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Abstract: Migraines are a common disease with limited treatment options and some dietary factors
are recognized to trigger headaches. Although migraine pathogenesis is not completely known,
aberrant DNA methylation has been reported to be associated with its occurrence. Folate, an essential
micronutrient involved in one-carbon metabolism and DNA methylation, was shown to have beneficial
effects on migraines. Moreover, the variability of the methylenetetrahydrofolate reductase gene,
important in both folate metabolism and migraine pathogenesis, modulates the beneficial effects of
folate for migraines. Therefore, migraine could be targeted by a folate-rich, DNA methylation-directed
diet, but there are no data showing that beneficial effects of folate consumption result from its epigenetic
action. Furthermore, contrary to epigenetic drugs, epigenetic diets contain many compounds, some
yet unidentified, with poorly known or completely unknown potential to interfere with the epigenetic
action of the main dietary components. The application of epigenetic diets for migraines and other
diseases requires its personalization to the epigenetic profile of a patient, which is largely unknown.
Results obtained so far do not warrant the recommendation of any epigenetic diet as effective in
migraine prevention and therapy. Further studies including a folate-rich diet fortified with valproic
acid, another modifier of epigenetic profile effective in migraine prophylaxis, may help to clarify
this issue.
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1. Introduction

The role of diet in the prevention and treatment of human disorders is still controversial, but many
dietary compounds that can contribute to disease pathogenesis have been identified [1]. It is estimated
that most human cancers in the USA are caused by external factors and diet (excluding alcohol and
food additives) is the main causal external factor responsible for about 35% of cancer-related deaths [2].
Some “familial cancers” are, in fact, not attributed to the same genetic constitution of family members,
but rather their similar dietary habits. Therefore, diet should be considered as a possible factor or
confounder in the pathogenesis of many diseases. This raises the question of whether diet modification
can be important in the prevention and therapy of diseases, not only by the avoidance of dietary
elements with recognized detrimental roles in pathophysiology (e.g., an elimination diet), but also by
the addition of compounds with specific mechanisms of action.

Headache disorders including migraines, seem to be especially prone to diet as it is generally
believed that some dietary ingredients and additives may trigger headache attacks [3,4]. Therefore,
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using an elimination diet to avoid a migraine trigger may be effective in migraine prevention, but few
rigorous studies on the role of diet in headache prevention have been performed and most of them
lack appropriate controls (reviewed in [5]). On the other hand, a more comprehensive diet containing
specific ingredients can prevent headaches, but this is even more controversial and less studied than
the elimination diet (reviewed in [6]).

Many kinds of diet are recommended to reduce risk and attenuate the detrimental syndromes of
many diseases. Some diets target specific organs and some address mental and physical well-being [7].
A Mediterranean-style diet and ketogenic diet are some of the most common diets recommended to
be beneficial for many human disorders [8–10]. However, there are no solid reports on the effect of
the Mediterranean diet on migraines, but the ketogenic diet as well as high folate, low fat, modified
Atkins, and high omega-3/low omega-6 diets have been reported to have some beneficial effects in the
prevention of headaches including those occurring from migraines (reviewed in [6]).

Apart from diets composed of specific food or avoiding specific ingredients, diets targeting specific
cellular structures and macromolecules such as mitochondria or DNA have been proposed [11,12].
The epigenetic diet, a term introduced by Hardy and Tollefsbol in 2011, is intended to target the
cellular epigenetic profile and specifically mediate its changes induced by environmental factors [13].
The epigenetic diet is mainly considered in cancer prevention [14,15]. However, its rationale is
based on the assumptions that diet can modify the cellular epigenetic profile and that changes in the
epigenetic profile are important in cancer transformation. Both assumptions are true, but this does not
necessarily mean that it is possible to compose a balanced diet specifically addressing a cancer-related,
epigenetically aberrant element. Nutrition can change one’s epigenetic profile, but how to specifically
regulate one’s profile with this diet is still open as it is also an important question for epigenetic
drugs [16].

In this review, we critically assess the rationale behind the epigenetic diet and the findings
associated with its application. We focus on migraine, DNA methylation, and folate, a nutrient
frequently mentioned as an important element of epigenetic diets and also in migraine prevention [17–20].
An introductory section on the epigenetic regulation of gene expression with a special emphasis on
DNA methylation/demethylation is also included.

2. Epigenetic Regulation of Gene Expression

The Human Genome Project has provided information on the sequence of our genome and mapped
most of our genes, but now in the post-genomic era, studies aim to understand how information
contained in the gene sequence is turned into a phenotype. As all our nucleated cells contain essentially
the same DNA, the control of its expression in different tissues is critical for the development and
functioning of our body, and deviation from it may result in disorders including serious diseases.
Maintaining cellular identity and function is mostly executed by epigenetic mechanisms that include
covalent modifications of genes and associated proteins and do not include changes in DNA sequences.
These modifications include DNA methylation/demethylation, post-translational histone modifications,
and changes mediated by non-coding RNAs (ncRNAs). The epigenome can be understood as the
complement of chemical compounds that modify the expression and function of the genome [21]
This complement is referred to as the cellular epigenetic profile and its changes can be considered
as epimutations.

2.1. DNA Methylation and Demethylation

The process of DNA methylation involves the transfer of a methyl group from S-adenosyl-
methionine (SAM) to the carbon-5 of cytosine (C) residue in DNA, resulting in its change to 5-methyl
cytosine (5mC). SAM is produced in one-carbon metabolism centered at folate and methionine cycles
(Figure 1). In humans, this process is catalyzed by the DNA methyltransferases DNMT1, DNMT3A,
and DNMT3B [22].
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Figure 1. DNA methylation and demethylation in humans. DNA methylation (upper panel) 
producing 5-methylcytosine (5mC) is catalyzed by DNA methyltransferases (DNMT). DNMT1 
methylates hemimethylated DNA (maintenance methylation) and can be assisted by UHRF1 
(ubiquitin like with PHD (plant homeodomain) and ring finger domains 1). DNMT3A and DNMT3B 
are involved in de novo DNA methylation; 5mC can be reverted to C passively or actively (lower 
panel) and may undergo spontaneous or activation-induced deaminase (AID)-mediated deamination 
converting it into thymine (T), which can be replaced with C via DNA repair with TDG (thymine 
DNA glycosylase) or SMUG1 (single-strand-selective monofunctional uracil-DNA glycosylase 1) 
glycosylases. Active demethylation is led by the ten eleven translocation (TET) proteins TET1-3 with 
the following intermediates: 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-
carboxylcytosine (5caC). 5hmC can be converted to 5 hydroxymethyluracil (5hmU) or T. 

Figure 1. DNA methylation and demethylation in humans. DNA methylation (upper panel) producing
5-methylcytosine (5mC) is catalyzed by DNA methyltransferases (DNMT). DNMT1 methylates
hemimethylated DNA (maintenance methylation) and can be assisted by UHRF1 (ubiquitin like with
PHD (plant homeodomain) and ring finger domains 1). DNMT3A and DNMT3B are involved in
de novo DNA methylation; 5mC can be reverted to C passively or actively (lower panel) and may
undergo spontaneous or activation-induced deaminase (AID)-mediated deamination converting it into
thymine (T), which can be replaced with C via DNA repair with TDG (thymine DNA glycosylase)
or SMUG1 (single-strand-selective monofunctional uracil-DNA glycosylase 1) glycosylases. Active
demethylation is led by the ten eleven translocation (TET) proteins TET1-3 with the following
intermediates: 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine
(5caC). 5hmC can be converted to 5 hydroxymethyluracil (5hmU) or T.
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DNMT1 is involved in DNA maintenance methylation and methylates hemimethylated DNA
on its non-methylated strand. It is recruited to DNA through its interaction with UHRF1 (ubiquitin
like with PHD and ring finger domains 1) [23] (Figure 1). DNMT3A and DNMT3B are de novo
methyltransferases that methylate unmethylated DNA on both strands. DNMT3A can be assisted by
the catalytically inactive regulatory factor DNMT3L (DNA methyltransferase 3 like) [24]. Apart from
DNMT1/3A/3B, another methyltransferase, DNMT2, occurs in humans [25]. This enzyme is involved
in cytosine RNA methylation, but not all its functions are known.

The methylation of C is common in the human genome and involves mainly cytosine within a
5-’CpG-3′ (CpG) dinucleotide; a genome-wide high-resolution analysis in human fibroblasts revealed
that 99.98% of DNA methylation occurred in CpG dinucleotides [26]. Certain regions of the human
genome have more than ten-fold higher frequency of CpG occurrence than the rest of the genome and
are called CpG islands. These islands are frequently associated with gene regulatory regions including
promoters, and are usually unmethylated (reviewed in [27]). CpG islands have “shores”, which are
2 kb regions containing CpG dinucleotides at a low frequency and are involved in tissue-specific
methylation [28].

5mC can be reverted to C passively or actively (Figure 1) and may undergo spontaneous or
activation-induced deaminase (AID)-mediated deamination, thereby converting it into thymine (T) that
can be replaced with unmodified cytosine by G/T mismatch-specific thymine DNA glycosylase (TDG) or
the canonical mismatch repair system (MMR). Active DNA demethylation occurs with the involvement
of the ten eleven translocation (TET) proteins TET1, TET2, and TET3 [29]. This process proceeds
through TET2-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC),
and 5-carboxylcytosine (5caC). Oxidized 5mC is progressively lost in subsequent cellular divisions or
converted to non-methylated C by TDG that can also remove 5fC and 5caC. AID converts 5hmC to
5 hydroxymethyluracil (5hmU) or T. All these modifications of C can be processed by TDG or other
glycosylases of base excision repair or MMR.

DNA methylation/demethylation regulates gene expression by various, not completely known,
mechanisms. Usually, DNA methylation of the CpG islands, especially those located in the regulatory
regions, results in gene silencing. Methyl groups in the major groove of the DNA may sterically
constrain the binding of transcription factors. Methylated CpG dinucleotides may be targeted by
specific proteins recognizing such modified dinucleotides and binding DNA in the regions in which
they occur, preventing the access of transcription factors.

DNA methylation is required for normal brain development and its disturbance is causatively
associated with Rett syndrome, an autism spectrum disorder, as well as fragile X syndrome [30–32].
DNA methylation plays a role in the diverse functions of the brain including neuronal activity, learning
and memory, degeneration, and brain addiction [33].

2.2. Histone Modifications and Non-Coding RNAs

The human genome is packaged in a highly organized structure, chromatin, whose major
components are histones. These histones are subjected to an array of post-translational covalent
modifications, especially in their N-terminal tails, which protrude from histone complexes and are
accessible to histone-modifying enzymes. These modifications are an important part of the genetic
information carried by the fragment of DNA associated with histones and this is why they are
referred to as the histone code [34]. The histone code is an important, epigenetic element in the
regulation of gene expression as it determines the accessibility of a DNA fragment for the RNAs and
proteins of transcriptional machinery by signaling proteins to remodel the structure of chromatin.
The histone code, which is a combination of various chemical modifications of histone tails including
acetylation, methylation, phosphorylation, ubiquitination, sumoylation, and others, is established
post-translationally by the histone-modifying enzymes that form large protein complexes with
DNA-binding proteins and chromatin remodeling enzymes [35]. These complexes regulate DNA
replication, transcription, and repair as well as other cellular processes in an epigenetic fashion [36].
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Regulatory non-coding ncRNAs can be divided into two classes: short RNAs (sRNAs)
and long ncRNAs (lncRNAs). sRNAs typically have tens to a few hundreds of nucleotides and
include micro RNAs (miRNAs), small interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs),
and repeat-associated small interfering RNAs (rasiRNAs) that regulate gene expression through RNA
interference by base-pairing with their targets. LncRNAs are transcribed from non-protein-coding
regions of the genome and range from thousands to hundreds of thousands nucleotides long and
their characterization is an emerging area of research [37]. LncRNAs may use different mechanisms
to regulate gene expression. For example, probably the most well-known lncRNA, the Xist RNA,
inactivates the X chromosome by coating one X chromosome and recruiting proteins to inactivate
it [38,39].

In summary, the epigenetic profile is dynamically regulated by several objects that interact with
each other. Not all of these interactions are known or can be predicted, which is why any epigenetic
intervention can be associated with a relatively high degree of uncertainty.

3. The Epigenetic Diet—Does It Really Exist?

Similar to the genome, the epigenome can be modified by internal and external factors including
components of the diet.

Changes to the genome sequence induced by diet are initiated by DNA modifications that are
targeted by the cellular DNA damage response (DDR). A substantial difference between genetic
and epigenetic modifications by dietary compounds is that the latter can be changed with much
higher probability than the former. Therefore, diet seems to be a more convenient tool to modify the
epigenome than genome. However, epigenetic modifications are more difficult to control as (I) the
histone code is not fully known; (II) the number of possible combinations of chemical modifications
of all histone tails is enormously high; and (III) histone modifications are combined with the DNA
methylation/demethylation status and action of ncRNAs to produce the epigenetic profile. Nevertheless,
many drugs targeting proteins responsible for cellular epigenetic pattern have been approved in cancer
therapy or have been investigated in clinical trials (reviewed in [40]). This class of treatment with
drugs targeting the epigenetic profile is known as epigenetic therapy. Epigenetic drugs mainly target
DNA methylation and the chemical modifications of histones (reviewed in [41]).

Chemical compounds including diet components or supplements can change both the genome and
the epigenome. One of the most direct pieces of evidence showed that the methyl-deficient—lacking
sufficient levels of folate, choline and methionine—induced abnormal DNA methylation in the liver of
mice that developed methyl-deficiency-induced hepatocarcinoma [42].

Chemicals can change the epigenetic profile directly or indirectly through interactions with
epigenetic factors (i.e., chemicals, proteins or RNAs involved in establishing the epigenetic profile).
These chemicals can be components of a regular or special epigenetic diet, and, in fact, it is difficult
to find a diet that does not have any potential to change the epigenetic profile (Figure 2). However,
there may be a substantial difference between the action of a chemical administrated alone and when
it is given as a food component. This difference may be underlined by the different bioavailability
of this chemical. The bioavailability of a single product may differ from its bioavailability when it is
administrated along with other substances that may change its action. Therefore, any natural dietary
product or diet supplement should be considered with other substances that may act synergistically,
increasing or decreasing its bioavailability and final biological effects. For instance, the bioavailability
of vitamin C, either natural or synthetic, can be modulated by dietary flavonoids. Dehydroascorbic
acid (DHA), the main oxidized form of vitamin C, is transferred by glucose transporters, so it must
compete with glucose, which is present in many natural sources of vitamin C. Moreover, some
flavonoids, plant-derived health-beneficiary substances, have been reported to inhibit vitamin C
and DHA transporters [43–46]. However, many flavonoids display antioxidant properties and their
action can spare the pool of vitamin C molecules that would otherwise be oxidized [47]. Therefore,
consequences of epigenetic diet may be much more difficult to predict than the effects of epigenetic
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drugs. In addition, tissue-specific absorption may be different for a substance acting alone and in
combination with other substances. Moreover, the epigenetic diet, like any other kind of diet, requires
personalization due to the individual features of the recipient, but our epigenetic profile is relatively
poorly known and has a dynamic character as it must react to changes in environmental conditions
and the needs of the organism resulting from its development. Finally, as will be shown in the next
sections, the effects of diet on migraines may depend on gender.
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Figure 2. The epigenetic diet. Dietary compounds can affect all main elements of the cellular epigenetic
profile: DNA methylation, histone modification, and the action of non-coding RNAs (ncRNAs) resulting
in changes in transcription and/or translation and finally, the ultimate product of gene expression:
protein or RNA. M denotes a methyl group and Ac denotes an acetyl group. The dietary products
presented in the picture symbolically represent the epigenetic diet and do not necessarily reflect their
actual ability to modify the epigenetic profile.

The emerging role of epigenetic drugs in cancer therapy is associated with two opposite effects:
global DNA hypomethylation and the local hypermethylation of the promoters of genes involved in
maintaining genome stability including tumor suppressors [48]. Global hypomethylation can include
promotors of oncogenes and lead to their activation. DNA methylation-oriented epigenetic drugs
can induce global changes in the methylation pattern, which can also include oncogenes. However,
no epigenetic drug is currently known to act specifically on oncogenes or other cancer-related genes,
and, consequently, changes in the epigenetic profiles of other genes are expected via the action of
that drug. This may lead to the inactivation of genes that act as tumor suppressors and other genes
important for cellular homeostasis. It can be expected that the degree of uncertainty about the final
effect would be even higher when a bioactive dietary compound instead of a clinically tested drug
is administrated. Therefore, the incorporation of a bioactive compound of an epigenetic diet into a
balanced regular diet to induce the required changes in epigenetic patterns still needs further study.

In summary, the use of the term “epigenetic diet” is, at present, not fully justified and should not
be understood like other relatively well established kinds of the diets including the Mediterranean diet
or ketogenic diet.

4. Migraine and Diet

Migraines are a common (2013 estimated global prevalence 14.7%) brain disorder with severe
headaches and associated neurological and systemic symptoms [49]. Based on the frequency of
occurrence, the International Headache Society classifies migraines as episodic or chronic migraines.
Migraines may occur in two main clinical subtypes: migraine with aura (MA) and without aura
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(MO). A migraine aura may precede a headache attack, occur during the attack, or appear without a
headache [50].

The aura may include several visual and mental syndromes and is believed to relate to cortical
spreading depression (CSD), an important effect in migraine. However, the exact mechanism whereby
CSD is initiated is not exactly known, nor is it known how CSD initiates the subsequent phases of
migraine. Some possible mechanisms including the activation of the trigeminal nerve and the induction
of neurogenic inflammation are presented in Figure 3 [51]. A trigger may be an environmental or
lifestyle factor such as stress, a light flash, physical effort, noise, sleep disturbance, or diet [52].
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Figure 3. A putative mechanism for migraine headaches induced by a trigger. A migraine trigger
(green thunder) affects the nucleus (light blue oval) of the trigeminal nerve (dark blue) and activates it.
This results in waves of depolarization (black broken arrows) moving along the nerve and reaching
the cortex and evoking cortical spreading depression (CSD). This results in neurogenic inflammation
(black clouds) and release of inflammatory neurotransmitters (white arrows), which induce dilation
of the brain blood vessels (red), which causes the release of pain-producing prostaglandins that in
turn evoke a migraine headache. The specific order of events presented here is hypothetical and
requires validation.

Although the prevention and treatment of migraines remain challenging [53], migraine drugs
approved by the FDA have lately produced hope for a breakthrough [54] These drugs include erenumab
(Aimovig), fremanezumab (Ajovy), and galcanezumab (Emgality), which are all monoclonal antibodies
and GRPC antagonists. It is too early to draw a definite conclusion on the general role these drugs may
play in migraine treatment, but the first observations are prospective, despite the relatively high cost of
therapy with these drugs, estimated at about $575 per month [55].

The pathogenesis of migraine is largely unknown, but both genetic and environmental factors may
be involved. These factors can modulate the threshold for a migraine trigger that precedes and evokes
a migraine attack [56]. Many potential migraine triggers have been identified and a substantial fraction
of them is associated with food (Figure 4). Female sex hormones, the menstrual cycle, and pregnancy
modulate migraine attacks, so they may contribute to the approximately three times higher prevalence
of migraines in women than in men [57]. This relationship may also be underlined by the X-linked
form of this disease or the mitochondrial transmission of its other form or both [58].
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Figure 4. Main migraine triggers. Some are well established and confirmed by reports on large cohorts,
but others are problematic and require further research. Recent research suggests that some food triggers
are actually food cravings experienced as the first phase of migraine before pain onset. Their action
and threshold can be modulated by several environmental and genetic factors that act synergistically.

The genetic basis of migraine is supported by the association of migraine with mutations in a single
gene (monogenic migraine) or clusters of genes (polygenic migraine) (reviewed in [59]). Mutations in
the three ion channels genes, CACNA1A (calcium voltage-gated channel subunit alpha 1 A), ATP1A2
(ATPase Na+/K+ transporting subunit alpha 2), and SCN1A (sodium voltage-gated channel alpha
subunit 1) were identified as specifically causal for hemiplegic migraines, a rare variant of MA, and
genome-wide association studies have identified 38 loci associated with increased risk of migraines [60].
Many other genes are candidates of importance in migraine pathogenesis, but a substantial majority of
them have not been convincingly replicated [61]. However, these are not genes themselves, but their
expression directly determines the migraine’s phenotype. As mentioned, the cellular epigenetic profile
is an important element of the regulation of gene expression. Epigenetics is also a significant element of
pathogenesis in many human diseases including behavioral and brain disorders [62]. Several chemicals
targeting the epigenome have been accepted as drugs or are under clinical trials [63]. Valproic acid
(VPA), a histone modifier, has been applied for more than 50 years in epilepsy treatment and is currently
used in the therapy of bipolar disease and the prophylaxis of migraines [64,65]. The role of epigenetic
modifications in migraine is not completely known, but epigenetics is considered to be a promising
avenue in the prophylactic treatment of this disease [66].

The cellular epigenetic profile is more prone to nutritional modifications than corresponding
DNA sequence [67]. Therefore, epigenetically active nutrients can affect the pathogenesis of human
disorders and nutriepigenomics is also a promising avenue in the prevention and therapy of human
complex diseases [1]. This issue seems to be especially important in migraines, as it is frequently
related to improper diet, and the avoidance of certain nutrients in the diet is an important element of
its prophylaxis and often results in a decreased severity of headaches [68]. Much less is known about
the prevention of migraine and the attenuation of its symptoms via the active supplementation of the
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diet. The ketogenic diet is considered to be a rapid onset effective prophylaxis for episodic and chronic
migraines, and ketosis was recently suggested to regulate cellular functions through interactions with
the epigenome, but our knowledge of the mechanisms of this interaction is far from complete [69,70].
However, a ketogenic diet is not the only diet that may affect the epigenome as many compounds not
included in such a diet are reported to do so [13].

In a large (8042 men and 23,728 women) cross-sectional study on subjects from a population-based
NutriNet-Santé e-cohort, Andreeva et al. observed migraine occurrence in 9.2% of men and 25% of
women [71]. They also observed lower protein and higher fat consumption in male migraineurs than
in males without headaches and those with non-migraine headaches and higher fat and carbohydrate
intake in female migraineurs than females without headaches and those with non-migraine headaches.
These results indicate a gender-specific difference in the consumption of macronutrients among
migraineurs. However, whether this difference contributes to different prevalence of migraine between
men and women should be confirmed by further research, as the differences observed in these large
cross-sectional studies were not very pronounced. These and other studies show that nutrition may
be important in migraine pathogenesis, and this problem should be considered along with other
genetic and environmental migraine-related factors. Further details on the role of diet in migraine
pathogenesis are provided in the next sections.

In summary, the use of the term “epigenetic diet” is, at present, not fully justified and should
not be understood in a similar way to other relatively well established kinds of diets including the
Mediterranean diet or ketogenic diet.

5. DNA Methylation in Migraine

A migraine trigger must reach a threshold to induce headaches and this threshold may be lowered
by frequent headache attacks through epigenetic mechanisms [66].

In a recent 11-year retrospective case-control study, Winsvold et al. showed that the transformation
from episodic to chronic headaches in mixed headache and migraine patients was associated with
changes in the DNA methylation profile compared to the headache-free controls [72]. DNA methylation
was assessed in 485,000 CpG sites at two stages and a combined meta-analysis revealed that the strongest
associated CpG sites were related to the SH2D5 (SH2 domain containing 5) gene, whose product may
be involved in the regulation of synaptic plasticity through the control of Rac-GTP levels and NPTX2
(neuronal pentraxin 2), which is involved in the inhibition of excitatory synapse formation through the
binding and clustering of the glutamatergic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid) receptor. Therefore, both genes are implicated in the regulation of synaptic plasticity playing a role
in migraine pathogenesis [72]. Functional analysis suggests the involvement of the calcium ion binding
and estrogen receptor pathways—both strongly associated with migraine pathogenesis. This first
genome-wide study showed that elements of migraine pathophysiology might be epigenetically
changed during its chronification from episodic to chronic form. However, neither SH2D5, nor NPTX2,
have been reported to be involved in migraine pathogenesis.

Terlizzi et al. looked for changes in the DNA methylation profile associated with headache
chronification compared with the controls without headache (HC), episodic migraineurs (EM),
and patients with chronic migraine with medication overuse headache (MOH) in a 6-month follow
up study [73]. In this pilot study, which was performed on a small number of patients, no difference
was found between the MOH and EM groups, but several genes were identified to change their DNA
methylation profile in the chronification in MOH as compared with the controls including COMT
(catechol-O-methyltransferase), ZNF234 (zinc finger protein 234), and SOCS1 (suppressor of cytokine
signaling 1), which are all involved in the pathogenesis of drug addiction and neuropsychiatric illness.
Variability in the COMT gene was associated with migraine, but the two remaining genes did not relate
to migraine [74,75]. No difference was found between the MOH and EM groups. These results require
confirmation in larger samples.
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In another epigenome-wide association study performed on the blood of 67 migraineurs and
67 controls, Gerring et al. identified 63 differentially methylated regions (DMRs) rich in regulatory
elements close to genes whose products are involved in solute transport: SLC2A9 (solute carrier family
2 member 9), SLC38A4, SLC6A5 and cellular homeostasis: DGKG (diacylglycerol kinase gamma),
KIF26A (kinesin family member 26A), DOCK6 (dedicator of cytokinesis 6), and CFD (complement
factor D) [76]. As many drugs can influence the epigenetic profile this study suffers from the drawback
that no medication information was collected.

Wan et al. presented rather weak evidence for an association between low levels of the methylation
of the RAMP1 (receptor activity modifying protein 1) gene in blood and a higher migraine risk in
females [77]. The RAMP1 protein is a key receptor subunit of the calcitonin gene related peptide
(CGRP), and both are expressed in trigeminal neurons and are essential for migraine pathogenesis [78].
The CGRP gene is normally inactive in trigeminal glia, but it was shown that epigenetic modifications
resulted in its activation in rat cells in vitro [79]. Whether or not this observation is related to migraine
pathogenesis should be further established as there are several questions associated with that study
(for example, can an in vitro study on rat cells be associated with human migraines?). However, these
studies were performed on peripheral blood leukocytes, but DNA methylation is tissue-specific as it is
involved in tissue-specific gene expression.

Labruijere et al. showed that the methylation of genes associated with migraines—CRCP (CGRP
receptor component), CALCRL (calcitonin receptor like receptor), ESR1 (estrogen receptor 1), and NOS3
(nitric oxide synthase 3)—was tissue-specific in female rats and the methylation of these genes in
leukocytes did not correlate to methylation in other tissues [80]. On the other hand, such methylation
correlated well with the methylation of the corresponding genes in human leukocytes, and the authors
postulated that rats represent a good model for the study of DNA methylation in human materials that
are difficult to obtain.

In summary, several genes have been reported to change their methylation profile with migraine
occurrence or progression, and some of them were previously associated with migraine pathogenesis
(Table 1).

Table 1. Genes whose methylation can be associated with migraine occurrence.

Full Name Reference

SH2D5 SH2 domain containing 5 [72]
COMT * catechol-O-methyltransferase [73]
ZNF234 zinc finger protein 234 [73]
SOCS1 suppressor of cytokine signaling 1 [73]

SLC2A9, SLC38A4, SLC6A5 solute carrier family 2,38A,6A member 9,4,5 [76]
DGKG diacylglycerol kinase gamma [76]
KIF26A kinesin family member 26A [76]
DOCK6 dedicator of cytokinesis 6 [76]

CFD complement factor D [76]
RAMP1 * receptor activity modifying protein 1 [77]
CGRP * calcitonin gene related peptide [80]

CRCP *1) CGRP receptor component [80]
CALCRL *1) calcitonin receptor like receptor [80]

ESR1 *1) estrogen receptor 1 [80]
NOS3 *1) nitric oxide synthase 3 [80]

* denotes genes reported previously to associate with migraine, 1) DNA methylation studied in rats.

6. Folate and Its Role in DNA Methylation and Migraine Pathogenesis

Folate (folacin, vitamin B9) is one of the B vitamins and an essential micronutrient that plays
a critical role in one-carbon cellular metabolism [81,82]. Humans, as mammals, cannot synthesize
folate and must intake it with food either as a component of a natural diet, or as a fortified food or
diet supplement. Folate supplementation, recommended in many countries, can come in the form of
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folic acid, folinic acid, or 5-methyltetrahydrofolate (5-MTHF). 5-MTHF occurs naturally and has some
advantage over synthetic forms of folate including its higher bioavailability [83]. Folate is essential for
many cellular effects such as nucleoside synthesis and the methylation of biomolecules including DNA
(Figure 5).Nutrients 2019, 11, x FOR PEER REVIEW 11 of 19 
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Figure 5. DNA methylation in one-carbon metabolism centered around the folate (left) and methionine
(right) cycles. Folate is reduced to dihydrofolate (DHF) and tetrahydrofolate (THF). THF is changed
into 5,10-methylene THF with the possible involvement of vitamin B6; 5,10-methylene THF is converted
to 5mTHF, which is demethylated to complete the folate cycle. Vitamin B2 can also be involved
in these steps. Carbon from the 5mTHF demethylation enters the methionine cycle through the
methylation of homocysteine to produce methionine by methionine synthase with vitamin B12
as a cofactor. Methionine may generate S-adenosyl-methionine (SAM), which provides methyl
groups for DNA methyltransferases (DNMTs) that methylate DNA. SAM is then demethylated to
S-adenosylhomocysteine (SAH), which is converted back to homocysteine.

Dietary folate is metabolized to 5-methyltetrahydrofolate (5mTHF, monoglutamyl form) by
methylenetetrahydrofolate reductase (MTHFR). This reaction is important for the remethylation
of homocysteine to methionine, which is a substrate for SAM, providing methyl groups for DNA
methyltransferases to methylate DNA [84]. Several other dietary nutrients are required to maintain
the one-carbon flux needed for DNA methylation including vitamins B2, B6, and B12, riboflavin,
and choline (Figure 5) [85].

Low folate status is associated with an increased risk of several disorders including cardiovascular
diseases (CVD) and cancer, but the mechanisms underlying these associations are not exactly known,
and several pathways may be involved [86,87]. However, the results of some folate intervention trials
suggest that excessively high folate supplementation may be detrimental for a person with an elevated
risk of cancer and CVD (reviewed in [88]). That review summarized studies with the supplementation
of both folate and folic acid, which were not adequate due to inter-individual variability in the activity
of the 5,10-methylene THF reductase. Therefore, the dose-effect relationship for folate in CVD may
be nonlinear.

Folate deficiency could be also involved in disorders of the nervous system [89,90]. Folate is an
important factor in the functioning of the blood–brain barrier and brain development [91]. Variability
of the MTHFR gene could result in phenotypic differences: the T allele of the 677C > T polymorphism
of this gene is associated with elevated levels of plasma homocysteine [92]. An excess of homocysteine
can be detrimental for vessels and result in endothelial cell injury and changes in blood properties that
can be important in CVD and migraine pathogenesis [93,94].

Novel epigenomic loci associated with dietary folate and vitamin B12 intake were identified in
a large-scale epigenome-wide association study on 5841 individuals [20]. These studies identified
significant differentially methylated positions (DMPs) and regions (DMRs) in the genome, and a
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pathway analysis was performed on DMR annotated genes. Vitamin B12 intake was associated with
29 DMRs annotated with 48 genes. Folate intake was negatively associated with six DMPs annotated
with five genes involved in cellular processes including centrosome localization, cell proliferation,
and tumorigenesis. In these studies, vitamin intake was assessed on the basis of a questionnaire.

That work can be considered in the context of the study by Illingworth et al., which assayed 1.9
million CpG islands in each of the 43 brain samples and showed over 16,000 DMRs [95]. These authors
concluded that except for the cerebellum, patterns of DNA methylation in different brain regions were
more similar than the patterns for those regions in different individuals. Therefore, human brain
methylome is primarily determined by DNA sequence and not developmental status. Although it is
assumed and supported by many studies that the DNA methylation pattern is stable and retains in
isolated genomic DNA, it is not completely known as to which changes in the epigenome are associated
with death.

The 677C > T polymorphism of the MTHFR gene is likely the most frequently addressed
genetic aspect of migraine pathophysiology, but the results obtained so far are not conclusive [96].
This polymorphism is claimed to be both an independent and combined marker for migraines, especially
MA. Several meta-analyses addressing this polymorphism in migraines have been performed. Liu et al.
concluded that the 677T allele was associated with an increased risk of total migraine and MA in
Asians [97]. Similar results were obtained in other analyses with the general conclusions supporting
the use of folate in migraine patients, especially those with auras, but further replication studies are
needed, particularly large randomized clinical trials [96].

Menon et al. observed an inverted relationship between folic acid consumption and migraine
frequency in 141 females [19]. This relationship was modulated by the 677C > T polymorphism of the
MTHFR gene. Similar effects were noted in children with migraines and hyperhomocysteinemia [98].
Vitamin supplementation including 2 mg/day of folic acid reduced the prevalence of MA disability
from 60% to 30% after six months [99]. A randomized, double-bind, placebo-controlled study (n = 95)
showed that folic acid at 5 mg and vitamin B6 at 80 mg decreased headache frequency and headache
severity [100].

A case-control study performed on 124 migraine patients and 130 non-migraine subjects revealed
a lower level of dietary folate intake in migraineurs [18].

No association was found between the 134R > K and 653R > Q polymorphisms of the MTHFD1
(methylenetetrahydrofolate dehydrogenase, cyclohydrolase, and formyltetrahydrofolate synthetase
1) gene, whose product is important in folate metabolism and migraine occurrence in 162 MO and
358 MA Australian patients [101]. Moreover, these two polymorphisms did not change the increased
migraine risk associated with the 677T allele of the MTHFR gene.

Although the exact mechanism connecting the 677C > T polymorphism of the MTHFR gene with
migraine pathophysiology is not completely known, some pathways can be considered. The C→T
transition at 677 leads to the substitution of alanine to valine, thereby resulting in reduced activity of the
MTHFR enzyme compared to its wild-type counterpart [102]. Consequently, individuals homozygous
for the T variant have higher homocysteine levels than the C homozygotes [103]. As stated previously,
an excess of homocysteine can be destructive for vessels and play a role in migraine pathogenesis,
especially in migraine with an aura [104]. However, the direct link between homocysteine level and
migraines is still a matter of debate, especially since only one study so far has evaluated the level
of homocysteine in the cerebral fluid of migraineurs [105]. Nevertheless, elevated homocysteine
may cause injury to endothelial cells, reduced flexibility of the vessels, and changes in hemostasis,
which may contribute to headaches and the many associated effects and even vascular comorbidity
of migraines, especially MA [106]. Homocysteine and its related compounds may act as excitatory
agonists of the NMDA (N-methyl-d-aspartate) subtype of glutamate receptors, which are important for
CSD [107,108]. Other potential aspects of the significance of the 677T > C polymorphism in the MTHFR
gene such as its association with calcitonin gene related peptide or migraine triggers have not been
investigated so far and require further research. Several cross-sectional, prospective, or interventional
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studies suggest that elevated plasma levels of homocysteine are associated with an increased risk of
migraines (reviewed in [17]). The production of homocysteine requires folate and vitamins B6 and
B12 whose deficiency results in DNA hypomethylation, which was hypothesized to trigger migraine
resulting from an interplay with MTHFR and variants of estrogen receptor 1 [109].

In summary, folate is essential for DNA methylation and its presence in the diet was reported to
exert a beneficial effect on migraines. However, these profitable effects of dietary folate have not been
attributed to changes in DNA methylation or other alterations in the epigenetic profile.

7. Conclusions and Perspectives

Dietary intervention in a disease is always attractive as it is rarely associated with serious side
effects. However, even a simple diet contains many components that may interact with many genes
in many ways. This may lead to effects that are difficult to predict. On the other hand, attempts to
isolate the impact of targeted dietary modifications may make little, if any, sense, as they might lead
to the replacement of a diet with a drug. Therefore, planning therapy with dietary intervention is a
risky task. An avoidance diet, eliminating compounds that are known to exert detrimental effects,
is usually easier to apply than comprehensive diet, containing specific compounds that exert beneficial
effects. However, a long-term elimination diet can result in undernutrition, a form of malnutrition,
which is characterized as the inadequate intake of protein, energy, and micronutrients, and may result
in disorders including psychological loads or infection [110]. An easy and quick tool to evaluate the
risk of malnutrition resulting from an elimination diet is the Malnutrition Universal Screening Tool
(MUST), which can be used to determine nutritional risk [111].

When considering the application of an epigenetic diet for migraines, we should determine its
advantages over epigenetic drugs that can be administrated in a more controlled way with a potentially
more specific action. Our answer is: there are no advantages. The only possible advantage is that a
drug with known epigenetic action may not act effectively on migraines when administrated alone,
but it may prove to be efficient when given in a combination with dietary components. However,
this is rather illusory advantage as similar and ineffective, but generally neutral, effect of a drug may
change into an adverse one when added as a diet supplement.

As many dietary factors are known to be putative migraine triggers, an avoidance diet may be
effective in migraine prophylaxis and treatment. However, dietary intervention is not specific for
migraines as many other diseases include diet in their pathogenesis and no evidence for an epigenetic
mechanism underlying the efficacy of an elimination diet has been reported.

We have presented results of studies showing that the methylation of some genes including those
with likely involvement in migraine pathogenesis may be different for migraines. On the other hand,
the variability of some genes involved in folate metabolism has been reported to correlate with migraine
occurrence. Do these results together allow us to draw the conclusion that a diet rich in folate may be
effective in migraine through the modification of the DNA methylation pattern? This conclusion is not
justified by the results of the studies performed so far.

The largest proportion of studies on the role of epigenetics for migraine relate the prophylactic
properties of VPA and its derivatives, but most of them do not definitely analyze changes in histone
modification and/or DNA methylation [112]. The mechanism of prophylactic action of VPA in
migraines is not completely known, but VPA inhibits the GABA (gamma-aminobutyric acid)-degrading
enzymes aminotransferase and succinic semialdehyde, and increases GABA postsynaptic effects,
thereby increasing the neuro-inhibitory activity of this neurotransmitter [113]. These effects may
contribute to the inhibition of CSD. Furthermore, VPA may decrease neurogenic inflammation by
decreasing the plasma extravasation of vasoactive neuropeptides [114]. However, VPA is primarily
used as an anticonvulsive drug with many modes of action and many side effects and it is not known
whether its prophylactic action in migraine is related to its epigenetic properties [115].

Although VPA is a histone deacetylase inhibitor, it can change the DNA methylation pattern; it may
actively demethylate DNA in a replication-independent fashion [116]. Moreover, VPA demethylates
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specific genes, thus enhancing its therapeutic potential [117]. VPA was reported to decrease methylation
levels in the promoters of specific genes (tumor suppressors), but increase overall methylation, which
can be attributed to its anticancer properties [118]. VPA is used in the form of concentrated drops to
fortify some diets including the ketogenic diet [119]. Therefore, if the epigenetic diet is a promising
avenue for migraine treatment, studies on diets fortified with VPA should be undertaken. Notably,
VPA has teratogenic potential and folate is speculated to act protectively against the side effects of
VPA, although some results are contradictory [120–122].

The final DNA methylation pattern is underlined by the concerted and mutual expression
of the genes involved in methylation, demethylation, and folate-mediated one-carbon metabolism
pathways [123]. In this review, we showed the results of several studies and trials suggesting that
folate administration may have a beneficial effect on migraineurs. However, there is not sufficient
evidence to attribute this beneficial effect to the epigenetic action of folate, and further studies are
needed to clarify this problem. Therefore, diets fortified with folate, which are beneficial in migraine,
cannot be classified as epigenetic diets for this disease, although such diets can alter the epigenetic
profile and lower the detrimental effects related to migraines.

In conclusion, “epigenetic diet” in general is a misleading term, as it is difficult to find a diet that
would not affect the epigenetic profile. The application of an epigenetic diet in the prophylaxis and
treatment of diseases whose pathogeneses are related to changes in the epigenetic profile is rather
elusive, as it is difficult to foresee the diet’s final effect due to low specificity of such a diet to the
epigenome and the high number of interactions among the active components of the diet. There is no
substantial evidence that folate-rich diets are therapeutically effective for migraines. The combined
effect of folate and valproic acid in migraine may be investigated to determine dietary recommendations
for this disease. Furthermore, an avoidance diet eliminating migraine triggers should be studied to
determine its relationship with epigenetic events.
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