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The flagellum attachment zone (FAZ) is
a large cytoskeletal structure that con-
nects the flagellum skeleton to the cell
body cytoskeleton through the mem-
brane of both the flagellum and the cell
body. The structure can be divided into
eight zones.

The FAZ is a key morphogenetic struc-
ture regulating both cell length and
organelle positioning.

Recent studies have identified numer-
ous FAZ proteins. The function of a
subset of these proteins has been stu-
died by RNAi, revealing a range of dif-
ferent phenotypes from flagellum
detachment to organelle positioning
effects.

The assembly of the FAZ occurs at its
proximal end – the opposite polarity to
that of the flagellar axoneme and par-
aflagellar rod.
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A defining feature of Trypanosoma brucei cell shape is the lateral attachment of
the flagellum to the cell body, mediated by the flagellum attachment zone (FAZ).
The FAZ is a complex cytoskeletal structure that connects the flagellum skele-
ton through two membranes to the cytoskeleton. The FAZ acts as a ‘cellular
ruler’ of morphology by regulating cell length and organelle position and is
therefore critical for both cell division and life cycle differentiations. Here we
provide an overview of the advances in our understanding of the composition,
assembly, and function of the FAZ.

FAZ: A Key Regulator of Morphogenesis in Trypanosomes
Trypanosoma brucei is a protozoan parasite that causes human African trypanosomiasis and
nagana in cattle. The T. brucei trypomastigote is long and slender with a single flagellum that
emerges near the posterior of the cell and is subsequently attached to the cell body for most of its
length as it follows a defined helical path towards the anterior of the cell. A complex structure
termed the FAZ mediates this lateral attachment [1–3]. The FAZ is a key regulator of cell
morphogenesis; disruption of FAZ assembly has been linked to morphogenetic changes such
as flagellum detachment and alterations in cell shape and size [4–10].

The early classifications of trypanosomes relied on their morphological characteristics, with the
terminology for trypanosome shape defined by the relative position of the kinetoplast and the
nucleus coupled with the length of attached flagellum (Figure 1A) [11]. During the T. brucei life
cycle there are substantial changes in cell morphology that appear adapted for pathogenicity
and proliferation in both the mammalian host and the insect vector; these changes have been
linked to modulations of the protein composition of the FAZ (Figure 1B) [12,13].

The structure of the FAZ has been described in detail using various microscopy techniques but
until recently only a few molecular components were known [1,2,14]. Here we discuss the nature
and functions of the FAZ proteins and their assembly in the context of the key roles the FAZ plays
in defining and maintaining the shape and form of T. brucei and ensuring that this shape is
faithfully inherited at division. This linear feature of the trypanosome can be thought of as a
‘cellular ruler’ whose length and constitution facilitates changes in cell form.

Cell Morphology and FAZ Structure
The distinctive shape of a trypomastigote is maintained by a helical, crosslinked, subpellicular
array of microtubules arranged in parallel with their plus ends facing towards the posterior end of
the cell [15]. The mitochondrial genome (kinetoplast) is linked to the flagellum basal body
[16–18]. The flagellum emerges from the cell and is attached to the cell body along most of
its length. Flagellum attachment is mediated by the FAZ, which is a large, interconnected set of
fibres, filaments, and junctional complexes linking the flagellum skeleton through both the
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Figure 1. The Morphologies of Kinetoplastid Parasites and the Life Cycle of Trypanosoma brucei. (A) Cartoons
showing the common morphologies of kinetoplastid parasites with the anterior and posterior of the cell indicated. The
nucleus is the large blue circle and the kinetoplast (mitochondrial DNA) is the small blue oval located at the base of the
flagellum. The trypomastigote morphology has the kinetoplast posterior to the nucleus with a long attached flagellum. In the
epimastigote and promastigote, the kinetoplast is anterior to the nucleus, but whereas the epimastigote has a long attached
flagellum, in the promastigote the flagellum emerges from the anterior pole of the cell. In the amastigote, the kinetoplast is
anterior to the nucleus with a small cell body and the flagellum does not emerge beyond the cell body. (B) A simplified
cartoon showing the life cycle of T. brucei. The metacyclic form infects the mammalian host where it differentiates first into
the slender bloodstream form followed by the stumpy bloodstream form. The fly vector then takes up the stumpy
bloodstream form where it differentiates through several stages before differentiating into the mammalian infective
metacyclic form in the salivary gland of the fly. For most of its life cycle T. brucei exists as a trypomastigote [indicated
by (t)] except for the proventricular epimastigote, the short epimastigote, and the attached epimastigote forms, where it has
epimastigote morphology [indicated by (e)].
flagellum and cell body membranes to a specialised FAZ filament and associated microtubule
quartet (MtQ) [1,2,14,15]. The MtQ is antiparallel to the other subpellicular microtubules in the
cell body. The FAZ and adjacent MtQ generate an asymmetric seam within the microtubule
corset. In transverse sections the organisation of the corset microtubules (polarity: plus end at
posterior end of cell) is interrupted by the MtQ (polarity: minus end at posterior end of cell) and the
FAZ [15]. Five different linkage types might therefore exist to orchestrate this internal organisation
of the FAZ, besides those that link components to the cell membrane (Figure 2). The identifica-
tion of components of these linkages will be important for our understanding of FAZ biogenesis
and function. The definition of trypanosome shape and polarity is therefore derived from the
internal cytoskeleton and the flagellum position; this arrangement then coordinates the position
of the single-copy organelles [19,20].
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Figure 2. Organisation of the Flagellum Attachment Zone (FAZ) in Trypanosoma brucei. (A) Simplified cartoon of
the key components of a T. brucei trypomastigote cell. Arrows indicate the flagellum, FAZ, flagellar pocket, nucleus, and
kinetoplast, with the FAZ highlighted in red and the nucleus and kinetoplast highlighted in blue. The dashed line across the
flagellum and FAZ indicates the region where the transverse section in (B) and (C) was taken. (B) Transmission electron
microscopy image showing a transverse section of the FAZ with the different zones and structures within them.
Abbreviations: ER, endoplasmic reticulum; MTQ, microtubule quartet; PFR, paraflagellar rod. Reproduced from [2]. (C)
Cartoon of the transverse section shown in (B) highlighting the asymmetric seam generated in the corset microtubules by
the FAZ and MTQ. The five different connections between the various components are shown.
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Moving towards a molecular description of the FAZ will require definition of precise protein
locations within this complex structure; therefore, in Figure 2 we have defined the major
structural zones of the FAZ. Combinations of these zones can now be used to describe different
domains of the FAZ, creating a hierarchical descriptive terminology (Figure 2). There is some
overlap between the domains but given the present state of knowledge we believe it is useful to
have a level of ambiguity.
(i) Zones 1 and 2 constitute the FAZ flagellum domain.
(ii) Zones 2, 3, and 4 constitute the FAZ intracellular domain.
(iii) Zones 4, 5, and 6 constitute the FAZ filament domain.
(iv) Zone 7 constitutes the MtQ domain.
(v) Zone 8 constitutes the MtQ–FAZ linker domain.

There is an invagination of the cell membrane around the base of the flagellum called the flagellar
pocket (FP), around which the MtQ wraps helping to define its overall shape. The FP is the only
known site for exo- and endocytosis in the trypanosome and is the location of many receptors
such as the transferrin receptor [21–23]. The FP forms an interface where signals to/from the
host are integrated and processed and hence has a central role in trypanosome pathogenicity.
The FAZ also has a potential role in pathogenesis, as the bloodstream form (BSF) in all
trypanosomatids examined is a trypomastigote (Figure 1A), and therefore the evolution of
extended flagellum attachment appears advantageous in this ecological niche [24]. One
possible advantage of flagellum attachment is that it allows host immune system factors
bound to the flagellum to be moved towards the FP by hydrodynamic flow or other mechanisms
[24,25].

The overall FAZ structure has similarities to cell–cell adhesive junctions such as desmosomes in
multicellular organisms and hence was described in trypanosomes using the term macula
adherens [1]. Desmosomes are large, complex cytoskeletal structures spanning two plasma
membranes normally connecting intermediate filament bundles in separate adjacent cells [26];
however, autocellular adherens junctions between regions of the same cell like the FAZ are found
in certain cells of the trachea of Drosophila [27]. Desmosomes comprise two ‘half units’
positioned on adjacent cells; a half unit contains a cytoplasmic plaque that connects intermedi-
ate filaments to transmembrane proteins called cadherins that bind to the cadherins of another
half unit [28]. The analogy of the desmosome and protein interaction domains within it is
potentially useful for informing molecular models for the organisation of the FAZ and flagellum
adhesion (FLA) proteins, as discussed below.

FAZ Protein Location Often Predicts RNAi Phenotype
FAZ molecular components were first revealed using monoclonal antibodies and these were
then used to identify the first FAZ proteins and their encoding genes [3,4,29]. Subsequent FAZ
proteins have been identified using various techniques (Table 1). An important advance in
understanding FAZ protein function will be the positioning of the FAZ proteins in Table 1 into the
specific FAZ zones, although we recognise the difficulties. As a start, it is now possible to locate
some known FAZ proteins to their respective FAZ domains. We have made an initial attempt to
integrate some of these proteins into a model of their potential interactions (Figure 3). This is the
first step towards eventually allowing us to understand the interaction details in the same depth
as those of the desmosome (Figure 3).

In addition to the FAZ domains’ transverse heterogeneity, there is also heterogeneity in protein
localisation longitudinally along the FAZ length [5,30]. We now discuss FAZ proteins and their
function and demonstrate that a pattern has emerged linking the RNAi phenotype observed and
protein localisation. In general, results so far indicate that if the FAZ protein is located within the
FAZ flagellum domain, RNAi leads to shortening of the FAZ and epimastigote-like morphology,
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Table 1. Known FAZ Proteins

Gene ID Name Localisation Localisation Method Discovery Route Molecular
Weight (kDa)

Known
Domains

Coiled
Coils

Repeats BSF or PCF
Expression

Refs

Tb927.8.4010 FLA1 Intracellular
domain

Immunofluorescence Monoclonal
antibodies

59 NHL domain No No PCF [29]

Tb927.8.4060 FLA2 Intracellular
domain

Not done Bioinformatic 64 NHL domain No No BSF [6]

Tb927.8.4110 FLA3 Intracellular
domain

Not done Bioinformatic 64 NHL domain No No BSF [8]

Tb927.8.4050 FLA1BP Intracellular
domain

eYFP tagging and
immunofluorescence

Immunoprecipitation 83 NHL domain No No PCF [8]

Tb927.8.4100 FLA1BP Intracellular
domain

eYFP tagging and
immunofluorescence

Immunoprecipitation 83 NHL domain No No PCF [8]

Tb927.5.4570 FLA3 Intracellular
domain

Immunofluorescence Lectin binding 89 NHL domain No No BSF [43]

Tb927.5.4580 FLA3 Intracellular
domain

Immunofluorescence Lectin binding 89 NHL domain No No BSF [43]

Tb927.10.2880 Ca2+

channel
Intracellular
domain

Immunofluorescence Proteome validation 304 Ion transporter Yes No Both [62]

Tb927.10.8830 FAZ5 Intracellular
domain

eYFP tagging Immunoprecipitation 67 Chaperone J
domain

Yes No Both [30]

Tb927.10.14320 FAZ9 FAZ filament
domain

eYFP tagging Bioinformatic 122 ARM repeats Yes No Both [30]

Tb927.11.1090 ClpGM6 FAZ flagellum
domain

Immunofluorescence RNAi screen >660 Calpain Yes Yes Both [9]

Tb927.8.4780 FLAM3 FAZ flagellum
domain

eYFP tagging Proteome validation 468 Clu domain Yes Yes Both [13]

Tb927.1.4310 FAZ2 FAZ filament
domain

eYFP tagging Immunoprecipitation 184 No domains Yes Yes Both [30]
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Table 1. (continued)

Gene ID Name Localisation Localisation Method Discovery Route Molecular
Weight (kDa)

Known
Domains

Coiled
Coils

Repeats BSF or PCF
Expression

Refs

Tb927.11.12530 FAZ3 FAZ filament
domain

eYFP tagging Immunoprecipitation 91 No domains Yes No Both [30]

Tb927.7.3330 FAZ10 Unknown Immunofluorescence BioID 503 PFAMB506 Yes Yes Both [63]

Tb927.4.2060 FAZ8 FAZ filament
domain

eYFP tagging Bioinformatic 67 PFAMB506 Yes No Both [30]

Tb927.4.3740 FAZ1 FAZ filament
domain

Immunofluorescence
and immunoelectron
microscopy

Monoclonal
antibodies

193 PFAMB506 Yes Yes Both [4]

Tb927.4.2080 CC2D FAZ filament
domain

Immunofluorescence
and eYFP tagging

Proteome validation 105 C2 domain/
PFAMB14968

Yes No Both [5]

Tb927.9.10530 FAZ4 FAZ filament
domain

eYFP tagging Immunoprecipitation 119 PFAMB506 Yes No Both [30]

Tb927.10.840 FAZ6 FAZ filament
domain

eYFP tagging Immunoprecipitation 195 WD domain/
PFAMB506

Yes No Both [30]

Tb927.4.5340 FAZ11 Unknown Immunofluorescence BioID 95 No domains Yes No Both [63]

Tb927.10.15390 FAZ7 FAZ filament
domain

eYFP tagging Immunoprecipitation 124 Kinesin Yes No Both [30]

Tb927.11.13230 TbVAP FAZ filament
domain (ER)

Immunofluorescence Proteome validation 24 MSP domain No No Both [20]

Tb927.9.13820 KMP11 Cell body and
flagellum

Immunofluorescence Immunoprecipitation 11 KMP11 domain Yes No Both [47]

Tb927.9.13880 KMP11 Cell body and
flagellum

Immunofluorescence Immunoprecipitation 11 KMP11 domain Yes No Both [47]

Tb927.9.13920 KMP11 Cell body and
flagellum

Immunofluorescence Immunoprecipitation 11 KMP11 domain Yes No Both [47]

Tb927.11.2590 FAZ12 FAZ filament
domain

Immunofluorescence BioID 121 No domains Yes No Both [48]
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Table 1. (continued)

Gene ID Name Localisation Localisation Method Discovery Route Molecular
Weight (kDa)

Known
Domains

Coiled
Coils

Repeats BSF or PCF
Expression

Refs

Tb927.3.1020 FAZ13 FAZ filament
domain

Immunofluorescence BioID 54 No domains Yes No Both [48]

Tb927.8.6980 FAZ14 FAZ filament
domain

Immunofluorescence BioID 95 no domains Yes No Both [48]

Tb927.11.3300 TbSAS4 Anterior tip of
FAZ filament
domain

Immunofluorescence BioID, bioinformatics 108 T-complex
protein 10 C
terminus

Yes No Both [31,48]

Tb927.8.7070 FAZ15 Unknown Immunofluorescence Phosphoproteomics 35 No domains No No Both [31]

Tb927.5.3460 FAZ16 Unknown Immunofluorescence Phosphoproteomics 57 LysM domain No No Both [31]

Tb927.10.7210 FAZ17 Unknown Immunofluorescence Phosphoproteomics 26 No domains No No Both [31]

Tb927.11.15800 TOEFAZ1 Anterior tip of
FAZ filament
domain

Immunofluorescence BioID,
phosphoproteomics

90 No domains Yes No Both [31]

Trend
s

 in
 P
arasitology,

 A
p
ril

 2016,
 V
ol.

 32,
 N
o.

 4
 

315



FAZ5

FAZ2

FAZ1

FAZ9

CC2D

FLA1
FLA1BP

ClpGM6FLAM3

?

??

KMP11
?

?

??

Desmoglein

Desmocollin
Key:

Cadherins

Plakophilin

Plakoglobin

Desmoplakin

Intermediate
filaments

Intermediate
filaments

Cytoplasmic
plaque

Cytoplasmic
plaque

Extracellular core

FAZ flagellum
domain

Intercellular
domain

FAZ filament
domain

Flagellum
skeleton

??

(A) Desmosome

Ca2+ ?

 (B) Flagellum a�achment zone

Figure 3. Comparison of the Molecular Organisation of a Desmosome with a Flagellum Attachment Zone
(FAZ). (A) Desmosomes are found in multicellular organisms and are large structures that connect together the cytoskeleton
of two cells through two plasma membranes; hence, they can be considered analogous to the FAZ. The desmosome model
was adapted from [28] and shows the key protein components. The cadherins desmocollin and desmoglein constitute the
extracellular core of the desmosome and connect the two halves of the desmosome together. The cadherins are connected
into the cytoplasmic plaque by various proteins including plakophilin, plakoglobin, and desmoplakin that in turn bind to the
intermediate filaments. (B) Potential interactions and localisations of a selected group of FAZ proteins are shown.
Interactions with experimental evidence are shown with a solid line with other possible interactions shown with a dotted
line and question mark. Calcium ions are included in the model, as Vickerman noted that Trypanosoma brucei harvested
from an animal and then grown in blood containing citrate (a calcium chelator) had detached flagella [1]. This is a highly
speculative model; however, it will provide a framework on which to integrate new insights into FAZ protein function and
helps to highlight the paucity of knowledge about the FAZ compared with the desmosome.
whereas if the protein is present in the FAZ intracellular domain RNAi results in flagellum
detachment [6,8–10]. Finally, if the protein is present in the FAZ filament domain RNAi results
in either flagellum detachment or kinetoplast or nucleus positioning effects [4,5,31].

FAZ Flagellum Domain (Zones 1 and 2)
We showed that calpain-like protein GM6 (ClpGM6) localised to the FAZ flagellum domain and
on depletion of this protein the length of flagellum attachment to the cell body was shortened [9].
316 Trends in Parasitology, April 2016, Vol. 32, No. 4



The cells underwent a remarkable morphological transition, changing from a trypomastigote to
an epimastigote-like configuration with the kinetoplast juxtaposed or anterior to the nucleus with
a much shorter FAZ. There was also a coordinate relocation of associated organelles such as
the Golgi and FP. Remarkably, ClpGM6 RNAi was not lethal and cells with the epimastigote-like
morphology continued to proliferate in culture; however, the ability of this cell line to infect tsetse
flies has not been assessed. The phenotype resulting from the depletion of FLAgellar Member 3
(FLAM3), another FAZ flagellum domain protein recently examined [7,10], showed similarity to
ClpGM6; depletion of FLAM3 resulted in the cells transitioning from a trypomastigote to an
epimastigote-like morphology [10]. We defined a dependency of expression between FLAM3
and ClpGM6, with loss of one resulting in the reduction of expression of the other [10]. It is
possible that ClpGM6 and FLAM3 are part of the same complex, suggesting that individual FAZ
proteins group into large-scale molecular complexes and facilitating an understanding of the FAZ
assembly hierarchy.

During the T. brucei life cycle, trypanosomes adopt different morphologies with different FAZ
lengths (Figure 1B). Rotureau and colleagues [13] examined the FAZ during the life cycle and
showed that there was a drop in labelling with monoclonal antibodies specific to the FAZ
between mesocyclic and epimastigote cells coinciding with a switch from trypomastigote to
epimastigote morphology. In trypanosomes, protein expression regulation occurs at the post-
transcriptional level and the RNA-binding proteins ALBA3/4 have been implicated in the
transition to the epimastigote form [32]. On knock down of ALBA3/4, cells begin to adopt
an epimastigote morphology and RNA-seq analysis of these cells showed that the ClpGM6
transcript was the one most highly downregulated [32]. The FAZ has previously been implicated
in nuclear positioning during cell division [4]; does this drop in FAZ protein expression allow the
migration of the nucleus that occurs between the mesocyclic and epimastigote forms?

FAZ Intracellular Domain (Zones 2, 3, and 4)
FLA1 was identified in T. brucei due to its similarity to the FAZ protein GP72 from Trypanosoma
cruzi [29]. Interestingly, GP72 was identified by an anticarbohydrate monoclonal antibody,
WIC29.26, and subsequent publications have revealed that the glycoprotein has an unusual
sugar composition [33–37]. Several studies revealed the involvement of specific carbohydrates
and glycoproteins in flagellum attachment, including one publication that showed that loss of
GDP-fucose production resulted in flagellum detachment [6,29,38–43]. However, overall the
role of specific carbohydrates has not been much explored; this seems odd given the signifi-
cance of the early finding, as the presence of glycoconjugates adds another layer of complexity
and another potential regulatory step to the FAZ structure.

Both FLA1 and GP72 are transmembrane proteins with a small intracellular domain and a
glycosylated extracellular region containing NHL repeats, which is a widespread protein inter-
action domain [44]. Immunoprecipitation of FLA1 identified FLA1-binding protein (FLA1BP),
which is predicted to be a glycosylated transmembrane protein with a large extracellular region
containing NHL repeats and a small intracellular domain [8,45]. Using a combination of tagged
FLA1 and FLA1BP and RNAi, Sun and colleagues demonstrated that FLA1 is located on the cell
body membrane and FLA1BP on the flagellum membrane [8]. Given that these proteins interact,
we suggest they may be functionally analogous to the desmosomal cadherins by connecting the
FAZ flagellum and FAZ filament domains (Figure 3).

The interaction between FLA1 and FLA1BP was shown in procyclic forms (PCFs) but the
expression of these proteins is downregulated in BSFs [46]. The BSF surface coat (variant
surface glycoprotein) is structurally distinct from the PCF surface (procyclins), suggesting a
reason why BSF equivalents of FLA1 and FLA1BP have evolved. T. brucei contains two proteins
(FLA2 and FLA3) that have �60% identity to FLA1 with the same domain structure and are
Trends in Parasitology, April 2016, Vol. 32, No. 4 317



upregulated in BSFs [6,8], and therefore are likely to be able to substitute for FLA1. In addition,
another BSF-specific protein that localises to the FAZ was identified encoded by near-identical
genes (Tb927.5.4570 and Tb927.5.4780) that has �40% identity to FLA1BP with the same
domain structure; unfortunately, this was also named FLA3 [43,45]. Currently there is no
evidence of interaction between FLA3 [43,45] and FLA2/3 [6,8] proteins and so this confusing
nomenclature will best be refined when more is known about the biochemistry of these proteins.

FLA1 depletion led to flagellum detachment and eventually cell death, showing that FLA1 is
required for flagellum attachment [6]. Interestingly, the T. cruzi knockout cell line of the FLA1
orthologue GP72 was viable despite having detached flagella [38,39]. The expression of the
T. cruzi GP72 protein in T. brucei led to flagellum detachment and the cells were viable, albeit
with a much reduced growth rate. The sequence divergence between FLA1 and GP72 appears
to have resulted in incompatibilities between the binding interfaces required to ensure flagellum
attachment, providing a potential route to dissect the function of the different domains of FLA1
[6]. As with FLA1 RNAi, FLA1BP knock down resulted in full-length detachment of the flagellum
and also a reduction in both FAZ length and cell body length, resulting in the production of cells
with an epimastigote-like morphology. The appearance of cells with an epimastigote-like
morphology fits with the RNAi phenotype pattern described above, as FLA1BP is located
within the FAZ flagellum domain in addition to being in the FAZ intracellular domain. However,
unusually for a flagellum detachment phenotype, the cells continued to proliferate [8]. In the
literature there is no clear correlation between growth and the amount of flagellum detachment.
Our experience suggests that how cells are handled and prepared for microscopy has a major
effect on the apparent level of detachment. It will be of interest to make quantitative comparisons
over long periods of culture with careful handling to ensure that the images of the cells on
the slide are representative of the live cells in the culture flask. Experience shows that, in some
protocols, during the washing and settling of the cells onto a slide the flagellum tends to
become detached if the FAZ structure has been weakened; therefore, the speed and duration of
the centrifugation washing steps, resuspension protocols, and the slide adherence method all
have an effect. Comparative studies of different mutant phenotypes using one protocol will be
useful in the future, as will careful comparison of live cells or cells fixed directly in culture with
those imaged as fully processed, labelled cells or cytoskeletons.

FAZ Filament Domain (Zones 4, 5, and 6)
Both coiled-coil C2 domain-containing protein (CC2D) and FAZ2 localise to the FAZ filament
domain and depletion of either leads to inhibition of FAZ assembly causing full-length flagellum
detachment and cell death [5,30,47]. The reduction in FAZ length led to a decrease in cell body
length during the knock down of both CC2D and FAZ2. A FAZ1 stub was still able to form near
the FP in these knock down cells, suggesting that FAZ nucleation can occur without a full
complement of FAZ proteins [5,47].

FAZ1 is also found in the FAZ filament domain; however, the phenotype observed during FAZ1
knock down was different. There was no full-length flagellum detachment; instead, there were
flagellum attachment defects. There was also no change in cell body length, as there was no
effect on overall FAZ length [4]. However, the FAZ architecture was disorganised, with changes
in the labelling patterns of anti-FAZ antibodies [4].

The function of FAZ9, a FAZ filament domain protein, has been analysed by RNAi [30,31]. On
FAZ9 depletion the flagellum remained attached to the cell body; however, the kinetoplast was
positioned anterior to the nucleus. This is similar to the ClpGM6 and FLAM3 RNAi phenotypes
except that there was no change in the overall length of the FAZ on FAZ9 RNAi [9,10,31]. The
phenotypes observed for the knock down of these FAZ filament domain proteins may be
dependent on the zone in which the proteins are found. FAZ9 may be located more towards
318 Trends in Parasitology, April 2016, Vol. 32, No. 4



zone 6, hence affecting kinetoplast and nucleus positioning (Figure 2), whereas CC2D and FAZ2
may be in zone 4, resulting in flagellum detachment with FAZ1 in zone 5, where knock down has
a less dramatic effect on flagellum attachment.

Zoids are anucleate cytoplasts that are commonly observed in FAZ protein RNAi phenotypes
[4,5]. They have a kinetoplast, basal body, and flagellum, suggesting that the positioning of the
cytokinesis furrow facilitates inclusion of such organelles via the distal end of the FAZ marking the
site of cytokinesis ingression [15]. Also, a clear correlation between FAZ length and cell body
length exists and hence coordination between FAZ assembly and the subpellicular microtubule
assembly [5,8,47]. Overall, these data on the function of the FAZ and its constituent proteins
demonstrate that the FAZ acts as a cellular ruler for trypanosome morphology, with changes in
FAZ protein composition determining both FAZ length and cell body size and also organelle
layout.

Besides the dynamic nature of the FAZ as a cellular ruler of cell architecture, it is also likely that it
operates to provide a physical platform for spatial biochemistry enabling the specific localisation
of regulatory components like polo-like kinase [31,48–51].

FAZ Proximal-End Assembly and Implications
We have elucidated the site of FAZ assembly, using cells where the expression of FAZ proteins
present in each of the three domains of the FAZ was under the control of an inducible promoter
[30]. For every protein examined, the newly synthesised FAZ proteins localised to the proximal
end of the FAZ (the FP end), which is at the opposite end to the addition site for flagellar
components, showing that the overall flagellum/FAZ structure has two distinct assembly sites
(Figure 4A). Others have subsequently confirmed this result and reiterated our original model
[47].

Our FAZ proximal addition assembly model was confirmed by examining RNAi knock down
phenotypes. The model predicts that in a cell where the construction of a new FAZ had begun
before initiation of FAZ protein knock down, the distal end of the FAZ structure would be stably
assembled; however, the proximal end would be depleted in the targeted FAZ protein. After
short RNAi inductions of FLA1 or FAZ5 RNAi, a loop of detached flagellum was observed at the
proximal end near the FP, demonstrating that the distal end of the FAZ was stable and the
proximal end unstable [30].

The opposite-polarity assembly of the FAZ and flagellum has many implications for the con-
struction of this complex cytoskeletal interface. We focus on:
(i) coordinating assembly between the flagellum and FAZ;
(ii) FAZ protein targeting;
(iii) FAZ and flagellum connections;
(iv) hierarchy and temporal order of assembly;
(v) maintenance of attachment.

Coordination
The addition of LiCl has been shown to lengthen the flagellum in several organisms including
trypanosomes and is therefore a useful method for manipulating the flagellum and the FAZ
structure. In the presence of LiCl, trypanosomes assembled both a longer flagellum and a longer
FAZ [8]. However, disruption of intraflagellum transport (IFT) by RNAi resulted in cells that were
unable to assemble a flagellum yet maintained their old flagellum [52]. There was a clear FAZ1
signal associated with the expected position of the new flagellum, although the length of the FAZ
was much shorter [52]. Moreover, IFT RNAi also resulted in the generation of a flagellar sleeve – a
thin tube of membrane pulled out by the flagella connector – and this sleeve was laterally
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Figure 4. The Flagellum Attachment Zone (FAZ) Assembly ‘Pull’ Model. (A) A simplified schematic of the
Trypanosoma brucei cell cycle. The cell begins to assemble a new flagellum and FAZ (highlighted in red) alongside the
old one, followed by kinetoplast division (2). The new flagellum continues to extend alongside the old flagellum until the ‘stop
point’ is reached after which the new flagellum does not extend along the old flagellum any further (3). After the stop point is
reached the two kinetoplasts separate further, followed by mitosis (4) and finally cytokinesis (5). (B) The FAZ assembly ‘push’
model with the assembling FAZ pushing out the assembled FAZ as the flagellum elongates. FAZ proteins are transported to
the proximal site of assembly; however, the exact mechanisms that target these components remain to be elucidated. (C)
The FAZ assembly ‘pull’ model with a putative protein complex in the flagellum ‘pulling’ out the assembling FAZ.
attached to the cell body via a FAZ [53]. Together these findings suggest that there is
coordination between flagellum and FAZ extension and that initial nucleation and extension
of the FAZ can occur without an assembling flagellum skeleton but for full-length FAZ assembly
an intact flagellum structure is required.
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How is flagellum assembly linked to that of the FAZ? As addition of FAZ proteins to the
assembling FAZ occurs at the proximal end, two simple models can be envisaged for the
forces that coordinate the elongation of the FAZ with the flagellum. First, FAZ subunit addition at
the proximal end could ‘push’ the FAZ along as the flagellum extends (Figure 4A,B). Second, a
structure associated with the assembling end of the flagellum and connected to the distal end of
the FAZ could ‘pull’ the FAZ, allowing new subunits to be added at the proximal end (Figure 4C).
In T. brucei the new flagellum extends alongside the old flagellum until it reaches the stop point
and then does not extend any further along the old flagellum [53]. It should be noted that the pull
force is required only until the stop point has been reached and after this the FAZ remains fixed in
position relative to the cell body and the extension of the cell posterior allows the proximal-end
assembly of the FAZ to continue (Figure 4A).

Targeting
The FAZ structure is complex, with proteins present in the flagellum, cell body, membranes, and
intermembrane spaces, and thus will require targeting or retention mechanisms to ensure
correct localisation; it is likely that the components located in the flagellum will have targeting
or retention motifs different to those in the cell body.

Moreover, there are proteins associated with the membrane of either the flagellum or the cell
body, which will be trafficked through the FP. However, the stage at which these proteins are
sorted is not known: does it occur before fusion to the FP, giving rise to two different vesicle
populations that then fuse in distinct regions of the FP, or does the sorting occur within the FP?
Currently, no targeting signal for any FAZ protein has been fully delineated; however, the short
cytoplasmic domain of both FLA1 and FLA1BP was shown to play a role in their localisation to
the FAZ [8].

Further to this, how and where is the intracellular domain formed that connects the flagellum
and cell body membranes, given that proteins present in zones 2 and 4 will be trafficked
differently either to the flagellum or to the cell body? Do the proteins on opposing mem-
branes snap together in the neck region of the FP while being assembled into the FAZ
structure?

We suggest that FAZ substructures may be preassembled and then transported to the FP
region where they are integrated into the FAZ but accumulate if FAZ or flagellum assembly is
disrupted. This would be analogous to desmosome assembly, where preassembled desmo-
somal complexes are stored in vesicles and then transported to the cell surface when required
[54]. Perhaps an accumulation of electron-dense structures at the base of the flagellum in the T.
cruzi GP72 knockout cell line represents evidence of this [55].

Connections
The FAZ and flagellum most likely slide over each other as they are assembled and so
understanding when the connections between the two structures are made and when they
are consolidated is important. The sliding is potentially comparable with the actin/myosin sliding
filament model in muscle where overall connectivity is maintained but individual connections are
made and broken consecutively. Initially weak connections may be established that are easily
broken as the two structures slide over each other, being consolidated only once the structure is
mature. Increasing FLAM3 content may be an indication of the strengthening and maturing of the
FAZ–flagellum connections [10].

Hierarchy
We know little about the hierarchy and temporal order of FAZ assembly. RNAi depletion of an
intracellular domain protein (FAZ5) for a short period of time resulted in detachment of the new
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Outstanding Questions
Where are the known FAZ proteins
specifically located within the FAZ zonal
structure?

What are the targeting signals that
ensure the FAZ proteins are correctly
localised?

Which FAZ proteins interact with each
other and in what temporal order to
orchestrate assembly?

What is the function of the FAZ in kinet-
oplastid cell types with little flagellum
attachment?

How are the FAZ assembly processes
coordinated within two different cellular
compartments?
flagellum at its proximal end and a FAZ flagellum domain protein (ClpGM6) signal was lost from
the detached portion of the flagellum; however, a cell body FAZ protein (FAZ1) signal remained
present below the detached section [30]. This suggests that the flagellum FAZ proteins require
the membrane FAZ proteins for assembly and that filament assembly is independent of flagellum
and membrane FAZ components. In addition we have demonstrated the interdependency of
FLAM3/ClpGM6 expression and localisation [10].

Maintenance
The mature flagellum and FAZ must exhibit strong connections between the structures to
ensure that the flagellum remains attached despite beating. Flagellum detachment and
attachment errors were observed on the knock down of certain flagellar proteins such
as calmodulin, KIF9B, and PF16. Depletion of calmodulin or KIF9B results in severe defects
in the assembly of an extra-axonemal structure called the paraflagellar rod (PFR), whereas
loss of PF16 results in aberrant orientation of the central-pair microtubules [56–58]. KIF9B
depletion causes loops of flagellum to become detached, whereas PF16 or calmodulin
knock down results in full-length flagellum detachment. KIF9B depletion did not affect FLA1
or FLAM3 addition [7], demonstrating that FAZ assembly had occurred. Cells with detached
flagella after calmodulin knock down showed a distinct line of blobs along an indent in the
cell surface on scanning electron microscopy. These blobs appear to be flagellum attach-
ment structures, suggesting that the flagellum was initially attached but then became
detached [56]. Overall these data suggest that the maintenance of flagellum attachment
requires an intact axoneme or PFR skeleton but these structures are not required for FAZ
assembly.

FAZ in Other Kinetoplastids
Many kinetoplastids have an attached flagellum and all FAZ proteins identified so far are
kinetoplastid specific. FAZ function has mainly been studied using trypanosomes, so the FAZ
function in species such as Leishmania that exist as either promastigotes or amastigotes is
rather more enigmatic. It is possible that the FAZ functions, as in T. brucei, to define flagellum
axial positioning and cytokinesis events [15]. The kinetoplastids are able to adopt a wide
variety of different shapes; however, the genomes of these organisms have well-maintained
chromosomal synteny and sequence conservation between genes [59–61]. We have shown
that the morphological changes that occur during ClpGM6 RNAi indicate that relatively small
changes in gene expression can cause major changes in cell shape [9]. Therefore, different
trypanosome morphologies are likely to be assembled using the same basic set of building
blocks [9].

Concluding Remarks
Here we have argued that the FAZ acts as a cellular ruler for trypanosome morphology and is
crucial in determining the overall length of the cell and the positioning of the organelles within it.
Furthermore, it is likely that the wide range of kinetoplastid morphologies can be achieved
through small modulations in expression of a conserved FAZ gene set rather than requiring a
different gene set for each specific morphology. This conclusion has implications for under-
standing kinetoplastid evolution and cell-type gene expression.

An ever-expanding number of FAZ proteins are being revealed; however, currently this is little
more than a list. Looking forwards we need to define subcomplexes and the assembly
interdependencies of complexes; this will be greatly aided by localising these proteins into
the FAZ zone system defined here and elucidating their targeting or retention mechanisms, and
we have highlighted these issues in the Outstanding Questions. This area of trypanosome cell
biology is at last providing much-needed insight into how these parasites acquire and morph cell
shape and form.
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