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Abstract: Laboratory cultivation of viruses is critical for determining requirements for viral repli-
cation, developing detection methods, identifying drug targets, and developing antivirals. Several
viruses have a history of recalcitrance towards robust replication in laboratory cell lines, including
human noroviruses and hepatitis B and C viruses. These viruses have tropism for tissue components
of the enterohepatic circulation system: the intestine and liver, respectively. The purpose of this
review is to discuss how key enterohepatic signaling molecules, bile acids (BAs), and BA receptors
are involved in the replication of these viruses and how manipulation of these factors was useful
in the development and/or optimization of culture systems for these viruses. BAs have replication-
promoting activities through several key mechanisms: (1) affecting cellular uptake, membrane lipid
composition, and endocytic acidification; (2) directly interacting with viral capsids to influence
binding to cells; and (3) modulating the innate immune response. Additionally, expression of the
Na+-taurocholate cotransporting polypeptide BA receptor in continuous liver cell lines is critical for
hepatitis B virus entry and robust replication in laboratory culture. Viruses are capable of hijacking
normal cellular functions, and understanding the role of BAs and BA receptors, components of the
enterohepatic system, is valuable for expanding our knowledge on the mechanisms of norovirus and
hepatitis B and C virus replication.

Keywords: noroviruses; hepatitis viruses; bile acids; gastrointestinal infection

1. Introduction

Viruses are uniquely fascinating and challenging to study because they are obligate
intracellular pathogens that often evolve a tropism not only for their specific hosts but for
specific tissue and cell types. Molecular and physical techniques or animal models can be
used to identify, detect, and study viral pathogenesis. However, cell culture is ideal for
larger scale propagation of viruses, detailed studies of the mechanisms of viral replication,
and studying the efficacy of antibodies and antivirals. Cell lines are often easy to genetically
manipulate—a property that can be used to determine host factors required for infection.
Several important human viruses, including hepatitis viruses and caliciviruses, remain
difficult to cultivate despite advances in cell culture technology. Understanding cellular
tropism and host factors was critical for the development of efficient systems to propagate
these viruses. For the cultivation of hepatitis B virus (HBV) and human noroviruses
(HuNoVs) that infect the liver and the intestine, respectively, bile components including
bile acids (BAs) and BA receptors are now known to be key for successful replication [1,2].
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BAs also influence infection of hepatitis C virus (HCV) and murine norovirus (MNV)
through modulation of the innate immune response [3,4].

Bile is a complex biologic mixture designed to aid in the digestion and absorption of
fats and other nutrients [5]. Liver hepatocytes generate bile, which transits through the
canaliculi to bile ducts. Bile flows through the hepatic duct and can be directed through the
cystic duct into the gallbladder where it is concentrated and stored until secretion through
the common bile duct into the upper small intestine (duodenum) during a meal [6–8]. Major
components of bile include cholesterol, other lipids, bilirubin, and BAs — the primary focus
of this review. In the liver, several enzymes are present to convert cholesterol to primary
BAs including cholesterol 7α-hydroxylase that adds a hydroxyl group at carbon 7 required
to form two primary BAs, cholic acid (CA) and chenodeoxycholic acid (CDCA) [9]. Sterol
12α-hydroxylase places an additional hydroxyl group at carbon 12 required to form CA [9].
Cholesterol and BAs all have a hydroxyl group at carbon 3. In the distal small intestine
and colon, bacterial enzymes convert these to secondary BAs. The secondary BAs include
deoxycholic acid (DCA) and lithocholic acid (LCA) formed by dehydroxylation of CA
and CDCA, respectively, at carbon 7 [10]. Ursodeoxycholic acid (UDCA) is formed by
epimerization of the 7α-hydroxyl group of CDCA carbon 7 to a 7β-hydroxyl group [8,11].
However, only low levels of UDCA are present due to gut bacteria-mediated conversion
of UDCA to LCA [12,13]. BAs can be conjugated to glycine or taurine forming GCA,
TCA, GCDCA, TCDCA, GDCA, TDCA, GLCA, TLCA, GUDCA, and TUDCA (Figure 1A).
Conjugation reduces passive reabsorption into cells, and most BAs are actively reabsorbed
in the ileum by the apical sodium-dependent bile acid transporter (ASBT) [10]. In the colon,
secondary BAs that are deconjugated are passively reabsorbed [14]. BAs are subsequently
transported into hepatocytes by Na+-taurocholate cotransporting polypeptide (NTCP) for
recycling to the liver up to 4–12 times per day with the recycling pool containing primarily
CA, CDCA, DCA, and trace amounts of LCA [10]. The cytosolic BA sensor, farnesoid X
receptor (FXR) controls BA homeostasis through subsequent signaling pathways and has
immunomodulatory activities [8,11,15–17]. BA receptors are summarized in Table 1.

Table 1. Bile acid receptors.

Receptor Name Relevant Tissue/Cellular Location

Apical sodium-dependent bile acid transporter (ASBT) Ileal/membrane
Na+-taurocholate cotransporting polypeptide (NTCP) Liver/basolateral membrane

Farnesoid X receptor (FXR) Liver and intestine/intracellular
Sphingosine-1-phosphate receptor 2 (S1PR2) Liver and intestine/membrane

This process is termed enterohepatic circulation (Figure 2). Local total BA concentra-
tion in the lumen of the intestine can vary depending on whether an individual is in a
fasted or post-meal state but can reach low millimolar concentrations [13,18–21]. Viruses
that infect the liver and intestine encounter bile components in the extracellular milieu and
intracellularly; therefore, it is not surprising that these pathogens have evolved mecha-
nisms to co-opt BAs and/or BA-mediated cellular effects for their replication in host cells.
This review focuses on mechanisms by which BAs regulate entry and infection of viruses
that infect the liver and intestine and, in turn, further understanding of BA activities in the
gastrointestinal system.
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Figure 1. Bile acid pathways. (A) Primary bile acids (blue) are synthesized from cholesterol in the liver. Bacteria in the
intestine convert primary bile acids to secondary bile acids (green) through dehydroxylation or epimerization. Carbons
3, 7, and 12 are indicated in red. Bile acids can be conjugated to glycine or taurine (box). (B) The effect of bile acids
tested individually on HuNoV GII.3 infection of enteroids [1]. X= permitted infection, X = did not permit infection,
X/– = intermediate effect, NT = not tested at 500 µM due to cytotoxic effects (derived from Murakami et al., 2020 [1]).
(C) Fold change in GII.3 genome equivalents correlates with the hydrophobicity indices of the bile acid used during infection.
The solid line depicts the best-fit linear regression (R2 = 0.73, p < 0.01). The Pearson correlation coefficient (r) and p value (p)
are noted (from Murakami et al., 2020 [1]).
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Figure 2. Enterohepatic circulation. Tissue expression locations of BA transporters ASBT (oval) and
NTCP (rectangle) and BA binding protein FXR (triangle) discussed in this review are indicated. BAs
are generated in the liver from cholesterol, stored in the gallbladder and then enter the duodenum in
the small intestine. The gut microbiota in the small intestine and colon convert primary BAs into
secondary BAs. Most (95%) BAs are actively reabsorbed in the ileum or passively reabsorbed in the
jejunum and colon and recycled through enterohepatic circulation. Created with BioRender.com,
accessed on 9 March 2021.
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2. Norovirus Entry Mechanisms and Bile Acids
2.1. Bile Acids Mediate Norovirus Infection through the Activity of the Acid
Sphingomyelinase Enzyme

HuNoVs are the leading cause of foodborne, epidemic, and acute gastroenteritis
worldwide [22–27]. Some individuals who are immunocompromised (e.g., transplant, can-
cer, or common variable immunodeficient patients) can develop chronic HuNoV infection.
In addition to health consequences, the economic cost of HuNoV is vast—an estimated
$60 billion annually in direct healthcare costs and indirect loss of productivity costs [28].
HuNoV was first identified as the viral causative agent of a 1968 outbreak of gastroenteritis
disease in Norwalk, Ohio by immune electron microscopy in 1972 [29,30]. For nearly
five decades after their discovery, despite numerous attempts to cultivate these viruses
in established continuous cell lines or 3D cell culture models, no system successfully and
reproducibly permitted HuNoV replication [31–38].

HuNoVs are non-enveloped single-stranded positive-sense RNA viruses in the Cali-
civiridae family. The capsid contains viral structural proteins VP1 and VP2. VP1 forms
the capsid structure and is divided into two domains: a protruding domain (P-domain)
and a shell domain (Figure 3). Virus-like particles (VLPs) form through self-assembly of
VP1 + VP2 or VP1 alone. Despite the initial lack of a cell culture system for infectious
HuNoV, studies with VLPs identified a group of glycans called the histo-blood group anti-
gens (HBGAs) as initial binding factors for interactions with intestinal cells and a subset
of red blood cells [39–42]. HuNoVs bind HBGAs or related human milk oligosaccharides
through the outer P-domain on the viral capsid [43–45], consistent with that domain being
the site that initially interacts with cells. VLPs were shown to bind to HBGAs found on
intestinal cells only from secretor-positive individuals [40] and subsequent epidemiological
and volunteer studies showed that susceptibility for infection only occurs in individuals
who express a fucosyltransferase 2 gene to produce a functional fucosyltransferase 2 that
adds fucose to glycan chains on proteins or lipids. People with this enzyme are called
secretor-positive individuals and they are susceptible to infection with many HuNoV
strains [46–48]. HBGA binding shows strain-specificity as the GII.4 strain VA387 major
contact is to α-fucose and another strain, GI.1 Norwalk virus, has major contacts with
α-N-acetyl galactosamine or β-galactose of HBGA molecules [49]. However, the presence
of HBGAs, though required for infection, is not sufficient for infection of typical established
laboratory cell lines initially made from cancer cells [50].
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Figure 3. Norwalk (GI.1) VLP structure. The structure of a GI.1 VLP (Adapted from Choi et al. [43]
copyright (2008) National Academy of Sciences). Inset: VP1 dimer. The VP1 dimer is organized into
the shell domain (S, blue) and P-domain (P), which is further divided into P1 (red) and P2 (yellow).
G1.1 strains that replicate in the HIE system are bile/BA-dependent.

In 2016, we established an intestinal epithelial replication system for HuNoV culti-
vation in human intestinal enteroids (HIEs), also called organoids [51,52]. Initial studies
in HIEs show the globally dominant GII.4 strain of HuNoV can replicate in the absence
of bile but three other strains tested (GI.1, GII.3, and GII.17) required the addition of
bile (Figure 4) [51]. This HuNoV replication system provides a platform for investigat-
ing the role of bile and components of enterohepatic communication in regulating viral
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infection. Initial attempts to characterize the critical factor in bile required for HuNoV
replication were unable to identify a specific component but indicated that the active
component was not a protein [51]. Subsequent testing of a panel of BAs individually at
sub-micellar concentrations for their ability to permit GII.3 replication in jejunal HIEs
established that BA-mediated replication of GII.3 correlates with the hydrophobicity of the
BA (Figure 1B,C) [1]. The secondary BA, UDCA fails to permit GII.3 infection [1,52]. Its
taurine conjugate, TUDCA, permits low levels (lower fold-change compared to infection
with whole bile) but inconsistent infection. GCDCA, a highly effective BA that lacked cyto-
toxicity, used in time-course experiments showed the replication-promoting effect occurs
at early time points through an effect on the cells [1]. Subsequently, it was determined that
GI.1, GII.1, GII.6, and GII.17 replicate in HIEs only with the addition of GCDCA during
infection [53]. The cellular consequences of GCDCA treatment are multifold: GCDCA
treatment of HIEs leads to increased cellular uptake of a fluorescent membrane probe
through the BA receptor sphingosine-1-phosphate receptor 2 (S1PR2) followed by GII.3
VLP endosomal uptake, endosomal acidification, and generation of ceramide at the apical
cell surface through a critical enzyme, acid sphingomyelinase (ASM) [1]. Inhibitors of
S1PR2, endosomal acidification, and ASM reduce GII.3 infection levels, while exogenous
addition of ceramide alone permits modest virus replication [1]. Based on these data, we
propose a model for jejunal GCDCA-dependent GII.3 infection where GCDCA acts through
S1PR2 and ASM, leading to the development of ceramide-rich regions on the cell surface
that contains the unknown receptor for GII.3 HuNoV. Once bound to its receptor, the virus
is internalized through BA-mediated cellular uptake and transits through an endosomal
pathway prior to escape of the virion or genome to the cytosol (Figure 5A). GII.3 can also
infect the duodenal and ileal segments of the small intestine in the presence of GCDCA but
whether the mechanism of BA stimulation of virus replication is the same as in the jejunum
remains to be studied. Colonic cultures treated with secondary BAs have not supported
HuNoV replication even when these cultures are produced from the same secretor-positive
individuals whose duodenal and ileal cultures support virus replication in the presence
of GCDCA [53].
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Figure 4. GII.3 but not GII.4 HuNoV infection requires bile. Virus growth curves show enhanced
RNA replication of GII.4 in the presence of human bile (A). Replication of GII.3 required the addition
of human bile to cultures (B). Error bars denote standard deviation (from [51]. Reprinted with
permission from AAAS).

Other viruses in the Caliciviridae family [porcine sapovirus (PoSaV), feline calicivirus
(FCV) and MNV] had earlier established culture systems, defined cellular receptors and
are often used as surrogates for HuNoV infection [54–65]. Our studies with HuNoV
are reminiscent of early data showing the importance of BAs for infection of another
enteric calicivirus, PoSaV, and for subsequent studies showing BAs have a role in MNV
infection (Figure 5B,C). GCDCA-mediated replication of PoSaV in porcine kidney cells
is the most similar surrogate model for GII.3 HuNoV replication. PoSaV was originally
shown to replicate in porcine kidney (LLC-PK) cells in the presence of intestinal contents
from gnotobiotic pigs [57,58]. Later, some individual BAs (CA, CDCA, GCA, GCDCA,
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TCDCA, DCA, LCA, GDCA, and TLCA) were found to permit PoSaV infection [66]. These
individual BAs overlap with BAs that permit GII.3 HuNoV replication in HIEs, and
similar to GII.3 infection, UDCA and TUDCA do not permit PoSaV infection (Figure 1B).
Similar to the entry effects of GCDCA on GII.3 HuNoV infection, a time course of GCDCA
addition during PoSaV infection shows the greatest effect on replication is if GCDCA is
present during the 1 h inoculation period, and PoSaV will no longer replicate if GCDCA
is added as late as 4 h post-inoculation [67]. The addition of an endosomal acidification
inhibitor, chloroquine, during PoSaV infection negates GCDCA-mediated replication, and
PoSaV becomes trapped in Rab7-positive late endosomes, demonstrating the importance
of endosomal acidification on endosomal escape for virus infection [67]. In the absence of
GCDCA, PoSaV also becomes trapped in Rab7-positive compartments [68]. In the human
cultivation system treatment of jejunal HIEs with GCDCA alone for 1 h increases the
numbers of Rab7 compartments [1]. When BA-induced acidification of HIEs is inhibited
with bafilomycin A1 and ammonium chloride, the number of Lysotracker-stained acidic
compartments and GII.3 infection are reduced [1]. Future studies of GII.3 late endosomal
colocalization in the presence of pH inhibitors and GCDCA are necessary to determine if
GII.3 becomes trapped in Rab7-positive late endosomal compartments. FCV and MNV
both require endosomal acidification during entry into Crandell-Rees feline kidney (CRFK)
and RAW267.4 mouse macrophage cells, respectively, despite their ability to replicate in
the absence of BA [67]. Together, these studies highlight a common role of acidification in
calicivirus entry into different cell types that is shared by both human and animal viruses,
but MNV and FCV may be capable of initiating acidification without the addition of BA.
Recently, a replication system was developed for an additional previously noncultivatable
genus of Caliciviridae, the human sapoviruses (HuSaVs). HuSaV strains GI.1 and GII.3 were
shown to replicate in NEC8 (human testis) and HuTu80 (human duodenum) cell lines [69].
Additionally, GI.2 HuSaV replicates in HuTu80 cells. Replication of HuSaVs requires the
presence of bile or BA and the most efficient BAs tested were GCA and GCDCA. The
mechanism of BA-mediated HuSaV replication and its effect on endosomal acidification
and ceramide production in NEC8 and HuTu80 cells needs further elucidation to determine
whether HuSaV also requires these cellular pathways.

A serendipitous discovery was that during inoculation of LLC-PK cells with PoSaV in
the cold (1 h binding incubation was at 4 ◦C) the virus was able to replicate in the control
wells without GCDCA and the virus could escape endosomes (Figure 5B, snowflake) [70].
Based on observations that the membrane lipid ceramide can influence membrane pertur-
bations [71–73] and that ceramide can be generated after cell stress, the authors looked for
ceramide generation after GCDCA or cold treatment [70]. Ceramide is induced after cold
treatment, and this induction is blocked by acid sphingomyelinase (ASM) inhibitors or
siRNA targeting ASM [70]. FCV and MNV infections also induce ASM activity in CRFK or
RAW267.4 cells, respectively, and as observed for GII.3 infection in HIEs, replication of all
three surrogate viruses is blocked by ASM inhibition [70]. Moreover, the ASM inhibitors
block the endosomal escape of PoSaV, FCV, and MNV [70]. In HIEs, ceramide generation
after GCDCA treatment is detected at the apical surface rather than internally. Internal
cellular ceramide can be difficult to detect by staining, and there is still the potential that
ASM is active in endosomes while the virus is transiting through the endosomes and gen-
erating additional ceramide that would destabilize the endosome leading to GII.3 escape
(Figure 5A). It remains to be determined if ASM inhibition reduces GII.3 infection solely by
preventing apical ceramide generation or if inhibition of subsequent endosomal ceramide
formation blocks GII.3 escape. Further studies with HuNoV strains that both require, or do
not require BA for replication, should determine whether ASM inhibition leads to failure of
the virus to escape the endosome. Cold pretreatment of HIEs did not lead to GII.3 HuNoV
infection or replication in the absence of GCDCA (unpublished data), implying cold stress
may not trigger ceramide generation in HIEs as it does in LLC-PK cell lines. Like MNV
and FCV, GII.4 HuNoV does not require BA, but the infection is enhanced by BA and is
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blocked by ASM inhibition. Future experiments will determine if GII.4 VLPs alone might
trigger ceramide generation.
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Several other viruses use the ASM-ceramide pathway in infection: group B and C aden-
oviruses (AdV), measles virus, rhinovirus, Japanese encephalitis virus, and ebolavirus [74–78].
In the AdV model, a structural protein, protein VI, present in the capsid, triggers a membrane
wounding response and ASM lysosomal exocytosis by mild membrane disruption followed
by ceramide generation at the surface [74]. When AdV subsequently enters cells through
endocytosis, acidification allows more protein VI to release from the capsid, and it can interact
with ceramide in endosomal membranes to create pores for viral escape [74]. Both enteric and
nonenteric AdVs have recently been shown to replicate in HIEs [79]. It would be interesting
to determine if the ASM-mediated entry mechanism is also utilized by these AdVs in the
HIE model and if ceramide generation can be detected at both the apical and endosomal
membranes. Recently, FCV VP2 was shown to form a pore structure after virus engagement
with its receptor [80]. An interesting speculation is that this VP2 pore may interact with
ceramide in the endosomal membrane, which in combination with receptor engagement
permits endosomal escape of the calicivirus RNA genome into the cell. The VP2 of FCV and
HuNoVs are quite distinct in terms of size (106 amino acids and 208–268 amino acids long,
respectively), and whether HuNoV VP2 performs a similar function, or whether either VP2
can bind to ceramide, remains to be determined.

2.2. Direct Binding of Bile Acids to Norovirus Capsids

Structural studies suggest that some BAs can interact with the major capsid protein
(VP1) of certain HuNoVs (Figure 6). By isothermal titration calorimetry (ITC), a GII.10



Viruses 2021, 13, 998 8 of 21

HuNoV VLP and the P-domain from GII.1, GII.10, and GII.19 were shown to interact
with primary BAs [81]. Important to note, GI.1 and GII.4 VLPs as well as GI.1, GII.3,
GII.4, and GII.17 P-domains were also tested but did not bind BA. These latter viruses are
those that replicate in the HIE HuNoV cultivation system and whose replication either
requires (GI.1, GII.3, GII.17) or is enhanced (GII.4) by BA treatment. As described above,
for GII.3 BA-mediated infection, we have shown BA treatment of the cells and subsequent
cellular effects mediate infection [1]. GII.1 replicates in the HIE cultivation system in media
supplemented with BA but not in media alone [53]. Thus far, GII.10 virus does not replicate
in the HIE system, and the porcine GII.19 virus has not been tested. A limitation is that
our infection system uses stool filtrate virus acquired by collection of clinical samples and
there are, in comparison to GII.4, relatively few GII.10 positive stools to test.
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GII.1 is an interesting virus as it or its VLP initially did not bind to the HuNoV initial
cellular binding factor (HBGAs), but subsequent studies show GII.1 VLPs treated with BA
are able to bind porcine gastric mucin (PGM; contains HBGAs) and binding of GII.10 to
porcine gastric mucin is also enhanced [81]. Using a similar PGM binding assay, we tested
our available VLPs (Table 2) and confirmed that a GII.1 VLP is only able to bind to HBGA.

When 500 µM GCDCA is added to the assay. GI.1, GII.3, and GII.4 binding to PGM was
unaffected by GCDCA (Figure 7A–C). Additionally, we found that GII.2 (Figure 7D) and
GII.12 VLPs require the presence of GCDCA to bind PGM. Both GII.2 and GII.12 HuNoVs
replicate in the presence of GCDCA but neither were tested in the absence of BA [53,83].
The replication-promoting effect of GCDCA on GII.2 replication may differ from GII.3 in
that GCDCA binding to the GII.2 virus could solely be required for interactions with HBGA
on the cell surface that trigger entry. However, further studies are necessary to test if cellular
effects of GCDCA treatment that permit GII.2 replication are the same as those characterized
and required for GII.3 replication. Additionally, GII.2, has been shown to infect a subset of
individuals that have secretor-negative HBGA expression, and bile addition permits GII.2
VLP binding to saliva HBGAs from secretor-negative individuals [84]. Whether this results
in replication in HIEs from secretor-negative individuals remains to be determined.

Saturation transfer difference-NMR (STD-NMR) low affinity (millimolar range) bind-
ing data have been used as another method to evaluate HuNoV VLP binding to BAs. The
results indicate there is a binding interaction of GI.1, GII.4, GII.7, GII.10, and GII.17 HuNoV
VLPs near the C terminus of the P-domain with primary BAs. This interaction site is not the
same as the high affinity (low micromolar range) BA binding region at the top of P2 near
the HBGA binding site as seen in the ITC experiments with P-domains of GII.1, GII.10, and
GII.19 [82]. Of these, GI.1/GII.4/GII.7/GII.17 all infect HIEs and of which GI.1 and GII.17
strictly require BA [51,53]. However, it remains unknown whether BAs bind VLPs of GII.3,
which is the virus strain we have performed mechanistic studies on the cellular effects of
BA-mediated replication [1], analyzed by the same technique. Interestingly, this low affinity
BA binding site does not affect the binding of the P-domains to HBGA, which suggests
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that BA binding may contribute to additional roles independent of HBGA binding [82].
Additional studies are needed to determine if the low-affinity direct interactions with BAs
are biologically relevant during infection of GI.1 and GII.17 and if BA-mediated cellular
requirements necessary for GII.3 infection are also critical for GI.1 and GII.17.

Table 2. Effect of BA treatment on VLP * binding to PGM.

Genotype Accession Number GCDCA Effect on Binding

GI.1 M87661 No effect
GI.2 FJ515294 No effect
GI.4 GQ413970 No effect
GI.5 KJ402295 No effect
GI.6 KC998959 No effect
GI.7 JN005886 No effect
GI.8 GU299761 No binding +/−GCDCA
GII.1 JN797508 GCDCA permits binding
GII.2 AY134748 GCDCA permits binding

GII.3_2002 KF006265 No binding +/−GCDCA
GII.3_2004 ** AB365435 No effect
GII.4_Sydney JX459908 No effect

GII.5 AF414422 No effect
GII.6 GU930737 No effect
GII.7 KF006266 No effect
GII.8 AB039780 No effect
GII.9 DQ379715 No effect

GII.10 AF504671 No binding +/−GCDCA
GII.12 KF006267 GCDCA permits binding
GII.13 JN899242 Enhancement of binding
GII.14 GU594162 Enhancement of binding
GII.15 GQ856474 No binding +/−GCDCA
GII.17 DQ438972 No effect

* VLPs generated from baculovirus-expressed ORF2 + 3 + 3′UTR. Previously unpublished data except for
GII.3_2004 (**) published in Murakami et al., 2020 [1]. The PGM binding assays are performed as described in
Murakami et al., 2020 [1].
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In addition to infection of RAW267.4 cells, MNV infects several other cell types includ-
ing B cells, dendritic cells, neutrophils, myelomonocytic cells, and tuft cells based on the
expression of the CD300lf receptor, innate immune signaling, and strain persistence [85].
BA binding to MNV differs from the reported GCDCA binding locations for HuNoVs;
GCDCA and LCA bind to the MNV P-domain between the P1 and P2 subdomains at the P
dimer interface with low micromolar affinity [86]. GCDCA increases MNV binding to cells
and enhances infectivity [86]. MNV and GCDCA binding has a small positive effect on
interaction with the MNV receptor, CD300lf, which is expressed on macrophages, dendritic
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cells, and tuft cells (Figure 5A, tuft cell and Figure 5C) [54,86]. Though the role of BA was
not evaluated in a separate receptor study, CD300lf is required for infection of tuft cells by
the persistent strain CR6 [85]. For the nonpersistent CW3 strain, infection of myelomono-
cytic cells is reduced by CD300lf disruption and viral levels detected during infection of
other cell types (e.g., B cells) is unaffected [85]. Some norovirus VP1 structures show con-
formational flexibility and can exist in an open or a closed/compressed conformation [87].
GCDCA and TCA cause stabilization of the collapsed conformation of the MNV P-domain,
allowing better interaction with the receptor [88,89]. The collapsed BA-interacting con-
formation of MNV P-domains is not compatible with binding of P-domain to the Fab of
neutralizing antibody A6.2 and increasing BA concentrations prevent neutralization of
MNV infection by antibodies 4f9.4, A6.2, and 2D3 in BV-2 cells [90]. These effects are
likely specific to MNV because GII.4 HuNoV infection, which is also enhanced by GCDCA,
does not require the CD300lf receptor [65]. However, capsid plasticity may still have a
biological role in HuNoV infection as GII.3 P-domain dimers are shown to exist in both
a resting and rising conformation [91]. Additionally, the HuNoV receptor(s) is yet to be
identified. Once determined, structural studies with purified HuNoV or VLP in the context
of receptor binding will reveal if BA-capsid binding promotes stabilization of P-domain
conformations that favor receptor interactions. How BA binding influences HuNoV entry
processes downstream of receptor binding (e.g., endosomal escape and genome release)
and how BA simply enhances GII.4 replication also remains to be determined.

3. Bile Acids Influence FXR and Innate Immune Regulation to Promote Infection of
Some Hepatitis Viruses and Caliciviruses

The gut–liver axis, mediated by BAs has an important role in not only nutrient
digestion and absorption but also in epithelial cell proliferation, regulation of inflammation,
and the interplay between the microbiota and host [10,13,92–94]. Several viruses, including
hepatitis A–E, are hepatotropic and can lead to acute or chronic liver injury. Prolonged and
chronic infection leads to the development of more severe liver disease, including fibrosis,
cirrhosis, hepatocellular carcinoma, and death [95].

Hepatitis C virus (HCV) is an enveloped RNA virus in the Flaviviridae family and
causes acute hepatitis. Some infected persons will clear the virus, but most (50–80%)
develop chronic HCV, which over time causes adverse effects on the liver leading to hepatic
fibrosis, cirrhosis, and hepatocellular carcinoma [96]. Combinations of antivirals can treat
and clear chronic infection, but there is no vaccine [96]. Akin to the HuNoV field, research
on HCV was restricted by a lack of cell culture system for many years [97]. About a decade
after their discovery in 1989, a replicon system was developed by replacing regions of the
viral genome encoding structural genes with selection markers. Replication of this system
is most efficient in the liver cell line Huh7 [97]. After over another decade, multiple similar
replication systems were developed using Huh7 cell line derivatives such as Huh7.5.1,
which has a mutation in the innate immune sensor RIG-I permittingbetter replication.
Further advancement was made with the discovery that an HCV full-length genome,
from the JFH-1 (genotype 2a) isolate from a 32-year-old male patient with fulminant
hepatitis, replicated efficiently when transfected into Huh7 cells [97–100]. JFH-1 virus
generated after transfection infects Huh7 cells with low efficiency but infects with higher
efficiency in Huh7.5.1 cells [99,101]. Virus in this culture system can be passaged but
further optimization is necessary to understand the high variability in viral titer seen with
replication of different virus strains and in different Huh7 lines, and to expand the number
of isolates that can be cultured.

HCV genotype 1b subgenomic replicons have been used to probe factors that might
enhance replication. The primary BA CDCA and secondary BA DCA enhance HCV RNA
replication in a dose-dependent manner (20–100 µM) [3,102]. The secondary BA LCA is
also effective at promoting HCV genotype 1b replication but UDCA and CA only have mild
enhancing effects [102,103]. Glycine-conjugated BA GCDCA only promotes replication
at the highest concentration tested (200 µM) [3,102]. Glycine and taurine conjugated
BAs GDCA, TDCA, and TCDCA also fail to promote HCV genotype 1b replication [102].
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Together, these data indicate that conjugated BAs are less effective at allowing for HCV
replication. Conjugated BAs do not passively diffuse across the plasma membrane, and
continuous liver cell lines, including Huh7, lack expression of BA transporters such as
NTCP [2,8,104], suggesting an internal BA receptor that nonconjugated BAs can reach
mediates the promoting effects for virus infection.

FXR, an intracellular BA sensor, detects internalized BAs and through downstream
signaling pathways, regulates metabolism including BA and lipid homeostasis [105]. An
FXR antagonist, Z-guggulsterone, and siRNA against FXR reduce the CDCA-mediated
increase in replication of the HCV replicon [3,102]. However, replication of a genotype
2a HCV replicon is not enhanced by CDCA treatment nor inhibited by Z-guggulsterone,
demonstrating strain-specific differences [102,103]. Later advances in HCV cultivation have
allowed for replication of full genomes of both genotype 1b and 2a, and both are enhanced
by CA and CDCA, indicating there may be additional BA effects on HCV genotype 1b
and 2a during full genome replication. The importance of FXR has not been tested in
this system [103]. Studies with PoSaV also report that BA-mediated replication in porcine
kidney cells is inhibited by the FXR antagonist although the data are not shown [3].

Both HCV and Norwalk (GI.1 norovirus) replicon systems are inhibited when cells are
incubated with exogenous interferon (IFN)-α or IFN-γ. Addition of BAs CDCA and DCA
can partially rescue the IFN-mediated inhibition of HCV infection in a dose-dependent
manner when co-incubated with IFNs [3]. Only the highest GCDCA and UDCA con-
centrations block the action of IFN [3]. FXR suppresses innate immune factors through
trans-repression [17]; therefore, a potential explanation is that FXR activation by BAs that
can passively enter cells suppresses HCV- or Norwalk-activated IFN pathways in the
replicon systems. Replication of a GI.1 Norwalk virus replicon in HG23 liver cells is not
enhanced by CDCA, DCA, UDCA, or GCDCA, which enhances HCV replication [3]. In
contrast, DCA and CDCA rescue IFN-suppressed replication of the Norwalk replicon
expressed in HG23 cells, but only when the highest concentration of each BA tested is
preincubated with cells 24 h prior to IFN treatment. This might indicate maintenance of the
Norwalk replicon in liver cells could be priming an immune response that is rapidly acti-
vated by IFN, and pretreatment with BA downregulates this. However, transfection of HEK
293FT cells with Norwalk GI.1 virus genomic RNA isolated from stool does not activate
an innate response [106], although long-term maintenance of a viral replicon could have a
stronger effect on activating innate responses. The effect of a BA-FXR-IFN suppression axis
does not appear to be a driving factor in replication for human and porcine caliciviruses
that replicate in epithelial cells (Figure 5A,B). An initial study with BA-mediated PoSaV
replication in porcine kidney cells reported that the effect of BAs is through downregula-
tion of signal transducer and activator of transcription 1 (STAT1) by BA [66]. However,
later studies with PoSaV refuted this conclusion [107], and an alternative mechanism of
BA-mediated replication through effects on acidification and ASM-generated ceramide
was proposed (discussed above, Figure 5B) [67,70]. In the HIE GII.4 and GII.3 HuNoV
cultivation system, exogenously added type I and III IFN inhibit replication, and the BA-
dependent GII.3 strain is sensitive to endogenous IFN responses despite the presence of
BA in the media during infection [108]. Agonists or antagonists of FXR do not affect GII.3
replication in HIEs, and BAs instead influence viral entry through interaction with the
GPCR S1PR2 BA receptor (see Section 2.1 above) [1].

MNV infection of intestinal cells appears to share the requirement for FXR-mediated
downregulation of IFN responses. In the mouse proximal and distal small intestine, bacteria
are reported to deconjugate BAs to remove glycine and taurine generating primary BAs
and additional bacterial enzymes generate secondary BAs. In the mouse proximal small
intestine, these modified BAs along with type III IFN (IFN-λ) restrict MNV infection [4]. In
a mouse intestinal epithelial cell line (CMT-93) that is not permissive to MNV, poly(I:C),
used as a surrogate for viral RNA, leads to some induction of IFN-λ. CMT-93 cells primed
by a 12 h pretreatment of the BAs CDCA and DCA but not CA or LCA express significantly
more IFN-λ upon treatment with poly(I:C) compared to unprimed poly(I:C) treatment [4].
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An epithelial cell line engineered to express the MNV receptor, CD300lf, has significant
induction of IFN-λ upon MNV infection after priming with DCA compared to unprimed
infection [4]. CDCA priming also increased IFN-λ but in a non-significant manner [4].
These data are proposed to indicate that bacterial modified BAs found in the small intestine
restrict MNV replication in the proximal small intestine by priming cells for a type III
IFN response (Figure 5C, right) [4]. By contrast, in the distal small intestine, there is a
greater expression of FXR, which is activated by BAs. CMT-93 cells treated with an FXR
agonist, GW4064, show a dose-dependent decrease in IFN-λ [4]. This implies that in the
mouse distal small intestine, shown to have much higher levels of FXR mRNA compared
to the proximal small intestine, BA presence primes the intestine for an IFN response upon
infection and activates FXR. However, concurrently, FXR immune-modulating activity
negates the immune response permitting MNV replication (Figure 5C, right) [4]. The
BA effect on IFN-λ and the importance of FXR differ in the HIE model system. Jejunal
HIEs treated with both GCDCA and poly(I:C) at the same time show no differences
in IFN-λ induction in the presence of GCDCA compared to poly(I:C) alone (Figure 8).
Pretreatment with GCDCA or other BAs prior to addition of poly(I:C) was not tested. GII.3
can replicate through BA-mediated mechanisms in enterocytes from duodenal, jejunal, and
ileal HIEs, and in jejunal HIEs, FXR is not involved [1]. The importance of FXR during GII.3
infection of duodenal or ileal segments remains to be tested. Together, data from the HCV,
PoSaV, HuNoV, and MNV replication systems indicate that BA mechanisms that regulate
replication are virus- and cell-type-specific. While mechanisms of action may differ, these
human and animal viruses serve as new models to further understand new aspects of BA
signaling and biology in the intestine and liver.
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4. Bile Acids Alter Forms of HAV and HEV Virus

Bile acids have a novel role in the biology of hepatitis A and hepatitis E viruses
(HAV and HEV). These phylogenetically unrelated non-enveloped viruses are transmit-
ted through a fecal–oral route. HAV and HEV replicate primarily in the liver and pass
through the biliary canaliculi with high concentrations of bile acids prior to release into
the duodenum. Studies of HAV first reported a new paradigm, wherein quasi-enveloped
particles (eHAV) are found to be released from cells cloaked in host-derived membranes.
While these quasi-enveloped virions are the only particle type found circulating in blood
during infection, only nonenveloped virions are shed in feces [109]. Further studies showed
high concentrations of BAs (24 mM CDCA and 93 or 930 mM TCA) can convert eHAV
to nonenveloped virions while virions in bile contained both particle types [110]. These
studies indicate nonenveloped virions shed in feces are derived from eHAV released across
the canalicular membrane and are stripped of membranes by the detergent action of BAs
within the proximal biliary canaliculus. Subsequent studies showed HEV also exists as
naked and quasi-enveloped particles [111]. Bile is also thought to degrade the eHEV mem-
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brane, resulting in the non-enveloped HEV in feces [112]. These novel membrane-cloaked
virus particles for both HAV and HEV are infectious in cell culture yet viral antigens are
masked due to the engulfing membrane and they are resistant to neutralizing antibod-
ies, stimulating many new studies about how they influence viral pathogenesis. In vivo
experiments with human liver chimeric mice and cell culture-derived HEV required the
virus-containing cell supernatants to be treated with DCA and trypsin for successful infec-
tion [113]. Buoyant density analysis shows that an untreated supernatant virus is similar
in profile to a virus found in mouse plasma and the supernatant virus treated with DCA
and trypsin had two density populations [113]. This result is consistent with loss of the
envelope as HEV particles encounter bile prior to being shed in feces. Whether HEV has
encountered bile components (feces virus) or not (serum virus) may affect transmission
between hosts and should be further investigated.

Recent evidence indicates norovirus particles can be shed in the stool as membrane-
cloaked enveloped vesicles. Beads capable of binding to enveloped vesicles are able to
isolate vesicles positive for HuNoV VP1 and markers of multivesicular body-derived
(MVB) exosomes from the stool of infected patients and these vesicles contain one to five
particles [114]. Similarly, MNV is found in isolated extracellular MVB-derived exosomes
from infected RAW267.4 cells [114]. Both HuNoV and MNV containing exosomes appear
to be infectious in HIEs and RAW267.4 cells, respectively [114]. Norovirus enveloped
particles produced and released into the small intestine encounter lower levels of BAs
than those found to convert eHAV or eHEV into naked particles, so noroviruses are
unlikely to be affected in a similar manner. Therefore, what role BAs may play in infection,
receptor binding, or HBGA binding in exosome-contained norovirus infection remains to
be determined.

5. Role of the BA Receptor NTCP in HBV and Enteric Virus Infection

The hepatitis B virus (HBV) from the Hepadnaviridae family is another cause of liver
disease in humans. HBV is associated with a satellite virus, hepatitis D (HDV) that requires
the acquisition of HBV surface antigen (S) during assembly to subsequently form viral
particles that can then enter cells [115]. There is a vaccine for HBV, but according to the
CDC, over 350 million people are infected with HBV worldwide and although 95% of
infected adults will never develop chronic infection, 25–50% of infected children will go on
to have chronic HBV. Chronically-infected individuals suffer from liver diseases caused
by infection including cirrhosis, hepatocellular carcinoma, and liver failure that lead to
death [2]. Development of antivirals is limited due to the previous lack of laboratory cell
lines that can be infected and recapitulate the full infectious life cycle [2,116]. HBV is an
enveloped virus with three forms of a viral surface protein: small (S), middle (M) that
contains the S domain and pre-S2 domain, and large (L) that additionally contains the pre-S1
domain [117]. The L glycoprotein determines entry through its N-terminal pre-S1 domain
and infection can be prevented through competition with a pre-S1 peptide [118–120].
NTCP, a liver BA transporter, was identified as a receptor for HBV using a synthetic
photocrosslinkable pre-S1 peptide and mass spectrometry in tree shrew (Tupaia belangeri)
primary hepatocytes [117]. Huh7 cells transfected with human NTCP show increased
binding of HDV and HBV S1. Liver cancer cell lines have lost NTCP expression, but HepG2
cells that stably express NTCP are susceptible to HBV and HDV replication [117].

DMSO is known to differentiate many cell types, and a month-long presence of
DMSO during culture of human primary hepatocyte HepaRG cells will differentiate these
liver cells and lead to some NTCP expression [121]. Interestingly, DMSO can enhance
replication of HBV/HDV in HepG2 cells expressing human NTCP when added during
or shortly after infection indicating direct effects such as acting as a co-factor for entry
or regulating the trafficking of NTCP [122]. An inhibitor of NTCP, Myrcludex B (MyrB),
is a myristoylated synthetic lipopeptide of 47 amino acids of the HBV pre-S1 peptide,
and it inhibits infection of HBV and TCA uptake. Treatment with multiple conjugated
BAs (TCA/TDCA/TCDCA) also inhibits infection by HBV [122]. This effect was likely
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caused by BA blocking the binding of pre-S1 to NTCP as detection of labeled MyrB (pre-S1
peptide) on 500 µM BA-treated cells was reduced. Conversely, pre-S1 blocks labeled TCA
uptake [117]. CA (minimal effect), TCA, GCA, LCA, DCA, TLCA, CDCA, UDCA, TUDCA,
and hydrodeoxycholic (HDCA) can all block HBV and HDV infection of HepG2 NTCP
cells, but not if added after inoculation, confirming the inhibitory effect is on viral entry
through NTCP [117]. A region of human NTCP at amino acids 157–165 is critical for HBV
infection and MyrB binding [122]. Together, these results indicate the HBV, MyrB, and BA
binding sites overlap. Conflicting with these results is an HBV replicon system in HepG2
cells; CDCA treatment increases viral gene expression, although this system bypasses
receptor binding and entry steps [123]. Similar to the HCV replicon system described
above where viral entry is also bypassed, FXR antagonists (Z-guggulsterone and siRNA
targeting FXR) in the presence of CDCA reduced HBV transcription [123].

NTCP overexpression in Huh7.5.1 cells also enhances HCV infection, but the mecha-
nism is distinct from the enhancement of HBV/HDV infection because blocking the NTCP
transporter with HBV pre-S1 1 h pretreatment does not affect HCV entry [124]. Longer
pretreatment (24–72 h prior to infection) of cells with preS1 leads to the induction of interferon-
stimulated genes including IFITM2 and IFITM3 and overexpression of these genes inhibits
HCV replication [124]. When NTCP transports BAs into cells, IFITM2 and IFITM3 induction
is suppressed and HCV can enter; therefore, pre-S1 blocking of NTCP modulates HCV entry
by preventing BA-mediated suppression of the innate immune response.

In porcine kidney cells that support PoSaV infection in the presence of GCDCA, siRNA
targeting the BA transporters NTCP and ASBT, but not FXR, reduces GCDCA-mediated
PoSaV infection (Figure 5C) [67]. Detection of PoSaV levels at 1 hour post infection showed
no changes in viral RNA levels in the presence of NTCP or ASBT siRNA, indicating that
unlike the HBV model, inhibitory effects are not through a receptor binding effect [67].
NTCP and ASBT inhibitors have not yet been tested in HuNoV infection of HIEs from
the jejunum or other segments of the small intestine for their effect on GII.3 replication.
RNA sequencing data show that the presence of NTCP and ASBT is low (fragments per
kilobase of transcript per million mapped reads is below 1 in jejunal HIEs) [1,108]. GII.3
can also replicate in the presence of GCDCA in duodenal and ileal lines and the ileal line
has much higher ASBT expression. Future experiments are necessary to test if NTCP or
ASBT influence HuNoV infection in HIEs from non-jejunal intestinal segments. Unlike the
HBV system where NTCP is the cellular receptor for the virus, NTCP could still modulate
levels of sapovirus or norovirus infection in the ileum through downstream cellular effects
influenced by BA transport.

6. Conclusions and Future Perspectives

Viruses are unique engineers that, through evolution, exploit host cellular functions
for the most effective replication tools. Noroviruses and hepatitis viruses have utilized
host enterohepatic circulation factors (signaling molecules, receptors) to allow their entry
and replication in different human cells (summarized in Table 3). Mechanistic studies of
these gastrointestinal viruses are not only defining requirements for their replication but
also providing new insights into human biology. Many experiments with a BA-dependent
HuNoV were all performed in jejunal HIEs. Interestingly, we discovered that in jejunal
HIEs, GCDCA acts through S1PR2, which has only recently been described to be activated
by BAs in the liver and intestine to promote uptake and viral infection. The majority of
studies of BA uptake and enterohepatic signaling pathways focus on the ileal segment of
the small intestine. Our new results prompt further studies on how BAs communicate
with jejunal cells to signal for endocytosis not only in the context of viral infection but for
potential roles in human nutrient uptake.
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Table 3. Summary of BA effects on viral infection.

Virus Required for
Infection

STD-NMR
Binding Site

ITC
Binding Site

Required for
HBGA Binding

Mediates
Suppression of
IFN Response

Other Effects

GI.1 HuNoV
+

+
+

HIEs (replicon only)

GII.1 HuNoV
+

+ +HIEs
GII.2 HuNoV +

GII.3 HuNoV
+ BAs mediate cellular effects (e.g., increased uptake, ASM

activity, and ceramide generation)HIEs

GII.4 HuNoV BAs enhance
infection of HIEs + Requires ASM activity

GII.6 HuNoV
+

HIEs
GII.7 HuNoV +

GII.10 HuNoV + + +
GII.12 HuNoV +

GII.13 HuNoV BA enhances
binding

GII.14 HuNoV BA enhances
binding

GII.17 HuNoV
+

+HIEs
GII.19 HuNoV +

PoSaV
+ BA mediates cellular effects (e.g., endosomal escape, ASM

activity, and ceramide generation)LLC-PK

HuSaV
+

NEC8 and HuTu80

MNV
BAs enhance

infection BV-2 and
distal GALT

+ Requires ASM activity, BA binds P-domain at the dimer
interface, BA enhances binding to the CD300lf receptor

FCV Requires ASM activity
HAV BAs disrupt enveloped particle
HBV Cellular receptor is BA receptor, NTCP
HCV +
HEV BAs disrupt enveloped particle
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Currently, there are no approved therapeutics for HuNoV infection. The BA seques-
trant, cholestyramine, which removes BA from bile and therefore prevents GII.3 replication
in HIEs, is an FDA-approved drug used to treat high cholesterol with limited side effects.
Cholestyramine or the related drug colesevelam have potential for testing as therapeu-
tics for those who develop chronic HuNoV infections. Furthermore, the ASM inhibitor,
amitriptyline, is approved for use as an antidepressant. The shared requirement for ASM
for both BA-dependent and independent HuNoVs as well as other caliciviruses (PoSaV,
FCV, and MNV) makes this a candidate to test as a therapeutic for multiple strains of
HuNoV infection. Inhibitors such as MyrB are being investigated for the potential to target
NTCP for the development of HBV therapeutics [125]. These potential therapeutic targets,
which were able to be discovered due to establishment of cultivation systems, highlight the
importance of fully understanding the role enterohepatic circulation plays in mechanisms
of viral infection. As cultivation systems for viruses that infect the gastrointestinal system
continue to advance, so will our understanding of the human biology of nutrient uptake in
the small intestine and our potential to treat these diseases.
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