φmax〉.

5.1. Scope and Limitations

The artificial agents evaluated in this study correspond to minimal cognitive systems,
whose neural architecture and functionality evolved across generations, but remains fixed
within each particular generation. Therefore, this work does not address issues related to
constitutive self-generation, self-maintenance, metabolism, or autopoiesis [87–89], although
some of the measures reviewed above may be applied to a dynamical description of the self-
maintaining processes of a biological or artificial organism [4,8,18]. For similar reasons, the
relation between autonomy and the thermodynamical properties of a system [4,12,23,90,91]
lies outside the scope of this study (although the types of causal networks defined by
Equation (1) are conceived as approximations of physical systems).

An example of an information-theoretical framework related to autonomy that relies on
self-maintenance is Friston’s free energy principle (FEP) formalism, which requires the system
to be ergodic [21]. While it may still be possible to translate these ideas to the type of small
systems employed here [19,92], the FEP connects the statistical boundaries of a system, its
Markov Blanket, with an optimality principle, the minimization of information-theoretical
free energy over time. However, the only optimization process the MBs are undergoing is
their evolution. Whether and in which way the FEP formalism can be meaningfully applied
to characterize the autonomy or behavior of an MB-like automaton with a fixed TPM is an
important issue to be addressed in future work. Identifying minimal computational systems
in which principles of IIT and FEP can be compared directly could greatly elucidate points of
similarity and divergence between the two frameworks (see [92–95]).

5.2. Related Work

Several studies have compared subsets of the measures compiled in this study. Beer
and Williams [31] compared the utility of information-theoretic and dynamical measures
for understanding the behavior of an evolved artificial agent. Timme et al. [54] reviewed
multivariate information measures of synergy and redundancy and applied them to small
computational and neural systems. Kanwal et al. [42] compared several information theoretic
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measures of complexity in Boltzmann Machines. Multiple recent studies [37,43,44,81] com-
pared proposed empirical measures of information integration in small neural networks.
Previous studies on adapting animats have evaluated the evolved MBs under a variety of
structural, information-theoretic, and causal measures [29,30,35,68]. However, a systematic
comparison of multi-disciplinary measures related to autonomy and intelligent behavior
of the scope presented in this study has not been conducted to date.

Nevertheless, the list of structural, information-theoretical, causal, and dynamical
measures assembled in the “autonomy” toolbox and compared above is not exhaustive
and can be expected to grow further. For example, Marstaller et al. [35] introduced an
information-theoretical measure of representation, which quantifies the shared entropy
between representative features of the environment and the agent’s internal states given its
sensor states. However, R can be difficult to interpret depending on the way in which the
sensor information is processed within the rest of the system.

Another type of causal analysis has been proposed by Shalizi and Crutchfield [96]
within their computational mechanics framework. Their goal is to identify the “ε-machine”
of a statistical process (or the transient of a dynamical system), which corresponds to the
minimal causal-state representation of that system consistent with accurate prediction. In
deterministic, Markovian systems, such as the MBs investigated here, the ε-machine is
determined by the number of unique rows in the system’s transition probability matrix,
and thus related to EI(Vt, Vt−1) (Equation 11) and a measure of the system’s differentiation
proposed in [97], which is also related to the viability function proposed by Kolchinsky
and Wolpert [23].

Additional candidate measures include the local information framework [98,99], as
well as other causal/perturbational measures such as local sensitivity [100], which so
far have mainly been applied to a notion of agents based on persistent spatio-temporal
patterns [101,102], rather than systems of interacting mechanisms such as artificial neural
networks (ANNs). It remains to be determined how these and other measures related to
autonomy may be applied to ANNs.

In general, the objective in current AI research is performance optimization. While
efficiency plays a role with respect to available computational resources, the internal
structure or specific functionality of a high-performing ANN is otherwise of little concern.
For this reason, and because qualitatively different network architectures excel in distinct
task domains, comparisons between different types of networks performing the same
tasks are rare. One exception is recent work by Hintze et al. [103], who compared the
evolved representation (R) and its “smeardness” across hidden units in MBs and rANNs
performing the same active perceptual categorization task (see also [15]).

5.3. Memory and Autonomy

The potential for structural diversity in the MBs allows to relate internal structure with
function under different task conditions [30,68]. MBs that evolved to solve the “PathFollow”
task with a need for associative memory (A2 and A4) developed more hidden units, and
scored higher on many of the evaluated measures of autonomy and complexity (Figure 8).

As identified by AS
4 (Figure 5), all agents adapted to task conditions A2 and A4

contained approximately 1 bit of “autonomous” information, compared to approximately
0 bit for task condition NA. However, given the particular task environments the agents
were evolved to, this bit of information likely represents associative memory gathered
from the environment and might converge to zero if more past sensor states are taken
into account. Bertschinger et al. [1] based their autonomy measures on the notions of
non-heteronomy (not being controlled by external factors) and self-determination. While
the notion that an autonomous system should not be determined by the state history of
the environment makes intuitive sense, for a large enough m, Am may ultimately only
capture random noise intrinsic to the system’s units [1] (see also [2]). The need for memory
and context-dependent behavior provides adaptive pressure for internal complexity and
integration [30,91]. Memory does provide a system with autonomy from the immediacy
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of the environment. It may make sense to discount memory when evaluating particular
aspects of autonomous behavior, but it should not be discounted altogether.

5.4. Correlation, Causation, and Internal Structure

Comparing the various measures related to autonomy on a data set of small artifi-
cial agents with diverse network architectures revealed important differences between
approaches from different disciplines, particularly between information-theoretical and
causal measures (even though some are based on the same formalism). For example, Am
(evaluated as AS

4 , Equation (6)), consistently identifies the task-related need for memory of
external inputs in conditions A2 and A4, but depends very little on an agent’s specific im-
plementation (how the agent does what it does). By contrast, the causal version of the same
measure, Âm (evaluated as ÂS

4 , Equation (12)) varies considerably within task condition.
Similarly, there is no clear correlation between measures of informational closure (Jt

and NTICm) and 〈Φmax〉. Information closure (Jt) evaluates the “information flow” from
the environment into the system, while the integrated information (〈Φmax〉) of a system
captures the irreducible causal constrains a system exerts onto itself, above a background
of external influences.

In practice, causal measures are more difficult to evaluate, as they require knowledge
about the causal interaction structure of the system [1], which corresponds to the system’s
full TPM (Equation (1)). Since the MBs analyzed in this study are causal networks of
interacting units, conceptually, there is little reason to choose information-theoretical over
causal approaches when it comes to determining their degree of autonomy. As noted by
Bertschinger et al. [1], purely observational measures may fail to disambiguate whether
to attribute observed correlations to the system itself or the environment in the case of
bidirectional interactions (see also [104]). By contrast, causal measures implement the
idea that autonomy should be ascribed based on a system’s underlying mechanisms, as
opposed to mere observation of the system’s behavior [1,105]. However, this implies that
implementation—how a system does what it does—matters for autonomy. In other words,
two systems that are equivalent in their behavior may still differ widely in their respective
degree of autonomy.

As argued in [67,106], causal structure also matters for delineating the borders of a
system from its environment, and for identifying whether the system under observation is
in fact one system as opposed to multiple. While a strongly connected network architecture
is necessary for Φ > 0, the proposed measures of informational closure or dynamical
complexity may yield similar results when applied to a “system” consisting of two or more
independent modules as for a system that forms one unified whole.

5.5. Conclusions

Testing measures of autonomy and intelligence in artificial agents whose structure
and function is known in all detail, forces ideas about autonomy to be made explicit and
quantifiable. The measures reviewed in this study specifically capture three aspects of
autonomy: a system’s self-determination, closure (independence from the environment),
and agency. Comparing these measures on a data set of structurally diverse automata has
moreover highlighted the role of implementation (how a system does what it does) for
assessing whether and to what extent a system forms an autonomous agent. Finally, the
“autonomy” toolbox accompanying this study makes all reviewed measures available for
application to small, discrete dynamical systems, with the goal to focus future debates on
intelligent behavior and its relation, or dissociation, to intrinsic intelligence, autonomy,
and consciousness as integrated information [47,48,107]. While simple artificial agents like
the ones employed in this study are only toy implementations of neural networks capable
of truly complex behavior, they may still serve as a vehicle toward resolving theoretical
disputes and clarifying conceptual confusions [3,31,108].
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Figure A1. Correlation coefficients. Rows and columns are sorted by correlation with len_LSCC.
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Appendix B

Figure A2. Additional evaluated quantities. (A) Structural measures: cH denotes the number
of connected hidden units; len_LWCC the length of the largest weakly connected component. If
len_LWCC is smaller than the number of connected units (Figure 4) the MB is constituted of two or
more independent modules. (B) Information-theoretical measures: shown are the system entropy H
(Equation (2)), Ipred of the hidden and motor units, without the sensors, and CTSE (Equation (10)).
(C) Dynamical measures: shown are the normalized Lempel-Ziv complexity (nLZ) reshaped along
the time axis, applied to the MBs’ recorded activity (nLZ_time) and the MBs’ transients upon
perturbation with fixed sensors (nLZ_tr_time), as well as the maximum transient lengths upon
perturbation (maxTL).
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