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Purpose: Nursing homes and long-term care facilities have experienced severe outbreaks and elevated 

mortality rates of COVID-19. When available, vaccination at-scale has helped drive a rapid reduction in 

severe cases. However, vaccination coverage remains incomplete among residents and staff, such that 

additional mitigation and prevention strategies are needed to reduce the ongoing risk of transmission. 

One such strategy is that of “shield immunity”, in which immune individuals modulate their contact 

rates and shield uninfected individuals from potentially risky interactions. 

Methods: Here, we adapt shield immunity principles to a network context, by using computational mod- 

els to evaluate how restructured interactions between staff and residents affect SARS-CoV-2 epidemic 

dynamics. 

Results: First, we identify a mitigation rewiring strategy that reassigns immune healthcare workers to 

infected residents, significantly reducing outbreak sizes given weekly testing and rewiring (48% reduction 

in the outbreak size). Second, we identify a preventative prewiring strategy in which susceptible health- 

care workers are assigned to immunized residents. This preventative strategy reduces the risk and size of 

an outbreak via the inadvertent introduction of an infectious healthcare worker in a partially immunized 

population (44% reduction in the epidemic size). These mitigation levels derived from network-based in- 

terventions are similar to those derived from isolating infectious healthcare workers. 

Conclusions: This modeling-based assessment of shield immunity provides further support for leveraging 

infection and immune status in network-based interventions to control and prevent the spread of COVID- 

19. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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SARS-CoV-2 remains a global threat as of March 2022 with 
ore than 79M documented cases and 975K fatalities in the US 

Abbreviations: CDC, Centers for Disease Control and Prevention; COVID-19, coro- 

avirus disease 2019; HCW, healthcare worker; LTC, long-term care facility; PCR, 

olymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coron- 

virus 2; SD, standard deviation. 
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lone, and more than 480M cases and 6.1M fatalities worldwide. 

n the US, nursing homes and long-term care facilities have expe- 

ienced severe outbreaks and elevated death rates [1] . Both res- 

dents and staff have been disproportionately affected by SARS- 

oV-2 compared to other population groups [ 2 , 3 , 4 ]. Coronavirus

isease (COVID-19) affects the elderly far more severely, on aver- 

ge, than younger individuals [5] . Besides age, other high-risk fac- 

ors for COVID-19 severity in nursing homes and long-term health 

are facilities (which we refer to as LTCs) include co-occurring con- 

itions, such as cardiovascular disease, chronic respiratory disease, 

nd diabetes [ 6 , 7 ]. This increased risk is evident in the gap be-

ween cases and fatalities in the US: as of March 2021, LTCs had 4% 

f total COVID-19 cases but accounted for 34% of total COVID-19 fa- 

alities [8] ; in aggregate, 23% of total COVID-19 deaths ( > 20 0,0 0 0)

ccurred in LTCs through January 2022 [1] . 
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From the outset, there have been acute challenges in prevent- 

ng and responding to COVID-19 outbreaks in LTCs. As of early May 

020, thousands of LTCs across the U.S. reported cases of COVID-19 

mong residents and staff, given limitations to prevention policies, 

acility-wide testing, and support for staff [9] . Data from June 2020 

eported that 71% of 13,167 US nursing homes had at least one case 

mong residents and/or staff and 27% of facilities reported an out- 

reak [10] . As of October 2022, a state-level average of 99.6% of 

ursing homes had at least one case (range from 92.6% to 100%); 

ith a state-level average of approximately 50% of nursing homes 

eporting at least one case in the four weeks preceding August 21, 

022 [11] . Understaffing [10] and staff movement across facilities 

12] have shown to be important factors for COVID-19 outbreaks 

mong nursing homes. The combination of those high-risk factors, 

ulnerable residents sharing space and requiring prolonged and in- 

ense contact with staff seem to have been critical for the severity 

f the COVID-19 pandemic in LTCs [ 13 , 14 ]. 

The increasing availability of highly effective and safe vaccines 

as contributed to the rapid decline in severe cases of COVID- 

9 amongst vulnerable individuals [ 15 , 16 ]. However, vaccine cover- 

ge remains incomplete, amongst residents and especially among 

taff (e.g. only 42% of staff per facility are up to date with rec- 

mmended booster vaccines as of August 15, 2022 [11] ). Critically, 

eceiving a booster has been shown to reduce the near-term risk 

f severe illness caused by the omicron variant [17] even if the ef- 

cacy is reduced relative to protection against the original strain 

nd even if such protection can wane over time. Protection of 

ealthcare workers (HCWs) who are at increased risk to become 

nfected by COVID-19 [ 18 , 19 ] is of paramount importance for the

are of residents and might be fundamental to control ongoing 

nd future outbreaks [ 20 , 21 ]. Hence, enhanced protocols are ur- 

ently needed to combat COVID-19 transmission in nursing homes 

nd other LTCs. Amongst non-pharmaceutical interventions, rec- 

mmendations have centered on testing, cohorting and restricting 

ovement across and within facilities. Facility-wide surveillance 

esting, either via antigen or molecular viral testing, provides a 

echanism to identify and isolate residents as well as to reduce 

he risk that infected staff interact with other staff members and 

ulnerable residents [22] . As a complementary approach, models 

f staff cohorting could lead to fewer infections among HCWs [23] . 

owever, designing cohorting interventions based, in part, on im- 

une status (rather than infection status alone) remains under- 

xplored. 

One way to leverage testing to improve infection control is to 

estructure which HCWs care for which residents based on both 

isease and immune status. The intent of such restructuring is to 

inimize potential risky interactions that could facilitate transmis- 

ion. Shield immunity represents one strategy to leverage immune 

tatus to reduce transmission risk, such that recovered/vaccinated 

ndividuals increase their contact rates, including with susceptible 

ndividuals [24] . As a result, the frequency of potential risky in- 

eractions between individuals of unknown status (including sus- 

eptible and infectious individuals) are reduced. Subsequent mod- 

ling work extended the proof-of-concept shield immunity model 

24] and showed that restructuring interactions as a means to 

educe transmission can retain effectiveness at population scales 

ven with high-quality, albeit imperfect tests [25] and could help 

alance public health and socioeconomic outcomes [26] . However, 

dapting a shield immunity strategy for implementation in LTCs re- 

uires specifying which HCWs care for which residents as part of a 

ynamic epidemic network model ( sensu [27] ) rather than assum- 

ng random interactions. 

Here, we use a network model approach to study the effective- 

ess of shield immunity in reducing outbreak size in LTCs. We pro- 

ose an immune shielding rewiring algorithm that implements co- 

orting and workload assignments between HCWs and residents 
45 
ased on disease status. In doing so, we also address the work- 

oad constraints imposed by re-assigning interactions in a bipartite 

etwork (i.e., representing interactions between HCWs and resi- 

ents). Consistent with prior work, we find that outbreak size can 

e reduced when immunized HCWs care for infected residents. 

etwork simulations show that when immune shielding rewiring 

s implemented weekly, then outbreak sizes are reduced beyond 

hat achieved by viral testing alone. We also develop a preventa- 

ive “prewiring” intervention and show that cohorting susceptible 

CWs with recovered or vaccinated residents could prevent future 

utbreaks - because an inadvertent introduction of SARS-CoV-2 is 

ess likely to spread when susceptible HCWs provide care for im- 

une residents. This prewiring intervention may provide one route 

o decrease risks of outbreaks in partially vaccinated populations of 

CWs. Overall, this network modeling study provides further evi- 

ence that identifying and leveraging disease status to personalize 

nterventions can be a critical part of ongoing effort s to control 

nd prevent COVID-19 in the face of the evolution of variants and 

eterogeneous levels of immunity, especially amongst vulnerable 

opulations. 

ethods 

ummary 

We simulate the spread of SARS-CoV-2 in a nursing home via 

 stochastic network-based model. The facility is represented as 

 network consisting of two sets of nodes: HCWs and residents. 

e use an SEIR representation of disease states. Every individual is 

epresented by a node which can be either susceptible S, exposed 

 (contracted SARS-CoV-2 but not yet infectious), infectious I, or 

ecovered R (acquired immunity to SARS-CoV-2 and no longer in- 

ectious). The model assumes that individuals who recovered from 

OVID-19 during an outbreak acquire immunological memory that 

t least lasts until the end of the outbreak. We note that the I 

lass contains both symptomatic and asymptomatic individuals. Ev- 

ry time step (10 minutes), individuals interact with exactly one 

f their neighbors with probability P contact . This means that in one 

ay, every individual averages β = 0 . 5 contacts through which in- 

ection can spread. Infection spreads strictly by interactions be- 

ween I and S individuals and newly infected individuals enter the 

 class. Further, at every time step exposed individuals become in- 

ectious with probability P EI and infectious individuals recover with 

robability P IR . We note that a full treatment of heterogeneity in 

nteraction intensity (e.g., between HCWs based on work category 

nd duties as well as between residents based on room location) 

s beyond the scope of the present model (see Discussion for more 

etails on potential extensions). 

The proposed mitigation strategies (immune shielding, 

rewiring, and isolation) depend on determination of the in- 

ection status of individuals. We distinguish 3 possible test status 

tates for every individual: 

• Susceptible: PCR negative and seronegative/not vaccinated 

• Infected: PCR positive or positive antigen test 
• Recovered: PCR negative/negative antigen test after infection or 

seropositive/vaccinated 

We assume that exposed individuals are grouped with suscep- 

ible individuals given that their PCR test status is likely to be neg- 

tive. We also note that antigen tests can be used along with PCR 

ests as an indicator of infected status, but that we do not assume 

hat a negative antigen test is, in and of itself, a barometer of sus- 

eptibility. Our models make the following implicit assumptions: 

he disease status of individuals is obtained at the same frequency 

s the mitigation interventions are applied (e.g. weekly viral test- 

ng is required for weekly immune shielding), the disease status of 
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a ‘swap’. 
n individual does not change between when testing is performed 

nd when the intervention is applied (i.e., delays obtaining test re- 

ults are not incorporated in the model), and recovered individuals 

annot be reinfected during the same outbreak in which they were 

nfected. In this analysis we do not consider the impacts of false 

ositives and/or false negative on intervention outcomes (but note 

hat prior work showed the robustness of strategies for imperfect, 

lbeit high quality tests [25] ). In order to apply immune shield- 

ng on a weekly basis, individuals are tested once a week and then 

esidents are re-assigned to HCWs based on the proposed immune 

hielding strategy and test status. Specific details on the simula- 

ions and model assumptions are described in the sections below. 

tochastic SEIR model 

We use a frequency dependent SEIR epidemiological model on 

 bipartite network (i.e., where interactions occur between HCWs 

nd residents). We choose a frequency dependent model (rather 

han density-dependent model) to mimic social distancing guide- 

ines in LTCs. Hence, we assume that within a time step of 10 min-

tes, an individual is in close contact with at most one other indi- 

idual irrespective of the size of the facility. Depending on contact 

ates, individuals need not have a close contact within a particular 

0 minute window. 

Nodes can change their disease status at every time step based 

n the following three events: 

1. E → I: With probability P EI , an exposed E node will become in- 

fectious. 

2. I → R: With probability P IR , an infected I node will become re- 

covered. 

3. S → E: With probability P contact , a susceptible S node will have 

a potentially infectious contact with a random neighbor. If that 

neighbor is infected I, the susceptible node becomes exposed E. 

The transition probabilities per time step ( P EI , P IR , P contact ) are

erived from underlying parameters, e.g., the infectious contact 

ate β = 1 / 2 day −1 , exposed to infected rate of γE = 1 / 2 day −1 and

ecovery rate of γR = 1 / 6 day −1 [24] , as follows: 

 EI = 1 − e −γE �t 

 IR = 1 − e −γR �t 

 contact = 1 − e −β�t 

The choice of a low infectious contact rate β = 1 / 2 day −1 re-

ects the use of personal protective equipment (PPE) by staff and, 

n some cases, by residents. The expected R 0 for an equivalent de- 

erministic model is R 0 = β/γ = 3 since the contact rate is inde- 

endent of the degree of each node. We also consider the possibil- 

ty of interventions against a more transmissible SARS-CoV2 vari- 

nt ( β = 0 . 7 day −1 , R 0 = 4 ) [28] . In both cases, these baseline val-

es can be reduced through mitigation steps beyond that imposed 

y testing. Further, note that the realized threshold criterion for 

pidemic spread in a network differs from that in a determinis- 

ic model, and depends on the network connectivity (for more de- 

ails, see [29] ). To show the impact of network connectivity in the 

eproductive number we calculate the final size of outbreaks and 

se this to infer a network-equivalent reproductive number using 

he final size equation R t = N 

∗log(S 0 /S ∞ 

)/(N-S ∞ 

), where N is the to-

al number of individuals in the LTC; S 0 and S ∞ 

are the initial and

nal number of susceptible individuals in the simulated outbreak. 

he ensembled averaged network-equivalent reproductive number 

s typically smaller than R (Figure S3). 
0 

46 
esting 

To identify S or I individuals, high sensitivity and specificity PCR 

iagnostic tests need to be performed before applying mitigation. 

ntigen tests can also be used to identify I individuals – an issue 

e revisit in the Discussion. We assume that the PCR test correctly 

dentifies S and I individuals (assuming high specificity and sensi- 

ivity, respectively) and will identify E individuals as S (assuming 

hat E is of short duration and individuals in this compartment 

o not have sufficient viral load to generate a positive PCR result). 

o identify R individuals, facilities could use antibody tests, vacci- 

ation status or presume immunity within a fixed period of time 

ince a confirmed infection (e.g., 4-6 months). Since antibody sta- 

us is maintained for an extended period of time, antibody testing 

ould be done at a lower frequency than diagnostic testing [30] . 

etwork setting 

We consider a bipartite network consisting of 100 healthcare 

orkers (HCWs) and 100 residents yielding a 1:1 ratio consistent 

ith levels of care in skilled nursing facilities. We also consider 

ariation in staff levels reflecting observed variation in LTCs, span- 

ing 1:3, 1:5 and 1:10 (ratios denote HCWs:residents). Note that 

ll synthetic bipartite networks have a mean of 10 0 0 total links 

nd a total size of 200 nodes. Keeping the size of the LTC and the

umber of links constant while increasing the number of residents 

er HCW automatically implies an increase in staff workload con- 

omitant with a decrease in the level of patient care (Supplemen- 

ary Table 1). The choice of a bipartite network is motivated by 

he strict social distancing guidelines in LTCs, assuming only nec- 

ssary care-centered interactions take place. We subsequently re- 

ax this assumption and allow connections between HCWs. We use 

wo kinds of network structures: (i) random interactions between 

CWs and residents; (ii) small-world social networks for interac- 

ions amongst HCWs. We construct a random bipartite network 

ith an average degree of 10 [31] , in practice this yields a bino-

ial degree distribution with minimum degree 3 and maximum 

egree 20. When HCW-HCW interactions are considered (e.g., as a 

esult of relaxing social distancing restrictions among HCWs), we 

imulate the network of interactions as a Watts-Strogatz social in- 

eraction network with average degree 10 and edge rewiring prob- 

bility p = 0.02 [32] . 

itigation strategies 

mmune shielding rewiring algorithm 

We adapt a network ‘rewiring’ algorithm which provides an ef- 

cient and unbiased method to randomize connections between 

odes while preserving their degree [33] . The adaptation focuses 

n rewiring to fulfill two key objectives (i) Minimize I Resident –

 HCW 

connections; (ii) Minimize S Resident – I HCW 

connections. To 

inimize I Resident – S HCW 

connections, we find all residents that 

re in the I state and all residents that are in either the R or S

tate. We use the notation I Resident as well as R Resident or S Resident 

o refer to a resident drawn from these sets, respectively. We use 

 similar notation to refer to healthcare workers. Given N I infected 

esidents and N RS recovered or susceptible residents, we perform 

he following algorithm N I ∗ N RS times (Supplementary Figure S1): 

1. Randomly select an I Resident and a R Resident or S Resident . 

2. Find all S HCW 

connected to the I Resident , but not to the R Resident 

or S Resident and all R HCW 

or I HCW 

connected to the R Resident or 

S Resident but not to the I Resident . 

3. Randomly reconnect the S HCW 

with the R Resident or S Resident , and 

R HCW 

or I HCW 

with the I Resident . These reconnections are termed 
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Fig. 1. Shield immunity as a mitigation intervention in a LTC setting. Schematics ( left ), SEIR dynamics on a bipartite network ( middle ), and an example of shield immunity as 

a mitigation “rewiring” strategy ( right ). SEIR dynamics show the number of nodes in S ( blue ), E ( orange ), I ( red ), and R ( green ) epidemic states. The LTC facility is represented 

as a bipartite network with nodes of two types: residents and HCWs. Interactions among HCWs and residents are represented as connections between nodes. Node colors 

show individuals PCR/antigen test or immunization status as depicted in the legend. ( A ) Case with no interventions: we seed the epidemic with 5% of the total population 

(10 nodes) and simulate the outbreak over 50 days. Solid lines show the average of 500 simulation runs and shaded areas represent the standard deviation of the runs. ( B ) 

Shield immunity as a mitigation strategy: We seed the epidemic as in A . Arrows and vertical dashed lines indicate when PCR testing and rewiring are applied during the 

outbreak (weekly). The network shows an example of the rewiring algorithm. It deletes SI and RR (or RS) connections ( dashed bold line ) and replaces them with RI and SR 

(or SS) connections ( solid bold line ). For a complete schematic see Supplementary Figure S1. (For interpretation of the references to color in this figure legend, the reader is 

referred to the Web version of this article.) 
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At the completion of this sequence of steps, the network is 

ewired while preserving the degree for each HCW and each resi- 

ent; hence the workload balance of HCWs is maintained and each 

esident receives the same level of care (see Figure 1 b). 

revention prewiring algorithm 

We extend the rewiring algorithm to a ‘prewiring’ intervention 

hich is applied to a scenario with no ongoing outbreak (all nodes 

re in the S or R state). The goal of prewiring is to reconfigure in-

eractions to minimize both the likelihood and size of an outbreak 

n the event of an introduced case into a facility. At the network 

evel, the prewiring algorithm minimizes the number of R-R con- 

ections while maintaining the degrees of all nodes constant. In ef- 

ect, prewiring replaces R-R and S-S connections with R-S and S-R 

onnections ( Figure 4 b). We adapt our immune shielding algorithm 

n the following way. First, we find all R Resident and all S Resident . Sec-

nd, given N R recovered residents and N S susceptible residents, we 

erform the following algorithm N R ∗ N S times: 

1. Randomly select a R Resident and a S Resident . 

2. Find all R HCW 

connected to the R Resident but not to the S Resident , 

and all S HCW 

connected to the S Resident but not to the R Resident . 

3. Randomly reconnect R HCW 

with the S Resident and S HCW 

with the 

R Resident . 

solation of infected HCWs 

The isolation intervention is implemented when infectious 

CWs are identified via viral testing and become “isolated” such 

hat they do not interact with anyone until they recover from the 

nfection. Confirmed infectious residents are not isolated and con- 

inue to receive the same levels of care. Similar to immune shield- 

ng, isolation can be implemented at different frequencies (i.e., 

aily, weekly). When isolated, HCWs transition to recovered (with 

robability P IR at every time step), at which point they reconnect 

ith their previous neighbors. Because we do not distinguish be- 

ween symptomatic and asymptomatic cases, HCWs do not isolate 

t symptom onset but when they receive a positive PCR or antigen 

est. 
47 
umerical Simulation 

The network model is implemented in MATLAB 9.7.0.1296695 

R2019b) Update 4. We run the simulation with a time step of 

0 minutes and total time of 100 days. For ensemble analysis, a 

otal of 500 simulations are run to compute the mean and stan- 

ard deviations of outcomes. All outbreak simulations begin with 

0 infected HCWs (10% of total HCWs) selected at random and 

he rest of the population susceptible, unless otherwise mentioned. 

e choose these initial conditions to avoid stochastic fade-out in 

ur simulations. Prewiring based interventions assume different 

evels of recovered individuals as described in the Results. Code 

s available via https://github.com/WeitzGroup/Networks _ Immune _ 

hielding . 

esults 

mmune shielding through rewiring infected individuals protects 

usceptible individuals 

We evaluated the performance of the shield immunity rewiring 

trategy on a bipartite network (N = 200), where half of the nodes 

epresent residents and the other half represent HCWs. To do so, 

e simulated an outbreak on the network over 100 days with and 

ithout applying a dynamic rewiring strategy that leverages im- 

une shielding on a weekly basis; resulting dynamics are shown 

n Figure 1 . In all cases, we focus on outbreaks with an initial size

f 10, intended to evaluate the effect on interventions conditional 

pon epidemic liftoff. Applying the rewiring intervention weekly 

esulted in a 45% reduction in the epidemic peak (epidemic peak 

ithout intervention, mean = 33 infectious people, SD = 9 infec- 

ious people vs. epidemic peak with weekly immune shielding in- 

ervention, mean = 18 infectious people, SD = 7 infectious peo- 

le) and a 48% reduction in the final outbreak size (outbreak size 

ithout intervention, mean = 160 people, SD = 8 people vs. out- 

reak size with immune shielding intervention, mean = 83 people, 

D = 27 people). In effect, the rewiring strategy decreases the risk 

https://github.com/WeitzGroup/Networks_Immune_Shielding
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Fig. 2. Rewiring frequency effects on outbreak size. ( A ) Distribution of the final outbreak size of 500 realizations for different testing frequencies (daily, every 3 days, every 

5 days, weekly, and never); darker-gray lines represent more frequent rewiring schedules. In all cases we seed the epidemic with 10 infected HCWs. Boxes represent the IQR 

range. The mark on the box represents the median (50th percentile). Upper and lower whiskers represent 0th and 100th percentile, respectively. Outliers are above or below 

the 1.5 the interquartile range and are shown in red " + " signs. ( B ) Probability density curves of having an outbreak of size greater or equal to the number of individuals 

indicated on the x -axis. The outbreak size does not include the 10 nodes (5% of total population) initially used to seed the epidemic. (For interpretation of the references to 

color in this figure legend, the reader is referred to the Web version of this article.) 
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hat infectious residents are cared for by susceptible HCWs com- 

ared to immune HCWs. 

mmune shielding efficacy increases with testing frequency 

Next, we evaluated the feasibility of a shield immunity rewiring 

trategy by assessing the impact of different testing frequencies on 

he final outbreak size in a network context. To do so, we simu- 

ated the SEIR epidemic model given the same bipartite network 

tructure as described above over 100 days. We then applied the 

ewiring intervention described in Figure 1 b (see Methods for de- 

ails) at different frequencies spanning tests that occur daily, every 

hree days, every five days, and weekly. As anticipated, an increase 

n testing decreased the final outbreak size ( Figure 2 a). For exam- 

le, when rewiring was applied every three days instead of every 

eek, the mean outbreak size was 30 people (SD = 10) compared 

o the mean outbreak size of the scenario without intervention of 

60 people (SD = 8); this corresponds to a reduction of 81% of the 

utbreak size. As stated in the previous section, weekly rewiring 

hows effectiveness reducing the final outbreak size by more than 

5% on average. 

mmune shielding is potentially more effective than isolation in 

ontrolling outbreaks 

We compared four scenarios to determine the impacts of a 

etwork-based shield immunity rewiring strategy in a LTC facil- 

ty or nursing home, in comparison to and in addition to pre- 

xisting interventions such as the isolation of infected HCWs. To do 

o, we ran 500 simulations of the epidemiological, network model 

f a COVID-19 outbreak in four scenarios: (i) baseline; (ii) isola- 

ion only; (iii) shield immunity only; (iv) both isolation and shield 

mmunity together. The baseline scenario already incorporates so- 

ial distancing and other measures (e.g., partial PPE compliance) 

hat reduces the rate of transmission. For all scenarios, we com- 

ared the distribution of outbreak sizes (see Figure 3 a). Notably, 

hen used on its own, shield immunity-based rewiring is more 

ffective than isolation of HCWs: reducing the probability of hav- 

ng larger outbreaks ( Figure 3 b) and reducing the median size of 

utbreaks (84 people vs. 122 people). We also find that combin- 

ng isolation and rewiring together reduces the probability of an 

utbreak but does not provide a significant additional benefit in 
48 
educing outbreak sizes when outbreaks do occur. These compar- 

tive results imply that restructuring interactions is effective (see 

igure 3 ), even when compared to standard mitigation practice. 

e also investigated the impacts of shield - immunity rewiring 

trategies when confronting a more transmissible variant. As ex- 

ected, the outbreak sizes in the baseline and intervention sce- 

arios are larger when R 0 = 4. Conducting weekly tests, rewiring 

lone is no longer more effective than isolation (median size of 

utbreaks 157 people vs. 164 people) (Supplementary Figure S2, 

eekly). However, the effectiveness of rewiring over isolation alone 

s regained when test frequency is increased to twice weekly (me- 

ian size of outbreaks: 77 people vs. 135 people) (Supplementary 

igure S2, twice a week). Network-based rewiring strategies are ro- 

ust to plausible changes in R 0 values, we show the reduction of 

he final epidemic sizes in Supplementary Figure S3. 

revention of COVID-19 outbreaks in nursing homes and long-term 

are facilities 

The growing rate of population immunity via recovery from 

rior infections and, critically, from increasing vaccination coverage 

uggests that it may be possible to prewire interactions to reduce 

he chance and size of an outbreak before outbreaks are detected. 

o do so, we propose a prewiring intervention that preferentially 

onnects immune individuals with susceptible individuals to max- 

mize immune shielding (see Methods, prewiring for details). We 

rst compare SEIR dynamics on bipartite networks with and with- 

ut applying prewiring. We simulate an outbreak with 1 infected 

CW and 30% immunized individuals in the LTC ( Figure 4 ). We 

bserved a reduction in the outbreak size of 44% (outbreak size 

ithout intervention, mean = 34 individuals, SD = 40 individuals 

s. outbreak size with prewiring, mean = 19 individuals, SD = 27 

ndividuals) due to prewiring. To further compare this preventive 

ntervention with the baseline case, we calculated total number in- 

ections when we seed the epidemic with 1 infected HCW and 20, 

0, 60, 80 and 100 immunized individuals: including HCW and res- 

dents (10%, 20%, 30%, 40% and 50% of the LTC). We also calculated 

he probability density of an outbreak given the above conditions. 

We find that preventive immune shielding significantly reduces 

utbreak size when immunity levels exceed 20% ( Figure 5 ). How- 

ver, prewiring interventions do not significantly reduce outbreak 

ize when immunity levels exceed 50%; note that in such cases the 

utbreak size is low, even for the baseline case, in part because 
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Fig. 3. Comparison of different interventions applied on a weekly basis. ( A ) Distribution of the final outbreak size of 500 realizations for different interventions when we 

seed the epidemic with 10 infected HCWs. Boxes represent the IQR range. The mark on the box represents the median (50th percentile). Upper and lower whiskers represent 

0th and 100th percentile, respectively. Outliers are above or below the 1.5 the interquartile range and are shown in red " + " signs. ( B ) Probability density curves of having 

an outbreak of size greater or equal to the number of individuals indicated on the x -axis. All interventions are applied on a weekly basis. The outbreak size does not include 

the 10 nodes (5% of total population) initially used to seed the epidemic. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 

version of this article.) 

Fig. 4. Shield immunity as a preventive intervention in a LTC setting. Schematics ( left ), SEIR dynamics on a bipartite network ( middle ), and an example of shield immunity 

as a preventive prewiring strategy ( right ). SEIR dynamics show the number of nodes in S ( blue ), E ( orange ), I ( red ), and R ( green ) epidemic states. A second outbreak initiates 

with one infected HCW and 60 immunized (recovered/vaccinated) individuals (30% of the LTC). We simulate the epidemic over 100 days. Solid lines show the average of 

500 simulation runs and shaded areas represent the standard deviation of the runs. The LTC facility is represented as a bipartite network with nodes of two types: residents 

and HCWs. Interactions among HCWs and residents are represented as connections between nodes. Node colors show individuals PCR or immunization status as depicted in 

the legend. ( A ) Case with no interventions. ( B ) Shield immunity as a prevention strategy: The arrow indicates prewiring is applied only before the outbreak starts. Prewiring 

rewires SS connections ( dashed bold lines ) and replaces them with SR connections ( bold lines ). (For interpretation of the references to color in this figure legend, the reader 

is referred to the Web version of this article.) 
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f the effect of preexisting susceptible depletion on disease trans- 

ission. We further compare the prewiring strategy with targeted 

nterventions, i.e., isolation and rewiring. We show that when the 

mmunized fraction of individuals is low (20% or less), targeted in- 

erventions (with weekly surveillance testing) are necessary to re- 

uce the probability and size of the outbreak (Supplementary Fig- 

re S4a). However, when the immunized fraction exceeds 35%, we 

nd that prewiring intervention is as efficient as isolating infected 

CWs (Supplementary Figure S4b). Hence, there is an intermediate 

ange of preexisting immunity (through natural infection and/or 

accination) in which prewiring interventions may help to reduce 

utbreak size in partially vulnerable populations – we note that 

uch intermediate levels of effective immunity may point to peri- 
49 
ds of opportunity to deploy shield - immunity preventative wiring 

trategies in light of waning immunity. 

eneralized prevention of COVID-19 outbreaks given staff-staff

nteractions and staff levels 

Thus far we have focused our dynamical model on risk of in- 

ection between HCWs and residents. However, previous studies 

ave estimated that approximately 50% of nursing home cases are 

ttributable to cross-facility staff movement, hence attention to 

ighly connected nursing facilities is warranted [12] . In order to 

ncorporate staff movement, we extended our model to include 

he potential for interactions between HCWs by allowing connec- 
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Fig. 5. Outbreak size distributions and probability of an outbreak depending on the immunization level. Distributions of the total infected and probability densities of an 

outbreak for 10%, 20%, 30%, 40%, and 50% of immunized individuals in the LTC when no interventions ( gray ) and a preventive immune shielding (prewiring, pink ) strategy is 

applied before the outbreak starts. The epidemic initiates with one infected HCW. We simulate the epidemic over 100 days and perform 500 simulation runs. A two-sample 

Kolmogorov-Smirnov test was performed to look for a statistically significant difference of outbreak distributions with and without prewiring. P -values for 10%, 20%, 30%, 

40%, and 50% of immunized individuals are: less than 0.05 for 10% and less than 0.001 for the rest of immune levels. The distributional differences are associated with 

statistically significant differences in mean outbreak sizes for all but the 10% case, as quantified by a one-sided t -test with 99% confidence interval; P- values for 10%, 20%, 

30%, 40%, and 50% of immunized individuals are: 0.056 for 10%, less than 0.01 for 20%, and less than 0.001 for the rest of immune levels. (For interpretation of the references 

to color in this figure legend, the reader is referred to the Web version of this article.) 
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ions within HCWs in addition to the connections between HCWs 

nd residents. To do so, we augmented the bipartite network in- 

eractions with a small-world network representation of HCW in- 

eractions (see Methods). In Supplementary Figure S5a, we show 

hat including additional flexibility of staff interactions lead to 

n increase in cases and may require increasing the frequency 

f rewiring to control outbreaks and/or the inclusion of multiple 

rewiring steps to prevent outbreaks. 

Finally, we extend our analysis to include different staffing lev- 

ls consistent with 1:3, 1:5, and 1:10 HCW per resident ratios, con- 

istent with the recommended standards for LTC [34] . The model 

redicts that shield immunity-based rewiring continues to be ef- 

ective even while decreasing the HCW:resident ratio from 1:1 to 

:5 and generally shows fewer infections when staffing levels are 

ow in comparison to the 1:1 HCW per resident ratio (Supplemen- 
50 
ary Figure S5b). The bipartite structure we use to describe the LTC 

etwork assumes that residents are isolated in their rooms and can 

nly interact with staff that follows strict social distancing guide- 

ines. As a result, the outbreak exhibits a sequential pattern for in- 

ection propagation, where an infected resident infects a HCW and 

ice versa. Reducing the number of propagators through a reduc- 

ion in the HCW per resident ratio helps to reduce the overall size 

f the epidemic. However, we note that there is a latent impact 

f decreases in staff levels, implying that lower ratios may actually 

mprove infection control even in the absence of other measures 

iven that staff may (unwittingly) mobilizing infection in a facil- 

ty – the consequence is that patient care decreases and workload 

er HCW increases (Supplementary Table S1). As expected, reduced 

taffing levels also resulted in a larger fraction of infected HCWs 

uring the outbreak. Additional studies are necessary to evaluate 
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he balance between patient care, infection control, and staffing 

evels. 

iscussion 

As of February 2022, residents and staff of LTCs represent more 

han 20% of all COVID-19 fatalities in the United States [1] . These 

opulations are likely to remain vulnerable in light of the evolution 

f variants, waning immunity from vaccines, and partial vaccina- 

ion within LTC residents and staff. Developing strategies to control 

nd prevent outbreaks in LTCs is critical given the disproportion- 

te impacts of severe illness in these vulnerable communities. The 

resent analysis leverages viral testing to inform network-based 

itigation strategies that restructure who care for whom based 

n disease status. We find that restructuring interactions during 

r before an outbreak can reduce outbreak size significantly – ri- 

aling if not exceeding that of standard mitigation practices (like 

ase isolation). The key principle underlying the effectiveness of 

uch interventions is that disease status can be used to minimize 

he number of risky connections (i.e., between susceptible and in- 

ectious individuals) as well as increase the number of potentially 

pidemic-blocking connections (i.e., between susceptible and im- 

une individuals). Reducing risky connections helps to control on- 

oing outbreaks for the same reason that isolation can be effective. 

otably, our proposed preventative rewiring strategy leverages the 

ntentional increase in epidemic-blocking connections to reduce 

he transmission via an inadvertent introduction of an infectious 

ase. Preventative rewiring increases the odds that an outbreak is 

estrained because someone who was susceptible and becomes in- 

ected is already connected to an immune individual – whether 

ue to recovery and/or vaccine derived immunity. Together, we 

how that such strategies are feasible using weekly testing and 

iven realistic network and epidemiological conditions associated 

ith LTCs. 

At present, best practices to prevent and monitor outbreaks in 

ursing homes and LTCs include a combination of practices in- 

luding the use of PPE, support for staff, as well as viral surveil- 

ance testing of staff and residents [35–37] . Our findings contrast 

ith early suggestions to cohort susceptible HCWs (in PPE) with 

nfectious residents while having recovered HCWs not wear PPE 

hen dealing with other residents [38] . Such strategies may have 

een prudent given prior limitations on PPE availability. However, 

e note that PPE alone is not 100% effective and mixing suscep- 

ible and infectious residents is likely to accelerate disease spread. 

n contrast, our proposed implementation of cohorting strategies 

ims to reduce transmission across connections– thereby benefit- 

ng the population as a whole. In doing so, the rewiring strategies 

everage high-quality viral tests (analogous to a PCR test) which 

equires considerations of trade-offs between test rate, turnaround 

peed, and accuracy. We note that the inclusion of antigen tests 

an accelerate identification of infectious individuals (given high 

est specificity), but caution should be used if using negative test 

esults from antigen tests to guide cohorting (give relatively lower 

est sensitivity). As is apparent, knowing both the disease and im- 

unization status of individuals can inform shield immunity in- 

erventions. Hence, our findings also suggest the value of con- 

idering large-scale antibody testing of staff to inform immunity- 

ased cohorting to reduce transmission risk, particularly in con- 

ext in which vaccine mandates are not feasible, not permitted, not 

ffective or are otherwise impractical. Moreover, network-based 

ewiring may also be relevant given low compliance with booster 

ecommendations. For example, only ∼38% of residents and ∼51% 

f HCWs in LTCs nationwide complied with CDC booster recom- 

endations as of August 2022, even if ∼87% of residents and 

taff in LTC are considered fully vaccinated with the initial recom- 

ended dose [11] . Therefore, the use of both viral and antibody 
51 
ests combined with vaccination mandates or surveys for vaccina- 

ion status could help inform care schedules to reduce the risk of 

ransmission of SARS-CoV-2 in nursing homes and other LTCs. 

Indeed, our network-based intervention model comes with 

aveats. Our focus on interventions to reduce risk of SARS-CoV- 

 does not consider risks for other infections like influenza, 

orovirus, and antibiotic resistant pathogens. In practice, shield im- 

unity interventions would have to be balanced with cohorting 

nd care protocols that account for other co-circulating pathogens 

nd specialized resident care necessities. In addition, network- 

ased interventions require changes in staff care and availability, 

xploration of feasibility will require extending the current frame- 

ork to reflect constraints in staff expertise, numbers, and supply. 

oreover, we have assumed that recovered individuals and vacci- 

ated individuals have protective immunity from onward transmis- 

ion over the period of the epidemic outbreak (here modeled as 

00 days). The duration of effective immunity has been estimated 

o be on the order of 6-8 months [39] . The duration of effective

mmunity is likely to change over time as new variants emerge and 

accine and booster recommendations change. As such, monitor- 

ng the effective period of immunity in vulnerable populations will 

e critical to leveraging both prior infection status and vaccination 

tatus to guide cohorting. 

In summary, we have developed a network-based approach to 

ohort both residents and HCW in light of their infection and im- 

une status as a means to reduce the risk of active transmission 

r the future risk associated with the inadvertent introduction of 

ARS-CoV-2 into a vulnerable population. In doing so, this study 

einforces a persistently under-explored opportunity: to use test- 

ng at scale as a guide for targeted mitigation rather than a pas- 

ive indicator of the status of an outbreak. Here, viral testing and 

ssessment of immune status (whether through antibody testing or 

ia vaccination status) are combined to inform the active ‘rewiring’ 

r preventative ‘prewiring’ of resident to healthcare worker inter- 

ctions with a central goal: reducing the size and severity of out- 

reaks. With the increasing but still partial coverage of vaccines 

nd their limited effectiveness against new variants, the present 

tudy advances the goal of informing behavioral strategies to re- 

uce the disproportionate impact of severe illness and SARS-CoV-2 

ssociated fatalities in vulnerable, elderly populations. 

onclusions 

We developed a network-based cohorting intervention that 

everages both disease status and recovery/immunization status to 

educe and prevent outbreaks in nursing homes and LTCs. Using 

 network-based intervention, we find that cohorting the care of 

nfected residents with immunized HCWs (either via natural in- 

ection or vaccination) can significantly reduce the size of an out- 

reak. In doing so, the network intervention extends prior model- 

ng effort s to est ablish the benefit s of antibody testing as part of

 ‘shield immunity’ mitigation [24–26] . Using the network-based 

odeling framework, we also show that shield immunity princi- 

les can be applied as a preventative measure in advance of an 

utbreak via a prewiring step in which susceptible HCWs provide 

ohorted care for immune residents. This prewiring step helps to 

educe the frequency and severity of outbreaks by reducing the 

isk that an inadvertent introduction of SARS-CoV-2 into a facil- 

ty via a potentially asymptomatic HCW spreads to vulnerable res- 

dents (and then to susceptible staff). Such prewiring steps could 

otentially be used to improve the targeted efficacy of vaccina- 

ion mandates and immunity passes [40] . Finally, the use of weekly 

esting and either prewiring or rewiring to control an outbreak 

uggests that network-based cohorting interventions are likely fea- 

ible given partial population immunity – particularly when used 

o protect vulnerable populations. 
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