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Cellular metabolism of both cancer and immune cells in the acidic, hypoxic, and nutrient-
depleted tumor microenvironment (TME) has attracted increasing attention in recent
years. Accumulating evidence has shown that cancer cells in TME could outcompete
immune cells for nutrients and at the same time, producing inhibitory products that
suppress immune effector cell functions. Recent progress revealed that metabolites in the
TME could dysregulate gene expression patterns in the differentiation, proliferation, and
activation of immune effector cells by interfering with the epigenetic programs and signal
transduction networks. Nevertheless, encouraging studies indicated that metabolic
plasticity and heterogeneity between cancer and immune effector cells could provide us
the opportunity to discover and target the metabolic vulnerabilities of cancer cells while
potentiating the anti-tumor functions of immune effector cells. In this review, we will
discuss the metabolic impacts on the immune effector cells in TME and explore the
therapeutic opportunities for metabolically enhanced immunotherapy.

Keywords: tumor microenvironment, metabolites, immune cell reprogramming, epigenetic modifications, anti-
tumor immunity
INTRODUCTION

Cancer is one of the leading causes of death globally. Although numerous efforts and progress have
been made, curing cancer is still a far-reaching goal thus far. Traditional cancer treatment strategies
include surgery, radiation, and chemotherapy. However, other than the common side-effects,
studies have shown dire consequences of these strategies, such as higher tumorigenic, metastatic
rates, the production of cancer stem cells, the induction of drug resistance, and accelerated aging,
etc. (1, 2). Therefore, in recent years, immune cell therapies have attracted increasing attention as
one of the best alternative treatment strategies for cancer (3–5). Although promising outcomes have
been achieved, such as the application of Chimeric Antigen Receptor (CAR)-T therapy in treating B
cell lymphoma (6–8), researchers made limited progress on using immune cell therapy to treat solid
tumors. At the same time, our group also developed a new immune cell strategy for cancer
immunotherapy, we applied allogeneic Vg9Vd2 gd T cells that originated from healthy donors to
treat solid tumors (9, 10) and found that patients respond to this therapy differently. This suggested
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that whether adoptively transferred immune cells can function
properly in the tumor microenvironment (TME) is the key to
successful clinical therapy. Commonly, the negative efficacy can
be pa r t l y a t t r i bu t ed to the comp l ex i t y and the
immunosuppressive nature of the tumor microenvironments
(TME). Therefore, to design better immune cell therapies in
cancer treatment, scientists need a clear understanding of the
multiple aspects that compose and help shape the complexity of
TME. It is well known that cancer cells can thrive and meanwhile
evade immune cell recognition through “immunoediting” in the
TME. Importantly, the acidic, hypoxic, and nutrient-deficient
TME provides a competitive advantage to cancer cells to
outcompete immune cells (11, 12).

Therefore, an insightful understanding of how TME edits or
suppresses infiltrated immune cells is crucial for developing an
optimal immune cell strategy to treat solid tumors. Till now, the
overview landscape for tumor infiltrated immune cells has been
largely established and can be briefly classified into two
functional populations, immune suppressive and effector cell.
The typical infiltrated suppressive cell includes regulatory T/B
cell (Treg/Breg), myeloid-derived suppressor cell (MDSC), M2-
like Macrophage, etc., which had been reviewed previously (13–
16). As for as infiltrated immune effector cell is concerned, CD8+

cytotoxic T cell, Th1, NK, and gd T cell are representative
populations and have been extensively investigated. In this
review, we will mainly focus on current literature of the
influence of TME on the immune effector cell, particularly, we
are trying to sketch how TME uses metabolites to reprogram
infiltrated immune effector cells to accomplish immune escape.
Under such context, how cancer cells take advantage of the
unique microenvironment to conquer immune cells needs to be
briefly introduced at the start of this review.
TME UNIQUELY INHIBITS ANTI-TUMOR
IMMUNITY

TME is a Low pH Environment
Malignant cells preferentially use aerobic glycolysis rather than
the more energy-efficient mitochondrial phosphorylation as the
energy source, known as the “Warburg effect” (17). The end-
product of the glycolytic pathway is lactate, the main contributor
to the acidic nature of the TME. Studies indicated that lactate
could be further used by cancer cells to fuel their metabolism,
drive M2 macrophage polarization (18), and severely inhibit the
effector functions of cytotoxic, helper T cells (Th1/2, Tc), and
natural killer cells in the TME (12, 19–22). Moreover, lactate
supports the metabolic need for tumor infiltrated Treg (23, 24),
which suppresses effector T cell functions in TME.

Hypoxia is a Hallmark of TME
The uncontrolled cancer cell proliferation inevitably leads to
increased oxygen consumption, together with the malformation
of the tumor vascular systems, leads to insufficient oxygen supply
in the TME, also called hypoxic conditions (25). Hypoxia would
further induce Hypoxia-inducible factor-1 alpha (HIF-1a)
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expression, facilitating the cancer cell adaptation in the
oxygen-deficient TME. HIF-1a expression promotes cancer
glycolysis and evasion of immunosurveillance, at the same
time, tampering with anti-tumor immunity directly by
inhibiting NKG2D expression in NK cells (26, 27), reducing
CD4+ effector T cell differentiation (28), promoting regulatory T
cell differentiation and activity, elevating checkpoint molecule
expression (29, 30), as well as inducing T cell apoptosis (31).
Moreover, Hypoxia could indirectly drive immunosuppressive
metabolites production to support the rapid proliferation of
cancer cells (32). Interestingly, the study also demonstrated in
vitro hypoxic culture conditions would enhance the anti-tumoral
functions of CD8+ T cells (33), and research further suggested
different T cell subpopulations could respond to hypoxia quite
differently. For example, while human CD8+ naïve and central
memory T cells were impaired, the functions (proliferation,
viability, and cytotoxicity) of effector memory CD8+ T cells
could be enhanced in the context of hypoxic conditions (34).
These works showed that hypoxia plays various important roles
in regulating T cell function (35), and hypoxia-inducible factors
(HIF) are involved in mediating the metabolic shift from aerobic
respiration to glycolysis as well as enhancing effector function of
certain T cell sub-populations in both human and murine (33,
34, 36, 37). Similarly, in mouse CD4+ T cells, augmented HIF
activity can promote glycolysis and induce the conversion of
Treg into IFN-g+ TH1-like cells (38–40), however, HIF function
in human CD4+ T cells remains to be fully addressed. Therefore,
a hypoxic condition in TME affects infiltrated immune cells from
multiple dimensions. Nevertheless, even though immune effector
cells can survive and fulfill functions in hypoxic conditions,
functional defects of naive T cell led to failure of its
differentiation into the effector T cell, which can eventually
compromise the immune balance in the host (Figure 1).
Additionally, as far as NK is concerned, hypoxia can inhibit
the expression of activation-, cytotoxicity-, effector-related
molecules of NK cells in both human (41) and murine (42),
even though NK cells can still kill target cells via antibody‐
dependent cellular cytotoxicity (ADCC) (41), which suggested
HIF-1a behave differently in NK comparing to ab T cells.
Similar to NK, gd T cells in the TME of mice model also
exhibited-hypoxia induced antitumor repression, and HIF-1a
also acted adversely (43, 44).
ANTI-TUMOR IMMUNITY OF IMMUNE
CELLS IS DISRUPTED IN TME DUE TO
LOSS OF THE NUTRITIONAL BATTLE

There is a constant nutrition battle between cancer and immune
cells in TME (Figure 1). Nutrients such as glucose, amino acids
in the TME are often consumed faster by tumor cells than
infiltrated immune cells, which thus stripes the energy source
that fuels the effector functions of immune cells (45).
The imbalance of energy consumption and metabolite
productions in the TME further influences the signal
transduction and gene expressions among cells in TME,
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creating an immunosuppressive environment that further
supports tumor growth (11). A few elegant studies done by
Pearce’s group demonstrated that lFN-g production by effector T
cell could be dampened in TME due to the loss of aerobic
glycolysis in T cells (46). Their follow-up study further indicated
that checkpoint blockade antibodies against CTLA-4, PD-1, and
PD-L1 could restore T cell glycolysis and lFN-g production. Ho
et al. showed that glycolytic metabolite phosphoenolpyruvate
(PEP) sustains calcium and TCR signaling of effector T cells,
increasing PEP production could metabolically reprogram
tumor-specific T cell and potentiate their anti-tumor response
in TME (47). Such reports suggested that interfering metabolites
in TME can rebalance the microenvironment to be suitable for
anti-tumor immune effect, and eventually benefit outcomes of
tumor immunotherapy. It should be also noted here that
inhibited glycolytic metabolism of infiltrated CD8+ cytotoxic T
cells in TME does not mean an absolute disaster, because
glycolysis inhibition could enhance the generation of neonatal
memory CD8+ T cells and antitumor function as well (48, 49).
Therefore, the plasticity of infiltrated immune cells should be
profoundly understood and be strategically utilized in
tumor immunotherapy.

Tuning Amino Acids in TME Regulates
Immune Effector Cell Function
Furthermore, amino acid deprivation in TME poses another
metabolic challenge to tumor-infiltrated immune cells. For
instance, restricting methionine intake from the diet was
claimed to effectively slow down tumor growth in the PDX
mice model (50), nonetheless, critically impaired T cell effector
functions as well as TH17 differentiation (51, 52). T cell responds
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to antigenic challenge in the TME by upregulating its amino acid
intake to fuel its effector function. This is a process coordinated
by the T cell antigen receptor (TCR) and determines T cell
differentiation (53). For instance, glutamine is an important
amino acid for the proper development of both cancer cells
and tumor-infiltrated immune cells. Glutamine regulates mTOR
activation (54) and O-GlcNAcylation (55) in effector T cells,
which are keys stages for T cell development and function. It is
also the main carbon source for the oncometabolite 2-
hydroxyglutarate, which regulates the functions and
differentiation of effector T cells (56). Nevertheless, conflicting
results have been shown on whether limiting glutamine
metabolism could strengthen anti-tumor functions of effector
T cells (57–59). Recent studies have demonstrated the essential
roles of other amino acids such as Arginine (60–62), leucine (63),
serine (64) in modulating T cell proliferation and anti-tumor
efficacy. However, due to the complexity of tumor infrastructure,
the distribution and variation of these nutrients within TME still
await further elucidation.

Since there is metabolic plasticity in immune cells, it might be
plausible to metabolically target cancer and immune cells
(glutamine, methionine, etc.) to enhance the immune effector
cell function while inhibiting cancer progression. In this context,
it is an urgent need to better understand the roles of different
TME metabolites and their related metabolic pathways in TME.

Lipid Metabolism Regulates Immune
Effector Cell Function in TME
Lipid metabolism is mainly comprised of fatty acid and
cholesterol metabolism (65). Lipid metabolism could regulate
tumor-infiltrated immune cells, for example, modulate Treg
FIGURE 1 | Tumor microenvironment (TME) can specifically inhibit anti-tumor immunity. TME is a hypoxia environment accompanying by high lactic acid and nutritional
deficiency, thus produces abundant and various immunosuppressive metabolites. Immune effector cells (cytotoxic T, Th1, NK, gd T, etc.) in TME are therefore
comprehensively inhibited or disrupted, including reducing cytokines release, upregulations of checkpoint receptors, cell cycle arrest, cell metabolism disturbance,
increased cell apoptosis, and unfortunately, TME could recruit immunosuppressive immune cells like Treg to reinforce the immunosuppressive microenvironment.
April 2021 | Volume 12 | Article 641883
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functions through influencing mitochondria integrity (66).
Effector T cell activation and proliferation require accelerated
lipid synthesis and cholesterol uptake since both are crucial
components of the cellular membrane. These processes are
mediated by transcription factor sterol regulatory element-
binding proteins (SREBPs). The lack of functional SREBPs
signal in CD8+ T cells leads to attenuated clonal expansion
and effector functions (67); as a contrast, increasing cholesterol
content in the plasma membrane can enhance CD8+ T cell anti-
tumor functions (68). This could be interpreted by a previous
report that memory CD8+ T cells rely on cell intrinsic-lipolysis
to synthesize fatty acid whereas effector CD8+ T cell (Teff)
obtained fatty acids from the external microenvironment (69).
Therefore, lipid metabolism was considered to regulate the
balance between Treg and Teff in TME (70). Nevertheless, it
also showed that high cholesterol in TME could induce CD8+ T
cell exhaustion by overexpressing immune checkpoints, such as
PD-1, TIM-3, LAG-3, and 2B4, and increasing endoplasmic
reticulum (ER) stress (71). Such discrepancy might attribute to
the heterogeneity of TME in different cancer types, thus, albeit
important for effector T cell metabolism and function, targeting
lipid or cholesterol metabolism to potentiate anti-tumor
response requires further investigation.

Though metabolic pathways such as glycolysis and oxidative
phosphorylation (OXPHOS) are seemingly critical for the thriving
of both cancer and infiltrated immune cells, considerable
metabolic heterogeneity and plasticity allow us to differentiate
the two populations. The advent of single-cell sequencing
technologies enables metabolic profiling of TME at a single-cell
resolution. For instance, a previous single-cell study revealed a
metabolic heterogeneity among cells in TME, with mitochondrial
programs being the most distinguishing factor in shaping this
heterogeneity in malignant cells and immune cells (72).
Metabolites and immunosuppressive characteristics and cellular
networks in TME also help shape the metabolic phenotypes and
functions of immune cells (Figure 1). Therefore, discerning and
understanding the diverse metabolic requirements of infiltrated
immune cells that work concertedly against cancer cells enable
researchers to selectively modulate immune cell functions (73).
The knowledge on the minute discrepancy in metabolic
dependency between cancer and immune cells provides
opportunities for uncovering new therapeutic targets.
TME EPIGENETICALLY REGULATES
IMMUNE EFFECTOR CELL FUNCTIONS

“Epi”, a prefix from Greek, literally means “upon, over”, thus
epigenetics is the research focus on sets of instructions directed
upon the genome, which is composed of chromosomes. Epigenetics
studies focus on understanding the heritable changes in gene
expressions that do not involve DNA sequence alteration (74).
DNA sequences and histone proteins form nucleosomes, the
building blocks of chromosomes. Histones provide structural
support to help organize and condense DNA. The epigenetic
instructions on the genome are sets of chemical modifications,
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such as methylation, acetylation, etc. made directly to the DNA
bases or histone proteins that wrap around them. Different from
genetic coding, epigenetic modifications are reversible and
dynamic, allowing changes made as the needs of the cells shift.
The existence of epigenome allows the fine-tuning of gene
expressions in cells. Normally, epigenetic modifications on the
genome are a routine occurrence that maintains the healthy
balance of the body by instructing the body to turn “on” or “off”
certain genes completely as well as slightly “up” or “down” as
required. Therefore, it plays critical roles from determining cell fate
to directing cellular functions. Nevertheless, dysregulated epigenetic
modifications are common in cancer and other diseases (75–78).
Drugs that target cancer cell epigenome also achieve positive
outcomes (79–82). Studies in recent years also demonstrated the
critical role of epigenetic modifications in immune cell functions
(83–86). Progress has been made on developing epigenetic
immunotherapy for cancer treatments (85, 87). Therefore, more
insightful elucidation of epigenetic regulations of both immune cell
function or dysfunction in the TME could inevitably help design
more effective immunotherapeutic strategies for cancer.

As for epigenetic modifications, there are at least three
epigenetic mechanisms that are under intensive investigation,
which include: DNA methylation, histone modifications, and
non-coding RNA (ncRNA)-associated gene silencing. ncRNA-
associated gene silencing is an emerging field that deserves its
own comprehensive review (88, 89). Therefore, in this review, we
only focused on illustrating the epigenetic modifications of DNA
and histone proteins in TME (Figure 2).

TME Stress Induces DNA Methylation of
Immune Effector Cells
DNA methylation is the earliest discovered and heavily studied
epigenetic modification. It is a chemical process that adds a
methyl group (–CH3) to the DNA thereby modifying the
expression and functional status of genes. This process is
catalyzed by DNA methyltransferase (DNMT) and uses
S-adenosyl methionine (SAM) as the methyl group donor
(90–92). In a pan-cancer context, Mitra et al. explored and
discovered varying levels of CpG methylation of immune cell-
type-specific genes that are related to patient survival (93). A
comprehensive retrospective paper emphasized the importance
of clarifying the DNA methylation sites for the development of
cancer biomarkers (94). Point mutation of NADP (+)-dependent
isocitrate dehydrogenases IDH1(R132H), which occur
frequently in glioblastoma, acute myeloid leukemias, etc.,
showed a strong correlation between tumorigenesis and
specific DNA hypermethylation signatures (95). Moreover,
accumulating studies also revealed DNA methylation of cancer
cells can modulate both cancer and infiltrated immune cell
functions in TME. By analyzing sequencing datasets from
BLURORINT Epigenome Project, Schuyler et al. discovered
distinctive trends in methylation patterns of innate and
adaptive immune cells in TME, suggesting distinct lineage-
specific epigenetic mechanisms in regulating tumor infiltrated
immune cells functions (96). Specific DNA methylation
alterations in the circulating immune cells of cancer patients
April 2021 | Volume 12 | Article 641883
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have been observed in head and neck squamous cell carcinoma
(HNSCC) (97), ovarian (97, 98), colorectal (99), hepatocellular
carcinoma (HCC) (100), and breast cancer (101). Due to their
ability to reactivate genes such as tumor suppressors and further
elicit immunity towards tumor cells, the development of DNA
methylation inhibitors together with immunotherapies, present
new cancer treatment opportunities (102).
TME Stress-Induced Histone
Modifications of Immune Effector Cells
Remain Largely Unclear
Covalent post-translational modification (PTM) modifications of
histone, including acetylation, methylation, phosphorylation,
ubiquitylation, and sumoylation, etc., impacting gene expressions
by changing chromatin structures, making it either accessible
(euchromatin) or inaccessible (heterochromatin) for gene
transcriptions (103, 104). Among these epigenetic modifications
on histones, acetylation andmethylation gained the most attention.
Histone acetylation is the addition of an acetyl group to the lysine
residues at histone tails. This reaction is catalyzed by histone
acetyltransferases and utilizes acetyl CoA as the acetyl group
donor. Upon acetylation, the overall charge on histone tails
changes from positive to neutral, weakening the interaction
between DNA and histone, therefore facilitating gene
transcription. On the other hand, histone deacetylation removes
the acetyl group from lysine residues of histone tails, making the
chromatin highly condensed and inaccessible for transcription.
Thus, the balance between euchromatin and heterochromatin
could be tightly regulated by histone acetylation and deacetylation
(105, 106). Nonetheless, studies showed that histone acetylation/
Frontiers in Immunology | www.frontiersin.org 5
deacetylation status were dysregulated in cancer development (107,
108), such as cervical cancer (109), breast cancer (110), leukemia
(108), and non-small cell lung cancer (111, 112). Like histone
acetylation, methylation at the histone tails also regulates gene
expression (113, 114). Histone methylation takes place at both
arginine and lysine residues at histone tails and comes in three
differentflavors-monomethylated, dimethylated, and trimethylated.
Dysregulation of histone methylation has been shown in causing
premature aging and cancers (115), such as colorectal cancer (116,
117), glioblastoma (118), and prostate cancer (119). However, how
histone of immune effector cells is modified in TME remains to be
further investigated, although Silva-Santos’ group investigated the
histonemethylationpatterns and their effect on transcription factors
for gd T cell differentiations in TME of mice model (120). Notably,
different inhibitors for histone deacetylase could lead to either
suppressed (121) or enhanced (122) human gd T cell antitumor
activity. Thus, histonemodification in immune effector cells shall be
an interesting research field of antitumor immunity.
TME METABOLITES EPIGENETICALLY
REPROGRAM BOTH INNATE AND
ADAPTIVE IMMUNE EFFECTOR CELLS

The immunosuppressive nature of TME, mediated by direct
comprehensive cell-cell contact and soluble factors such as
metabolites, results in alterations in gene expressions in
infiltrated immune cells that are partly driven by epigenetic
programs. Although extensive efforts have been made on
analyzing the histone and DNA epigenetic modifications of
cancer cells, little is known about the mechanisms of epigenetic
FIGURE 2 | Metabolites in TME could epigenetically reprogram immune cells to inhibit anti-tumor immunity. Epigenetic modifications mainly include three aspects,
DNA methylation, histone modifications, and non-coding RNA regulations.
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dysregulation of immune cells in the tumor niche (123, 124).
Recent findings indicated that immune cells, especially tumor
infiltrated ones, show metabolic reprogramming on their
differentiation and effector functions. Ovarian cancers-imposed
glucose restriction on tumor infiltrated T cells and dampened
their function through epigenetically dysregulating histone
methylation patterns (125). It’s increasingly considered that
both the innate and adaptive arms of the immune network in
TME are epigenetically regulated by TME metabolites (e.g.,
glucose, glutamine, lactate, aKG, 2-HG, etc.).

In the innate arm of the immunity, studies showed that the
lineage commitment of myeloid and lymphoid lineage cells is
regulated by DNAmethylation (126–128). In the myeloid lineage,
epigenetic modifiers, including Tet methylcytosine dioxygenase 2
(TET2), isocitrate dehydrogenase 1 (IDH1), IDH2, enhancer of
zeste homologue 2 (EZH2) are mutated and lead to defects in
DNA and/or histone epigenetic modifications in several myeloid
malignancies, such as chronic myeloid leukemia (CML) and acute
myeloid leukemia (AML) (129, 130). Zinc Finger E-Box Binding
Homeobox 1 (ZEB1), a transcription factor that acts as a tumor
suppressor in T-cell acute lymphoblastic leukemia (T-ALL), is
repressed due to histone deacetylation and chromatin
condensation at its promoter (131).

In the adaptive arm of the immunity, Bian et al. found that by
manipulating methionine metabolism in TME, tumor cells lower
histone di-methylation at lysine 79 of histone H3 (H3K79me2)
in CD8+ T cells, leading to low effector gene expression thus
impaired effector T cell immunity. Furthermore, inhibition of the
specific and sole methyltransferase for H3K79: DOT1 of CD8+ T
cells both in vitro and in mice led to the loss of H3K79me2 thus
impaired cytotoxicity of CD8+ T cells, which supported their
observations in TME (51). Methionine has also been shown to
play an essential role in Th17 differentiation and function by
regulating histone methylation (52). 2-hydroxyglutarate (2-HG),
an oncometabolite caused by IDH mutations that frequently
occur in gliomas and acute myeloid leukemia, led to genome-
wide histone and DNA methylation alterations (132). S-2-
hydroxyglutarate (S-2-HG) in TME could mediate CD8+ T cell
differentiation by modulating DNA and histone demethylation
status in mice (56). A recent study also indicated that the loss of
2-HG production directly reduced methylation of the Foxp3
gene locus, increasing Fox3 expression, thus reprograms TH17
differentiation towards Treg cells (133). Moreover, low glucose
availability in TME restricts acetyl-CoA level, the acetyl group
donor for histone acetylation (134), and Qiu et al. demonstrated
that acetate supplementation rescued CD8+ T cell effector
function in a glucose restricted environment by promoting
histone acetylation and chromatin accessibility thus promoting
IFN-g production of T cells in TME (135). Besides glucose
restriction, glutamine deprivation resulted in the differentiation
of immunosuppressive regulatory T (Treg) cells from naive CD4+
T cells due to the loss of a-ketoglutarate (aKG), the glutamine-
derived metabolite that is needed for DNA demethylation and
regulates CD4+ T cell TH1 differentiation. Nevertheless, the
addition of aKG analog could shift the differentiation towards
that of a TH1 phenotype (136). Therefore, although the
Frontiers in Immunology | www.frontiersin.org 6
underlying molecular mechanisms on how TME metabolites
serve as activators or inhibitors for epigenetic modifications in
immune cells need to be further elucidated, manipulation of
metabolic conditions of T cells, particularly effector T cells would
provide a potential alternative strategy in the application of T cell-
based immunotherapy.
A NEW FRONTIER OF CONDITIONING
METABOLISM TO ENHANCE IMMUNE
EFFECTOR CELL FUNCTIONS IN
IMMUNOTHERAPIES

Recent advances on epigenetic modification strategies in cancer
treatment provide us mechanistic insights into the interplay of
immune and tumor cells with their environmental cues (80, 87).
DNA methylation inhibitors alone or coupled with other
inhibitors to target the epigenetic processes, such as histone
deacetylases, methylases, and demethylases, are becoming
important treatment regimens in certain cancers, especially
hematological malignancies. The epigenetic reprogramming of
TME in combination with immunotherapies opens a new
therapeutic window for more effective cancer therapies (102).
Epigenetic therapies that coupled epigenetic immune
modulation with immune therapy priming achieve satisfying
preclinical and clinical results in various gastrointestinal cancers
(117, 137). Combining DNA-demethylating agents with histone
deacetylase inhibitors (HDACis) in non-small-cell lung cancer
(NSCLC) treatment regimen reversed tumor evasion and led to
robust T cell anti-tumor response (138). Zou group
demonstrated DNA methylation by enzyme DNMT1 and
histone H3 lysine 27 trimethylation (H3K27me3) by enzyme
EZH2 in tumor led to epigenetic silencing of T helper 1 (TH1)
type chemokine, and subsequent undermined effector T cell
trafficking to TME. Using epigenetic modulators (5-AZA-dC,
GSK126, etc.) to target these two enzymes could reprogram T
cells for more effective T cell immunotherapy (85).

Studies showed that the functions of chromatin-modifying
enzymes such as histone acetyltransferases, deacetylases, and
DNMT strongly depend on metabolic signals such as acetyl-
CoA, Nicotinamide adenine dinucleotide (NAD), and SAM in
TME, epigenetically modulating CD8+T cells activation and
exhaustion (139). Moreover, metabolites in TME could also
upregulate immune checkpoint molecule expressions (140,
141) and suppress immune cell activation (142–144), leading
to dampened efficacy of the immune therapies (145). Therefore,
metabolic conditioning of CD8+ or other immune cell functions
in TME might help overcome the current weaknesses of immune
cell-based immunotherapies. Recent findings in immune cell
metabolic reprogramming indicated the possibilities of clinical
metabolic interventions for cancer treatment (12, 146).
Metabolic intervention by sodium bicarbonate helps neutralize
the lactate acidity in AML, leading to improved efficacy of CD8+T
cell immunotherapy (147). Pearce group showed that transient
glucose restriction (TGR) in CD8+effector T cell before adoptive
April 2021 | Volume 12 | Article 641883
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transfer metabolically condition effector T cell functions and
enhance tumor clearance in mice (148). Additionally, clinical
studies on epigenetic therapy for cancer have been previously
reviewed (81, 149), showing that targeting epigenetic
modifications or regulators in cancer cells would potentiate
anti-tumor immune therapy.
SUMMARY

In this review, we focused on immune effector cells in TME and
reviewed literature about how epigenetic modifications, in the
form of DNA methylation and histone acetylation/methylation,
can be modulated by metabolites and other environmental cues
in TME. We also discussed the current advances in using
metabolic modifiers to epigenetically enhance the efficacy of
immune cell therapy. From this review, one can see that
immune effector cells in TME are comprehensively
reprogramed to be either exhausted effectors, by-standers, or
Frontiers in Immunology | www.frontiersin.org 7
conspirators of cancer cell escape, and metabolites in TME
participate in this ugly job. Nevertheless, opportunities coexist
with the crisis, targeting TME metabolites could potentially be a
valuable supplement to the application of immune cell-based
immunotherapy for cancer.
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