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Abstract: Multiple sclerosis (MS) is a neuroinflammatory disorder of the central nervous system
(CNS), and represents one of the main causes of disability in young adults. On the histopathological
level, the disease is characterized by inflammatory demyelination and diffuse neurodegeneration.
Although on the surface the development of new inflammatory CNS lesions in MS may appear
consistent with a primary recruitment of peripheral immune cells, questions have been raised
as to whether lymphocyte and/or monocyte invasion into the brain are really at the root of
inflammatory lesion development. In this review article, we discuss a less appreciated inflammation-
neurodegeneration interplay, that is: Neurodegeneration can trigger the formation of new, focal
inflammatory lesions. We summarize old and recent findings suggesting that new inflammatory
lesions develop at sites of focal or diffuse degenerative processes within the CNS. Such a concept is
discussed in the context of the EXPAND trial, showing that siponimod exerts anti-inflammatory and
neuroprotective activities in secondary progressive MS patients. The verification or rejection of such
a concept is vital for the development of new therapeutic strategies for progressive MS.
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1. Introduction

Multiple sclerosis (MS) can be clinically categorized into three groups: Relapsing-remitting,
secondary progressive, and primary progressive. In most patients, the initial course of the disease
is relapsing-remitting which is characterized by acute clinical attacks that are followed by complete
or incomplete recovery, with a period of remission in between the attacks. Many patients with an
initial relapsing-remitting disease course after several years develop secondary progressive MS which
is characterized by a more or less continuous decline of neurological functioning, with or without
occasional attacks. Primary progressive MS is characterized by the accumulation of clinical disability
from the disease onset, without early relapses or remissions.

MS is traditionally considered to be an inflammatory autoimmune disease of the central nervous
system (CNS) which is mediated by an aberrant lymphocyte attack directed against CNS elements.
Although the autoantigen has not yet been discovered, it is assumed that the autoreactive immune
response in MS patients is directed against a distinct component (or various components) of the myelin
sheath. Perivascular inflammatory infiltrates, oligoclonal immunoglobulin G in the cerebrospinal
fluid, gadolinium-enhancing lesions on magnetic resonance scans, or the acute appearance of clinical
symptoms are believed to be the direct consequence of focal inflammatory CNS lesions. Such inflammatory
lesions can be found widespread within the white matter, however, several studies have clearly shown
that diverse brain grey matter structures are equally affected [1,2]. The inflammatory attacks do not just
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destroy the myelin sheath (i.e., demyelination) but as well affect the integrity of neuronal structures
such as axons, dendrites, synapses or even entire nerve cells [3,4].

Given its indisputable inflammatory character, neurodegeneration in MS is commonly considered
to be a direct consequence of inflammatory attacks. Following this concept, recruited peripheral
immune cells release inflammatory mediators leading to neuronal damage. However, some authors
believe that inflammation and neurodegeneration are two separate aspects of MS, especially during
the progressive disease stage. While several excellent review articles have been published addressing
the assumed dichotomy of inflammation and neurodegeneration during progressive MS [5,6],
in this brief article we aim to highlight another scenario of the inflammation-neurodegeneration
interplay, that is: Neurodegeneration can trigger the formation of new, focal inflammatory lesions.
Of note, such a proposed scenario has direct therapeutic consequences. If neurodegeneration indeed
triggers inflammation, then neuroprotection would ameliorate both inflammation driven relapses and
neurodegeneration driven disability progression.

Such a proposed therapeutic principle is discussed in the context of the recently published
EXPAND study demonstrating that the Sphingosine 1-phosphate receptor modulator, siponimod,
does not just ameliorate the inflammatory aspect but also the degenerative aspect of secondary
progressive MS. Of note, we do not propose that brain degenerative events trigger the development of
encephalitogenic immune cells, but rather suggest that once encephalitogenic immune cells are present
in the blood in relevant concentrations, CNS-intrinsic events might trigger their central recruitment
and, thus, the development of focal inflammatory lesions.

Before we give a brief introduction into the development of siponimod, we would like to point
out that whenever we use the term “neurodegeneration” as a causative event during inflammatory
lesion formation, we include “degeneration of the myelin sheath”.

2. Amelioration of Brain Cell Degeneration Might be Anti-Inflammatory

2.1. A Historical Perspective of Siponimod Development

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that regulates a variety of physiological
processes including lymphocyte recirculation and cardiac function. Most S1P effects are mediated
via five G-protein-coupled S1P receptor subtypes referred to as S1P1–5 (originally termed EDG-1,
3, 5, 6, and 8) [7]. These receptors are differentially expressed on various cell types, including
lymphocytes [8,9], cardiomyocytes [10,11] and brain cells (see Figure 1 for an overview of S1P1-5
expression in the CNS). In 2000, Kuppermann showed that S1P receptors regulate cell migration during
vertebrate heart development [12], and two years later a similar pro-migratory effect of S1P receptors
was demonstrated for CD4+ T cells [13]. Two years after, in 2004, Matloubian for the first time showed
that the egress of lymphocytes from the thymus and the peripheral lymphoid organs is dependent on
S1P1 [14]. Due to these observations, the anti-inflammatory potency of S1P-receptor modulators have
been intensively investigated.

The S1P-receptor modulator fingolimod, also called FTY720, induces a rapid and drastic deletion
of T cells from the peripheral blood by inhibiting the egress of T cells from the thymus [15] and lymph
nodes. By this mechanism, fingolimod prevents the entry of lymphocytes into the blood, and thus T cell
infiltration into the CNS [16–18]. It has additionally been demonstrated that fingolimod can trigger
lymphocyte apoptosis [16,19,20]. Consequently, preclinical studies show that fingolimod ameliorates
pathology in several models of autoimmune diseases, including type 1 diabetes [21], adjuvant-induced
arthritis [22], systemic lupus erythematosus [23] and, most importantly in the context of MS research,
in different models of experimental autoimmune encephalomyelitis (EAE) [24,25]. In a number of
clinical trials, it has been shown that fingolimod is well tolerated and associated with low relapse rates
and lesion activity in relapsing-remitting MS patients [26–29]. Consequently, fingolimod was the first
oral disease-modifying therapeutic agent to be approved for the treatment of MS. This pro-drug is
rapidly converted in vivo into the active S-fingolimod-phosphate (FTY720-P) which is a potent agonist
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on S1P1, S1P3, S1P4 and S1P5 receptors. Since S1P-receptors are ubiquitinated and subsequently
degraded when exposed to FTY720-P [30], the experimental and clinical efficacy of FTY720-P is
thought to involve functional antagonism by persistent internalization and enhanced degradation of
the S1P-receptor. Of note, its efficacy in MS and related animal models may in part be due to additional,
direct effects within the brain. For example, a strong increase in S1P1 and S1P3 expression on reactive
astrocytes was detected in active and chronic inactive MS lesions [31], whereas another study has
suggested S1P5 expression in oligodendrocytes [32,33].
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Figure 1. Sphingosine 1-phosphate receptor expression in the central nervous system: Schematic
illustrating the expression of Sphingosine 1-phosphate (S1P) receptor subtypes 1–5 (referred to as
S1P1–5) in the cells of the central nervous system. Note that S1P receptors are expressed by endothelial
cells as well. References: [31,32,34–55]. The copyright license of this illustration is with the authors.

In general, fingolimod has a favorable benefit-risk profile [56]. However, a critical challenge of
fingolimod therapy still remains in the initiation phases due to the risk of cardiac events. The first
dose of fingolimod is associated with a decrease in heart rate and slowing of atrioventricular
conduction [28,29,57]. The discovery of the S1P3 receptor mediating bradycardia in mice [58] prompted
the search for S1P-receptor modulators devoid of S1P3 signaling. This effort led to the discovery of
siponimod (also called BAF312), which is a selective modulator of S1P1 and S1P5 receptors. Siponimod
was furthermore designed to have a relatively short elimination half-life that provides a rapid recovery
of blood lymphocyte counts on stopping treatment, but would allow once-daily oral dosing [59].

2.2. Results of the EXPAND Study

In 2013, Selmaj reported the results of a phase 2 dose-finding study in patients with
relapsing-remitting MS (RRMS). Siponimod reduced active brain lesion counts and the annualized
relapse rate by approximately two-thirds, in a dose-dependent manner [60]. Due to the eminent medical
need for having treatment options during progressive MS, a phase 3, randomized, parallel-group,
double-blind, placebo-controlled, event-driven, and exposure-driven trial (EXploring the efficacy
and safety of siponimod in PAtients with secoNDary progressive multiple sclerosis [EXPAND]) was
conducted to investigate the efficacy and safety of siponimod in patients with secondary progressive
MS (SPMS) [61]. Key inclusion criteria for subjects was being aged 18–60 years, having a history of
RRMS following the 2010 revisions to the McDonald criteria [62], having a confirmed diagnosis of
SPMS, having a moderate-to-advanced disability indicated by an Expanded Disability Status Scale
(EDSS) score of 3–6 at screening, having documented EDSS progression in the 2 years before the study,
and having no evidence of a relapse in the 3 months before randomization (see Figure 2). The primary
endpoint of the EXPAND study was the time to 3-month confirmed disability progression, which was
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defined as a 1-point increase in EDSS if the baseline score was 3.0–5.0, or a 0.5-point increase if the
baseline score was 5.5–6.5, confirmed at a scheduled visit at least 3 months later. From February 2013
to June 2015, 1105 patients were randomly assigned to the siponimod group, and 546 to the placebo
group, respectively. As one main result of this study, there was a significant reduction in the 3-month
confirmed disability progression, with 26% of patients in the siponimod group and 32% in the placebo
group having a 3-month confirmed disability progression, which equaled a relative risk reduction of
21% compared with placebo.
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Figure 2. EXPAND-study-design: Schematic illustrating the principal design of the EXPAND trial.
EDSS (Expanded Disability Status Scale); CDP (confirmed disability progression); T25W (timed 25-foot
walk). Note that siponimod exerts anti-inflammatory and neuroprotective effects.

A number of secondary endpoints are relevant for this review article: First, the increase in T2
lesion volume from baseline was lower with siponimod than with placebo. Second, a higher number
of patients receiving siponimod than placebo were free from gadolinium-enhancing lesions, and third,
more patients receiving siponimod than placebo were free from new or enlarging T2 lesions. All these
findings suggest a potent anti-inflammatory activity of siponimod in SPMS patients. Furthermore,
brain volume decreased at a lower rate with siponimod (0.28%) than with placebo (0.46%). The only
key secondary outcome that did not favor siponimod was time to 3-month confirmed worsening of at
least 20% in the timed 25-foot walk (T25FW). In summary, siponimod attenuated the inflammatory
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activity in SPMS patients and at the same time ameliorated the degenerative aspect of the disease (i.e.,
disease progression). Notably, a subgroup analyses of the EXPAND study data suggested that the
treatment effect of siponimod is most pronounced in patients with ongoing inflammatory activity. This
finding is similar to what was seen with ocrelizumab in the ORATORIO trial in primary progressive
MS, where greater benefit was detected in patients with gadolinium-enhancing lesions at baseline [63].

2.3. Possible Siponimod Mode of Action

As pointed out in the previous chapter, siponimod reduced the inflammatory activity (i.e., less
gadolinium-enhancing lesions and new or enlarging T2 lesions) as well as the extent/progression of
neurodegeneration (i.e., reduced disability progression and brain atrophy). It is an intriguing question
how the two aspects of the disease, inflammation and neurodegeneration, influence each other. On the
one hand, it is well known that the recruitment of peripheral immune cells can activate signaling
cascades leading to neurodegeneration. In EAE, various aspects of neurodegeneration can be found,
including synaptic degeneration, dendritic spine loss [64,65], alterations of synaptic plasticity [66],
or the loss of lower motor neurons [67]. Siffrin nicely demonstrated that in EAE, the direct interaction of
myelin oligodendrocyte glycoprotein (MOG)-specific Th17 and neuronal cells in demyelinating lesions
is associated with extensive axonal damage [68]. Thus, the anti-inflammatory activity of sipinimod
might results in less severe neurodegeneration and in consequence, amelioration of brain atrophy and
disease progression.

On the other hand, it has been shown that siponimod readily crosses the blood brain barrier
and therefore potentially exerts beneficial effects by a direct interaction with brain cells. For example,
findings from preclinical studies suggest that siponimod prevents synaptic neurodegeneration [69] and
has the potential to promote remyelination in the CNS [70]. Additionally, siponimod was shown to
modulate biological pathways involved in cell survival with subsequent attenuation of demyelination,
in a mouse model [71]. It is therefore also possible that siponimod prevents brain atrophy and disease
progression by directly interfering with brain cells, such as astrocytes, microglia, oligodendrocytes or
neurons. Both aspects have recently been addressed in a commentary [72]. A third aspect, however,
has not been discussed so far: The observed anti-inflammatory effects of siponimod in the EXPAND
trial might be due to a primary CNS protective effect.

In the following chapter we will list evidence that (i) degenerative events within the CNS
can trigger the development of focal, inflammatory lesions and (ii) that siponimod can potentially
ameliorate such degenerative processes and, in consequence, ameliorates the formation of new, focal
inflammatory brain lesions.

2.4. Degenerative CNS Events can Trigger Peripheral Immune Cell Recruitment

A central question of inflammatory lesion development in MS and its various animal models
remains to be answered: What is at the root of peripheral immune cell recruitment? Here we list
evidence that brain intrinsic degenerative events (i.e., degeneration of neurons, myelin destruction,
endothelial dysfunction or reactive gliosis) might “guide” peripheral immune cells into the brain,
and thus trigger the formation of new inflammatory lesions. The fact that neurodegenerative events
can trigger the recruitment of peripheral immune cells into the CNS is well known and has been
shown in experimental paradigms of peripheral facial nerve injury [73], cortical cryoinjury or eyeball
enucleation [74].

Several reports suggest that in EAE, the archetypical model of autoimmune driven CNS
inflammation, the recruitment of peripheral lymphocytes into the CNS, is a secondary and not a
primary event. For example, the stress-associated transcription factor (ATF3) is induced in sensory
brain stem neurons prior to T cell infiltration [75], suggesting that sensory neurons are, in fact,
“activated” (manifesting with ATF3 induction) very soon after EAE immunization. Such a neuronal
activation might be mediated by complete Freud adjuvans (CFA) and/or pertussis toxin (PTX), which
are both administered with myelin peptides to induce encephalitogenic T cell development. CFA/PTX,
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besides its peripheral effects on immune cells [76], indeed can activate signaling cascades which are
central for the recruitment of peripheral immune cells. For example, it has been shown that CFA/PTX
increases CNS vascular permeability [77,78], at least in susceptible species [79], primes the choroid
plexus as a gateway for leukocytes to enter the CNS [80,81], or induces chemokine expression of brain
and spinal cord endothelial cells [82]. Although further work has to be done to understand in detail
how EAE lesions develop, there is basic evidence suggesting that brain intrinsic degenerative events
are involved in this process. Of note, in EAE microglia activation occurs early in the EAE brain and
spinal cord, even before the appearance of severe motor deficits [83,84].

In classical EAE models (i.e., MOG35–55-induced (Myelin oligodendrocyte glycoprotein) EAE in
C57Bl6 mice) inflammatory lesions predominantly develop within the spinal cord and cerebellum,
whereas the forebrain is far less severely affected. Our group and others recently demonstrated
that primary oligodendrocyte degeneration can trigger peripheral immune cell recruitment into the
forebrain [85–88]. In the Scheld study, forebrain oligodendrocyte apoptosis was first induced by a
3-week intoxication with cuprizone, followed by the induction of encephalitogenic T-cell formation
in peripheral lymphoid organs via the immunization with the myelin oligodendrocyte glycoprotein
35–55 peptide (MOG35–55 + CFA/PTX for the induction of active EAE). As already pointed out above,
in MOG35–55-induced EAE, inflammatory infiltrates are found predominantly in the spinal cord and
cerebellum, whereas the forebrain is largely spared. However, when we combined the cuprizone and
the EAE model (called Cup/EAE model; see Figure 3), perivascular inflammatory infiltrates were found
at several topographical sites including the corpus callosum, cortex and subcortical structures [85,88].
On the histopathological level, such infiltrates were characterized by the destruction of the perivascular
glia limitans, monocyte, lymphocyte and granulocyte extravasation as well as focal axonal injury. Our
findings and the work of others [86,87], therefore clearly illustrates the significance of brain-intrinsic
degenerative cascades for immune cell recruitment and, possibly, MS lesion formation.
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Figure 3. The Cup/EAE-model (Cuprizone/Experimental autoimmune encephalomyelitis): On the
left upper part, the principal experimental setup of a classical Cup/EAE experiment is illustrated.
During the first three weeks, animals were intoxicated with cuprizone (0.25%; orange bar), followed
by two weeks on normal chow (white bar). At the beginning of week six (arrowhead) animals were
immunized with MOG35–55 peptide + CFA/PTX (complete freund’s adjuvant/pertusistoxin). The lower
images demonstrate the number and local distribution of perivascular infiltrations. On the right site,
histopathological characteristics of such perivascular infiltrations are demonstrated. Luxol fast blue
(LFB)/periodic acid-Schiff (PAS); Anti-ionized calcium-binding molecule 1 (IBA1); Anti-glial fibrillary
acidic protein (GFAP); Anti-amyloid beta (A4) precursor protein (APP).
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2.5. Siponimod Ameliorates Degenerative Brain Events

As already pointed out above, siponimod readily crosses the blood brain barrier, and the
receptors of siponimod, S1P1 and S1P5, are expressed by neural cells such as astrocytes [31],
oligodendrocytes [32,33], microglia or neurons [89,90]. In order to assess whether siponimod has
direct neuronal effects, in one elegant study, the drug was delivered directly into the brain by means of
continuous intracerebroventricular infusion. While such a siponimod treatment strategy ameliorated
the EAE disease score, it did not affect peripheral CD3+ cell counts [69]. Of note, astrocytosis and
microgliosis as well as neuronal loss were less severe in siponimod-treated mice, and IL6 secretion was
ameliorated in cultured microglia by siponimod. From these results it was concluded that siponimod is
neuroprotective (i.e., it prevents the loss of neurons [69], probably by the modulation of microglia cell
function). Furthermore, it has been shown using an organotypic slice culture model, that siponimod
attenuates lysophosphatidylcholine-induced demyelination, suggesting that siponimod ameliorates
as well oligodendroglia-degeneration. This assumption is in line with a recent report showing that
siponimod decreases oligodendrocyte loss and demyelination in the cuprizone model [91].

3. Concluding Remarks

In MS patients, lesion development might start with a primary CNS degenerative event, which
triggers the recruitment of peripheral immune cells into the CNS, resulting in the formation of focal
inflammatory CNS lesions. Figure 4 summarizes our proposed mode of action for siponimod. First,
siponimod modulates the activation status of microglia and/or astrocytes by either a direct modulation
of glia reactivity or, alternatively, by ameliorating neuronal and/or oligodendrocyte injury. Second,
the modulation of astrocytes and microglia results in a stabilization of the blood brain barrier and
third, in consequence, leads to less severe peripheral immune cell recruitment. This concept does
not exclude the possibility that additional peripheral immune cells are trapped within the peripheral
lymphoid organs and, therefore, cannot be recruited into the CNS (fourth). The reduced inflammatory
activity observed in the EXPAND study might, thus, be due to central protective effects of siponimod.
A better understanding of such proposed degenerative processes would allow the development of
drugs with both, anti-inflammatory and neuroprotective properties. For example, sex steroids such as
17β-estradiol have been shown to mediate both, neuroprotective and anti-inflammatory effects during
EAE [92]. Additionally, endoplasmic reticulum stress responses have been shown to mediate both,
toxin-induced oligodendrocyte degeneration [93], T cell differentiation [94] or apoptosis [95]. 
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