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Abstract

Human identification of unknown samples following disaster and mass casualty events is

essential, especially to bring closure to family and friends of the deceased. Unfortunately,

victim identification is often challenging for forensic investigators as analysis becomes com-

plicated when biological samples are degraded or of poor quality as a result of exposure to

harsh environmental factors. Mitochondrial DNA becomes the ideal option for analysis, par-

ticularly for determining the origin of the samples. In such events, the estimation of genetic

parameters plays an important role in modelling and predicting genetic relatedness and is

useful in assigning unknown individuals to an ethnic group. Various techniques exist for the

estimation of genetic relatedness, but the use of Machine learning (ML) algorithms are novel

and presently the least used in forensic genetic studies. In this study, we investigated the

ability of ML algorithms to predict genetic relatedness using hypervariable region I

sequences; that were retrieved from the GenBank database for three race groups, namely

African, Asian and Caucasian. Four ML classification algorithms; Support vector machines

(SVM), Linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA) and Ran-

dom Forest (RF) were hybridised with one-hot encoding, Principal component analysis

(PCA) and Bags of Words (BoW), and were compared for inferring genetic relatedness. The

findings from this study on WEKA showed that genetic inferences based on PCA-SVM

achieved an overall accuracy of 80–90% and consistently outperformed PCA-LDA, PCA-RF

and PCA-QDA, while in Python BoW-PCA-RF achieved 94.4% accuracy which outper-

formed BoW-PCA-SVM, BoW-PCA-LDA and BoW-PCA-QDA respectively. ML results from

the use of WEKA and Python software tools displayed higher accuracies as compared to

the Analysis of molecular variance results. Given the results, SVM and RF algorithms are

likely to also be useful in other sequence classification applications, making it a promising

tool in genetics and forensic science. The study provides evidence that ML can be utilized

as a supplementary tool for forensic genetics casework analysis.
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Introduction

In forensic studies, human identification is achieved through genetic profiles [1]. Over the

years, genetic profile determination has largely depended on autosomal Short Tandem Repeats

(STRs). However, autosomal DNA usually degrades and sometimes or not always is available

in forensic settings. To alleviate such setbacks, mitochondrial DNA (mtDNA) has been applied

as a marker for human identification. This is evidenced by the exponential increase in mtDNA

application in forensic analysis, historical investigations and genealogical research over the

past years. MtDNA possesses several major favourable characteristics, including lack of recom-

bination, a high copy number and matrilineal inheritance, thus having greater resistance to

degradation [2–4] and is the most essential alternative source of genetic information. Within

the mtDNA genome, hypervariable regions I and II (HVR I and HVR II) located in the control

region are highly polymorphic and contain the highest levels of variations hence making them

suitable for identification purposes [1]. This also makes the region amenable for inferring

genetic differentiation using analytical tools. The present study will solely focus on HVR I.

Machine learning (ML) is a subset of artificial intelligence in which ML models acquire and

integrate knowledge through large-scale observations and improve and extend themselves by

learning new knowledge rather than being programmed with that knowledge [5]. ML models

learn from patterns in given training labels without explicit instructions and then use inference

to develop useful predictions [6]. Analytical model building has been automated to perform

cognitive tasks related to high-dimensional data such as classification, regression, and cluster-

ing. This is achieved by applying ML algorithms that iteratively learn from problem-specific

training data, which allows computers to find hidden insights and complex patterns without

explicitly being programmed. For instance, ML has been applied to identify firearms [7] as

part of forensic investigation. The lack of utilizing ML for forensic applications is due to several

concerns; scientists argue that this approach cannot be interrogated on how it was able to pro-

duce the evidence [8], and its use for criminal investigations will lead to more miscarriages of

justice. It is not surprising then that ML in forensics is not considered as a common analysis

tool. Nevertheless, one cannot disregard the fact that ML is gaining ground in prediction analy-

sis, especially in high throughput genomic data profiling, such as high throughput sequencing

and large-scale gene expression profiling and may be of value in combination with other evi-

dence during investigation. In addition to this, Leung and team [9] conducted a review on the

application of ML to determine the relationship between DNA and the quantities of key mole-

cules in the cell, with the premise cell variables associated with disease risks. Multiple studies

have applied machine learning models; logistic regression, and k-nearest neighbors, and sup-

port vector machines (SVM) to obtain meaningful genomic profiling of more disease-related

variants [6,10,11]. Furthermore, the application of random forest (RF) classifier in genome anal-

ysis has been increasing rapidly in many biological studies, such as gene expression, metabolo-

mics, proteomics, and genome-wide association [12]. These studies showed that the RF method

provides good accuracy, less internal examination of error, and high variable importance from

mass biological data. For instance, a study by Goldstein et al. [13] applied random forest classi-

fier for SNP discovery related to human disease in genome-wide association dataset.

As a result, this shows the potential use of ML in forensic genetic studies in such that algo-

rithms can be trained and used to predict the ethnicity of unknown samples. However, the

major questions lie in whether ML should replace traditional sequence analysis tools such as

AMOVA or serve as a supplementary tool for prediction analyses. Therefore, this study aims

to apply ML to predict genetic relatedness and model genetic inferences using human mtDNA

HVR I sequences, and compare Waikato Environment for Knowledge Analysis (WEKA) and

Python for the implementation of ML.
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Materials and methods

The algorithm below is used to run the experiment in this study. Details of each step of the

algorithm are presented under the Sections: Data Collection; Statistical Analysis; Data manage-

ment and Processing; File Preparation; Data Pre-processing; Data Split; ML Classification and

Performance Analysis.
Model Algorithm
Step 0: Start
Step 1: Obtain publicly available mtDNA HVR I data in the GenBank
database for three race group (Africa, Asian and Caucasian)
Step 2: Capture an equal number of HVR I sequences of no mixed-raced
individuals for each population group to avoid biasness
Step 3: Is there sequences of mixed-race individual in the dataset? If
Yes Go To Step 2, Otherwise Go To Step 4
Step 4: Rename Sequences to retain accuracy and align with MUSCLE
algorithm in MEGA software version 10.1
Step 5: Test the genetic structure between studied samples for varia-
tion and calculate using ARLEQUIN software version 3.5
Step 6: Validate genetic information using AMOVA
Step 7: Infer Haplogroups from each sample using MITOMASTER
Step 8: Pre-process the data using Principal component analysis and
one hot encoding (NominalToBinary) technique to transform and enhance
the quality of the data

Step 8.1: Data normalization using the normalize filter in WEKA
to eliminate "Noise" and avoid overfitting and underfitting

Step 8.2: PCA is used for eliminating patterns that are not
expected to affect the output

Step 8.3: One-hot encoding is used for converting categorical
data to binary number
Step 9: Partition the dataset into Training set (80%) and Testing set
(20%)
Step 10: Train the ML model with the training dataset
Step 11: Evaluate the ML model performance using cross validation (CV)
and make prediction using the testing dataset.

Step 11.1: Perform 5-fold CV on the training dataset
Step 11.2: Carry out performance analysis of the ML models

using the 20% testing set
Step 12: Generate and Present the results
Step 13: Stop

Data collection

In this study, the focus was obtaining HVR I sequences from individuals that belonged to

either one of the following three race groups: Africans, Asians and Caucasians. Population

groups including Kenya, Nigeria, China, India, Britain and Canada were selected as they are

classified groups containing abundant information. There are specific mtDNA databases how-

ever, the vast majority of them are not reservoirs for sequences in comparison to National

Center for Biotechnology Information (NCBI) [14]. Therefore, publicly available mtDNA

HVR I data in the GenBank database was used to estimate the predictability of ethnicity

(https://www.ncbi.nlm.nih.gov/genbank/). To avoid any biasness, an equal number of HVR I

sequences were obtained for each population group. It was ensured that no sequences of

mixed-race individuals were included in the dataset as this would have an adverse effect on the

accuracy of the results and study. In total, 270 HVR I sequences were used as the dataset in this

study (Table 1).
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Statistical analysis

Sequences were appropriately renamed (e.g. African 1) in order to retain accuracy and aligned

with MUSCLE algorithm in MEGA software version 10.1 [15]. The genetic structure between

the studied samples were tested for variation and calculated using ARLEQUIN software ver-

sion 3.5 [16]. AMOVA is a common method for sequence analysis and was used in this study

to validate genetic information. Haplogroups were inferred for each sample in the dataset

using MITOMASTER in order to determine whether mtDNA can assign unknown samples to

a geographic origin. MITOMASTER is an mtDNA sequence analysis tool available on Mito-

map (https://www.mitomap.org).

Data management and processing

The ML algorithms used in this study are Support vector machine (SVM), Random forest

(RF), Linear discriminant analysis (LDA) and Quadratic discriminant analysis (QDA). Python

and WEKA were chosen to evaluate the performance metrics on the dataset as they are some

of the most commonly used software tools for ML. Consequently, in this paper to evaluate the

ML algorithms model, we used the classification accuracy, precision, recall and f1 score perfor-

mance metrics. One hot encoder and principal component analysis were used for pre-process-

ing. The ML model was trained with Python 3.6 notebook and WEKA software version 3.8.4.

The workflow for ML that was used in the present study can be seen in Fig 1.

File preparation. WEKA is an ML software written in JAVA that was developed by the

University of Waikato, New Zealand [17,18]. The WEKA workbench is described as a collec-

tion of ML algorithms and data pre-processing tools that can be applied directly to a dataset.

WEKA requires standard ARFF (Attribute Relation File Format) datasets. This is a text file

that describes a list of instances sharing a set of attributes. Therefore, the datasets were con-

verted to ARFF files for WEKA implementation. (https://www.cs.waikato.ac.nz/ml/weka/).

Whereas the dataset was fed into Python as CSV files.

Data pre-processing. Data pre-processing is a stage in ML used to transform raw data

into a more useful format. Principal component analysis and one hot encoding (NominalTo-

Binary) was used for the pre-processing step through the use of WEKA and Python. PCA is

used for eliminating patterns that are not expected to affect the output [19] while one-hot

encoding is used for converting categorical data to binary number [5].

Given that m is the number of samples (HVR I sequences) and n is the number of variables

in consideration, m can be represented as an m x n matrix. It was assumed that the sample

mean for each variable is 0. By projecting m onto n new axes, it yields to Y = XP which repre-

sents the transformed dataset, where P is the orthogonal matrix whose columns represent the

principal components (PCs) of the new subspace. PCs are the vectors that define the n new

axes. This technique finds a P such that the sample covariance matrix of the n new variables

Table 1. Accession numbers of HVR I sequences retrieved from GenBank database.

Race Group Population Group Sample Size Accession Numbers

African Kenya 45 U93965.1—U94009.1

Nigeria 45 U94059.1—U94104.1

Asian China 45 AY053022.1—AY053067.1

India 45 AJ235037.1—AJ235082.1

Caucasian Britain 45 DQ191964.1 –DQ192009.1

Canada 45 AF186706.1—AF186751.1

https://doi.org/10.1371/journal.pone.0263790.t001
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defined by the PCs is a diagonal matrix containing the eigenvalues in Eq (1):

P
Y ¼

1

m
YTY ¼

1

m
XPÞTXP ¼ PTP

XP ¼ D ð1Þ
�

Where D is the diagonal matrix, ∑X and ∑Y represent the sample covariance matrices of the

original and new variables respectively. PCA is a dimensionality reduction technique in which

only K (the number of groups a given data is to be split into) and n (variables) are kept for fur-

ther analysis [19]. For PCA, WEKA did not detect any outliers (mismatches) in the dataset,

whereas Python did.

Normalization is an integral part of data preparation as it eliminates any ‘noise’, which is

any irrelevant information or randomness in a given dataset. Overfitting occurs when a model

familiarizes itself with the detail and noise in the training data to the extent that it negatively

Fig 1. Framework for machine learning. Data is collected from database and undergo data pre-processing techniques

such as one-hot encoding to transform and enhance the quality of the data. The resulting data is split into a training

and testing set. The training set is used to train the ML model while the testing set is used to evaluate the model and

make predictions.

https://doi.org/10.1371/journal.pone.0263790.g001
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impacts the performance of the model on the new data. Underfitting refers to a model that can

neither model the training data nor generalize to new data. Due to this, the dataset needs to be

normalized to avoid overfitting and underfitting. In this study, we normalized the dataset by

choosing the normalize filter in WEKA [17,18] and applying it to the dataset. The dataset was

normalized to the default range of 0–1. Whereas for Python, a bag of words (BoW) was

employed to convert text data into features and features into vectors. This approach gets rid of

the unstructured data and noise from the text data in ML and it was applied to the study [20].

Data split. For both WEKA and Python, the dataset was split into 80% training set and

20% testing set. Cross-validation (CV) is a common method used to evaluate the performance

of ML algorithm models [21]. In this study, K was determined by performing CV. In standard

K-fold CV, the data is split into subsets, called folds. A 5-fold CV was performed on the train-

ing dataset, this means that the data was split into 5 equal parts (folds), hence K = 5. The train-

ing set was trained and optimized the models, and the 20% testing set was used to evaluate the

performance of the ML models.

Validating the performance of ML classification algorithms. To validate the ML results

obtained from the initial dataset, all four algorithms’ performance was evaluated using a new

independent dataset (Table 2) on both WEKA and Python. A new dataset was chosen as the

classification algorithms have already been trained and evaluated with the first dataset

(Table 1), hence the system is already familiar with them, and so this would not be an accurate

representation of how the algorithm performs. The performance of the ML classification algo-

rithms was also conducted on a separate new dataset (dataset 2) to avoid any biasness and for

comparison purposes.

Machine learning classification algorithms

Classification is a supervised learning approach in which algorithms learn from the input data

and then uses this to make predictions (output). In this section, we studied four ML classifica-

tion algorithms to infer genetic relatedness and HVR I sequences (dataset) was used to evaluate

the overall performance of these algorithms.

Support vector machines. SVM is a binary classification algorithm that classifies data and

separates the two classes by constructing an operating separating hyperplane (OSH) [22]. The

OSH is defined by a vector w and a scalar b for i = 1. . .n. This typically involves solving the fol-

lowing optimization problem [23] of Eqs 2 and 3:

Given a training set:

fðxi;yi;Þg1�i�n
; xi�R

d; yi 2 fþ1; � 1g ð2Þ

SVM finds the OSH by solving Eq (3):

min
w;b

1

2
kwk2

with yiðw; xþ bÞ � 1

ð3Þ

8
<

:

Table 2. Accession numbers of HVR I sequences retrieved from GenBank for dataset 2.

Race Group Population Group Sample Size Accession Numbers

African Ethiopia 45 FJ888018.1 -FJ888063.1

Niger 45 U94112.1-U94157.1

Asian Japan 45 AB241863.1—AB241908.1

Korea 45 FJ494015.1—FJ494050.1

Caucasian Germany 45 U54466.1 –U54302.1

Russia 45 AF448676.1—AF448721.1

https://doi.org/10.1371/journal.pone.0263790.t002
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Where, w and b are computed using the training set during model training [23], this yields to y
in which the new samples (test set) are classified. The classifier is trained in such that +1

denotes the correct classification of sample (correct race group) and -1 denotes the incorrect

classification or misclassification of sample (other race groups). We downloaded and installed

LIBSVM version 1.0.3 package to perform SVM analysis in WEKA. The SVM algorithm was

implemented together with a kernel. A kernel transforms an input data space into the required

form and separates classes by adding more dimension to it. There are four different types of

kernel functions considered in most studies and they are radial basis function (RBF), linear,

polynomial and sigmoid. According to studies carried out by Akinnuwesi et al [24], Tien Bui

et al [25] and Hong et al [26] discovered that SVM models with RBF function has the highest

prediction capability and performance in terms of Area Under Curve (AUC), recall, precision

and classification accuracy. The RBF is not also affected by local minima, therefore, this study

applied RBF for SVM analysis.

The outstanding performance of the RBF kernel over the other three kernels was influenced

mainly by the values of C and gamma (γ) in Eq (4):

Kðxi;xjÞ ¼ expð� gkxi � xjk
2
þ CÞ; g > 0 ð4Þ

Where K(xi,xj) is the kernel function and C, γ are the optimization parameters and, kxi−xjk is

the Euclidean distance between xi and xj.

Linear and quadratic discriminant analysis. LDA performs dimensionality reduction in

which it projects the input data to a linear subspace. This subspace consists of directions which

maximize the separation between classes [27]. LDA assumes that both classes have common

covariance matrices, which results in a linear decision boundary. The LDA equation is repre-

sented in Eq (5):

d
L
kðXÞ ¼ m

T
k

P� 1X � mT
k

P� 1
mk þ logðpkÞ ð5Þ

Where S is a covariance matrix for all class of k classes and μk is the class-specific mean vector.

Since LDA assumes that the covariance matrix for different k is the same, there are fewer

parameters to estimate compared to QDA.

The Eq (6) represents QDA:

d
Q
k Xð Þ ¼ �

1

2
logj
P

kj
1

2
ðX � mkÞ

TP� 1

k ðX � mkÞ þ logðpkÞ ð6Þ

Where Sk is the covariance matrix for the kth class and μk is the class specific mean vector.

QDA differs from LDA in such that it assumes that the covariance matrix can be different for

each class which yields to a quadratic decision boundary. QDA allows for more flexibility for

the covariance matrix which fits the data better than LDA; however, there are more parameters

to estimate.

Random forest. RF is an ensemble-based ML technique that consists of multiple classifi-

cation and regression trees as classifiers [28]. Each classifier is generated using a random vector

sampled independently from the input vector [29], and each tree casts a unit vote for the most

popular class to classify an input vector. RF classifier produces multiple decision trees, using a

randomly selected subset of training samples and variables. RF can be defined by Eq (7),

fhðx; ykÞ; k ¼ 1; � � � ; Lg ð7Þ

Where θk is an independent random vector parameter, x is the input data, and k suggests the

number of decision tree in the RF [30]. Each decision tree uses a random vector as a
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parameter, it randomly selects the feature of samples and thereafter selects the subset of the

sample data as the training set.

Performance analysis

Micro and Macro accuracies were calculated on the WEKA and Python classification accuracy

results in order to measure the overall performance of ML classification techniques; SVM,

LDA, QDA and RF to infer genetic relatedness [31]. Macro-accuracy is more like an average

because it gives equal weight to each class whereas Micro-accuracy includes the contributions

of confusion matrices of all classes (race groups) to get an average.

Micro and Macro accuracies were calculated using Eqs (8A) and (8B):

Micro� accuracy ¼
PK

i¼1
Ci

PK
i¼1

Ni

ð8AÞ

Macro� accuracy ¼
1

K
PK

i¼1

Ci

Ni
ð8BÞ

Where K is the number of classes in the dataset, Ni is the number of samples in class i and Ci is

the number of samples correctly classified by the ML algorithm.

Results

Analysis of molecular variance

AMOVA is a traditional sequence analysis tool and was used in the study to validate the exis-

tence of genetic information. As shown in Table 3, 75.98% of variation occurred within popu-

lations (variation between the ethnic groups present in the populations) whereas 21.23%

occurred among populations (Indian, Chinese, Nigerian, Kenyan, British and Canadian)

within groups. Only 2.79% of the variation occurred among race groups (African, Asian and

Caucasian). The AMOVA results showed that the majority of variance came from within

populations.

The pairwise fixation index (FST) values of population differentiation due to genetic struc-

ture and p-values are shown in Table 4. FST is a measure of population differentiation due to

genetic structure. The FST values demonstrated that the Canadian population showed the high-

est variability compared to the other population groups.

With reference to Table 5, the haplotype diversity (Hd) for all 270 sequences was calculated

to be 1.0000 +/-0.0047 SD. Nucleotide diversity was the highest in the African group with Ken-

yan population group being the highest followed by the Nigerian population. The lowest

nucleotide diversity was evident in the Canadian population. Neutrality indices calculated by

Tajima’s D and Fu’s Fs test were negative in all populations. The D-value was significantly neg-

ative in all except the British population. All of the AMOVA results confirm that genetic varia-

tion exists between race groups which allowed for the ML algorithms to model genetic

inferences.

Table 3. AMOVA showing genetic variation.

Source Degree of Freedom Sum of squares Variance components Percentage Variation (%)

Among Groups 2 89.559 0.09735 2.79

Among Populations within Groups 3 108.056 0.74144 21.23

Within Populations 264 700.556 2.65362 75.98

https://doi.org/10.1371/journal.pone.0263790.t003
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Machine learning on WEKA

Table 6 is a summary of the 5-fold CV accuracy metrics for ML classification algorithms hybri-

dised with PCA namely PCA-LDA, PCA-QDA, PCA-RF and PCA-SVM on each race group.

PCA-SVM consistently outperformed the other three classification algorithms investigated in

this study with respect to all accuracy measures (bold values). As a result, PCA-SVM is the dom-

inant classifier over PCA-LDA, PCA-RF and PCA-QDA for the purpose of inferring genetic

relatedness. All four classification algorithms showed a greater accuracy for the Caucasian race.

Since PCA-SVM was identified as the most accurate ML algorithm in WEKA (Table 5), its

performance was evaluated on the same dataset with one-hot encoding, but without PCA and

5-fold CV. This is because, CV may overestimate the practical performance of the algorithm as

it ignores potentially significant biases in the dataset. The results of this experiment are shown

in Table 6. In this study, we are interested in the true positive rate (population groups that are

correctly classified that they are from the actual race group). The diagonal bold values repre-

sent the predicted true race group as presented in Table 7. The predicted true race group accu-

racies for the African and Caucasian race groups displayed in Table 7 correspond to the results

in Table 6. On the contrary, the predicted race group accuracy for the Asian race dropped by

10% when PCA and CV were not applied to the dataset.

Table 8 summarizes the 5-fold CV accuracy metrics for all four ML classification algorithms

hybridised with PCA. Their performances were evaluated using dataset 2 (Table 2) to validate

the results obtained with the initial dataset (Tables 1 and 6). It is evident by the bold values

that PCA-SVM is the dominant classifier and this corresponds to the results present in

Table 6. A slight increase in accuracy measures was observed in Table 8, this is could maybe be

due to the ML algorithms being more familiar with the dataset as they were trained with one

dataset already and hence increased their ability to classify correctly.

Machine learning on Python

Tables 9 and 10 shows the average of the four ML classification algorithms (SVM, LDA. QDA

and RF) with BoW based on the selected performance metrics. The results clearly indicate that

Table 4. Pairwise fixation index (FST) values of population differentiation due to genetic structure and p-values.

Population Group Kenyan Nigerian Indian Chinese British Canadian

Kenyan + + + + +

Nigerian 0.05662 + + + +

Indian 0.12008 0.11442 + + +

Chinese 0.12307 0.14796 0.07708 + +

British 0.19501 0.18562 0.09061 0.10352 +

Canadian 0.43895 0.49032 0.45344 0.43929 0.54525

https://doi.org/10.1371/journal.pone.0263790.t004

Table 5. Summary of the diversity and neutrality indices calculated for population groups.

Population Group Haplotypes Mean Pairwise Differences Haplotype Diversity (Hd ± S.D) Nucleotide Diversity (nd ± S.D) Tajima’s D Fu Fs

Kenyan 45 10.236782 +/- 4.807580 1.0000 +/-0.0047 0.028436 +/- 0.014861 -1.08187 -23.82678

Nigerian 45 6.878161 +/- 3.329239 1.0000 +/-0.0047 0.019106 +/- 0.010291 -1.46260 -25.12242

Indian 45 5.577011 +/- 2.755099 1.0000 +/-0.0047 0.015492 +/- 0.008516 -1.88732 -25.39716

Chinese 45 7.604598 +/- 3.649328 1.0000 +/-0.0047 0.015301 +/- 0.008171 -1.43432 -24.98951

Canadian 45 1.131034 +/- 0.756070 1.0000 +/-0.0047 0.003346 +/- 0.002489 -1.56045 -29.04221

British 45 3.834483 +/- 1.983182 1.0000 +/-0.0047 0.018524 +/- 0.010661 -0.69470 -25.92218

https://doi.org/10.1371/journal.pone.0263790.t005
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the performance of the algorithms is affected by the implementation of PCA in such that SVM

and RF and LDA performed equally without PCA as indicated by the bold values shown in

Table 9. However, only RF outperformed the other algorithms when PCA was applied

(Table 10). Given the results, it can be clearly seen that PCA does have a significant impact on

the performance of ML algorithms. Overall, the algorithms displayed greater performance

accuracy metrics with PCA than without PCA. It was observed that the RF algorithm was

dominant in Python and this is evident by the bold values displayed in Table 10.

Tables 11 and 12 are derived from the confusion matrix on Figs 2 and 3 to indicate the cor-

rectly and incorrectly classified race groups in the mtDNA HVR I sequence dataset. As

depicted in the confusion matrix results, higher accuracies were achieved when PCA was

applied. Tables 10 and 11 show that QDA algorithm was the ML model most affected by PCA

and the results for the African and Asian race groups confirm this (e.g. without PCA: 53.6%

accuracy was achieved for the Asian race, and with PCA: 93.3% accuracy). Furthermore, the

inconsistent results obtained for SVM indicate that this model was also affected by PCA (with-

out PCA: 73.91% and 100% accuracies, and with PCA: 100% and 93.3% accuracies for the Afri-

can and Asian race groups, respectively).

Table 12 shows the classification accuracy results on Python with PCA, BoW and one hot

encoder for each race group using SVM, RF, LDA and QDA algorithms from Fig 2. The Cau-

casian race group is classifying correctly without any error in the four classification algorithms

while the classification of the African race group is with errors in the four classification algo-

rithms model. The random forest outperforms the SVM, the LDA and QDA on the Asian race

group only while LDA outperforms the SVM, random forest and the QDA on the African race

group only. The random forest correctly classifies Asian and Caucasian without any error.

The classification accuracy results on Python with only one hot encoder and BoW (without

PCA) for each race group using SVM, RF, LDA and QDA algorithms from Fig 3 are shown in

Table 12. The Caucasian race group was able to correctly classify with any errors while the clas-

sification of the African race group obtained errors on all four classification algorithms. SVM

and RF performed equally but outperformed LDA and QDA. Both SVM and RF correctly clas-

sified Asian and Caucasian race groups without any error.

Table 6. Comparison of 5-fold CV accuracy measures on the dataset.

Race Group Sample Size Classification Algorithm (%)

PCA-LDA PCA-QDA PCA-SVM PCA-RF

African 90 88.15 85.43 88.58 88.35

Asian 90 76.85 70.20 83.33 79.23

Caucasian 90 91.56 82.76 94.35 93.87

Micro-accuracy 88.74 84.64 91.66 90.08

Macro-accuracy 85.52 79.46 88.75 87.15

https://doi.org/10.1371/journal.pone.0263790.t006

Table 7. Confusion matrix table of the PCA-SVM test performed on the dataset without PCA and 5-fold CV.

True Race Group Sample Size Predicted Race Group (%)

African Asian Caucasian

African 90 86.42 5.16 8.42

Asian 90 3.60 73.89 22.51

Caucasian 90 2.65 5.87 91.48

Micro-accuracy 87.95%

Macro-accuracy 83.93%

https://doi.org/10.1371/journal.pone.0263790.t007
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Tables 13 and 14 shows the average of the four ML classification algorithms (SVM, LDA.

QDA and RF) with BoW on dataset 2 based on the selected performance metrics. The results

clearly indicate that the performance of the algorithms is affected by the tokenization on data-

set 2 which is due to the dimension problem we discovered. The accuracy and recall as indi-

cated by the bold values shown in Table 13 shows that BoW-SVM outperform BoW-RF,

BoW-LDA and BoW-QDA while BoW-LDA outperforms BoW-RF, BoW-RF and BoW-QDA

based on precision and F1-score as indicated by the bold values shown in Table 13 without

PCA. However, only BoW-PCA-RF outperformed the other algorithms when PCA was

applied (Table 14). Given the results, it can be clearly seen that PCA does have a significant

impact on the performance of ML algorithms. Overall, the algorithms displayed greater perfor-

mance accuracy metrics with PCA than without PCA. It was observed that BoW-PCA-RF

algorithm was dominant in Python and this is evident by the bold values displayed in Table 14.

There is a decrease in the accuracy measures as presented in Tables 13 and 14, this is due to

the dimension problem we discovered in dataset 2 after tokenization. This forced us to merge

the initial dataset and dataset 2 to eliminate the dimension issue which enable us to evaluate

the initial dataset with the new dataset with PCA and without PCA.

Tables 15 and 16 summarizes the 80% training set and 20% testing set accuracy metrics for

all four ML classification algorithms hybridised with PCA and without PCA. Their perfor-

mances were evaluated using dataset 2 (Table 2) in order to validate the results obtained with

the initial dataset (Tables 1, 9 and 10). It is evident by the bold values on Tables 13 and 14 com-

pares with Tables 9 and 10 that there is a decrease in the performance metrics measures both

without PCA and with PCA due to the dimension problem while Tables 15 and 16 compares

with Tables 11 and 12 that there is a decrease in the prediction accuracy measures both without

PCA and with PCA due to the dimension problem. In this scenario, for the mere fact that the

ML algorithms is familiar with the initial dataset, hence their ability to classify correctly was

reduced.

The ML algorithms on Table 15 shows the best performance on dataset 2 without PCA is

the SVM with 65% accuracy, followed by the LDA with 55% and the least is the QDA with

34% for the entire population irrespective of the race. Whilst, ML algorithms on Table 16

shows the best performance on dataset 2 with PCA is the RF with over 65% accuracy, followed

Table 8. 5-fold CV accuracy measures on dataset 2.

Race Group Sample Size Classification Algorithm (%)

PCA-LDA PCA-QDA PCA-SVM PCA-RF

African 90 86.55 85.13 88.41 87.96

Asian 90 76.83 70.24 84.29 79.04

Caucasian 90 91.32 82.15 94.37 93.85

Micro-accuracy 88.08 83.92 91.93 89.88

Macro-accuracy 84.90 79.17 89.02 86.95

https://doi.org/10.1371/journal.pone.0263790.t008

Table 9. Comparison of machine learning algorithms model with one hot encoder, BoW and without PCA.

Performance metrics BoW-SVM BoW-RF BoW-LDA BoW-QDA

Accuracy 0.889 0.889 0.889 0.722

Precision 0.918 0.918 0.889 0.801

Recall 0.889 0.889 0.889 0.722

F1-score 0.885 0.885 0.889 0.732

https://doi.org/10.1371/journal.pone.0263790.t009
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by the SVM with 62% and the least still remain the QDA with 34% for the entire population

irrespective of the race.

Comparison of Python and WEKA

The ML software tools employed for the evaluation of the performance metrics of the most

classification accuracy in this study are Python and WEKA. As presented in Table 17, the pre-

diction of the race group was carried out without misclassification in the BoW-PCA-RF for

the Asian and Caucasian race using python but with less than 10% misclassification rate in all

the classification algorithms prediction carried out in WEKA. What is responsible for the bet-

ter accuracies with python than WEKA is actually the ability to create a Bag of Words (BoW)

model from Sklearn in Python based on the natural language processing concept which is not

possible in WEKA. Furthermore, WEKA was not able to detect any outliers during PCA, while

Python did detect and remove the irrelevant attributes that would affect the results (output) of

this study. Overall, Python displayed higher accuracies than WEKA, with RF algorithm obtain-

ing 100% prediction for the Asian and Caucasian race groups with and without PCA.

The classification accuracies presented on Tables 15 and 16 using Python has some race

group that was totally misclassified unlike on Table 8 using WEKA there was no race group

with classification accuracies less than 70%. This shows that dimension problem can affect

consistency of predictability on different datasets even after it has been resolved.

Discussion

Humans can be categorized into different ethnic groups that typically reflect their geographic

ancestry, using uni-parental and/or bi-parental biological markers [32]. Several studies have

provided evidence on the usefulness of inferring probable race groups, ancestral and/or geo-

graphic origin from HVR I sequences [31,33], thus making mtDNA a suitable marker for eth-

nic affiliation prediction. The findings from these studies clearly demonstrate that although

mtDNA alone does not determine one’s race but are strongly associated.

Human mitochondrial haplogroups have risen from evolutionary forces such as migration

and mutation. These haplogroups have been extremely useful tools in understanding the pat-

terns of geographical migration of human populations. Prior to modern migration,

Table 10. Comparison of machine learning algorithms model with one hot encoder, BoW and PCA.

Performance metrics BoW-PCA-SVM BoW-PCA-RF BoW-PCA-LDA BoW-PCA-QDA

Accuracy 0.926 0.944 0.926 0.815

Precision 0.929 0.953 0.926 0.866

Recall 0.926 0.944 0.926 0.815

F1-score 0.926 0.944 0.926 0.820

https://doi.org/10.1371/journal.pone.0263790.t010

Table 11. Machine learning algorithms with one hot encoding and PCA using Python.

Race Group Sample Size Classification Accuracy (%)

BoW-PCA-SVM BoW-PCA-RF BoW-PCA-LDA BoW-PCA-QDA

AFRICAN 90 84.2 85 88.2 64

ASIAN 90 93.3 100 88.2 93.3

CAUCASIAN 90 100 100 100 100

Micro-accuracy 95.17 97.89 94.80 88.44

Macro-accuracy 92.50 95.00 92.13 85.77

https://doi.org/10.1371/journal.pone.0263790.t011
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mitochondrial haplogroups were to a great extent restricted to the geographical regions of

their origin and subsequent migration [31]. Similarly, race grouping humans are also reflective

of geographic ancestry. Africans, Asians and Caucasians have clear geographic associations.

Due to these clear associations of both mitochondrial haplogroups and race categories with

geography, it is easy to expect a correlation between the two categories. S1 Table showing

inferred haplogroups supports this correlation. Inferred haplogroups T, U and A consisted

more of Caucasians, while B, D, M and R7 included Asians and lastly, Africans made up most

of the L haplogroup (S1 Table). There is a wide correspondence between the L haplogroups

and African race inferences. MtDNA represents only an exceedingly small segment of the

complex mosaic of a human’s genetic ancestry and suggests that the ability to infer genetic

relatedness would be limited [8]. However, genetic variation still exists between race groups

and so mtDNA particularly HVR I is used to infer genetic relatedness and can assign race

Table 12. Machine learning algorithms with one hot encoding, BoW and without PCA using Python.

Race Group Sample Size Classification Accuracy (%)

BoW-SVM BoW-RF BoW-LDA BoW-QDA

AFRICAN 90 73.91 73.91 82.4 83.3

ASIAN 90 100 100 82.4 53.6

CAUCASIAN 90 100 100 100 100

Micro-accuracy 93.97 93.97 90.94 81.64

Macro-accuracy 91.30 91.30 88.27 78.97

https://doi.org/10.1371/journal.pone.0263790.t012

Fig 2. Confusion matrix results generated with one hot encoding, BoW and PCA on the dataset. Numbers 0, 1 and

2 on the X and Y axis represent the African, Asian and Caucasian race groups, respectively. The values in the matrix

denote the number of correct and incorrect predictions made by classifiers: (a) Support vector machine, (b) Linear

discriminant analysis, (c) Quadratic discriminant analysis and (d) Random forest.

https://doi.org/10.1371/journal.pone.0263790.g002
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groups with almost 90% accuracy [31]. This high level of accuracy in predicting the genetic

relatedness of unknown samples can be extremely useful in forensic investigators.

In order to understand genetic differentiation in the HVR I sequence dataset, and to lay the

ground basis for comparing genetic differentiations, AMOVA was performed. The AMOVA

results achieved in this study showed 75.98% variation within populations, depicting higher

genetic variation within population than among populations (Table 3). Research consistently

demonstrates that approximately 85% of all human genetic variation is within human popula-

tions whereas only about 15% variation exists between populations [14,34]. Hence, the results

from this study support previous research findings in such that there is greater variation within

races (ethnic groups) than between races. Furthermore, low to intermediate FST values

(Table 4) with significant levels pointed out genetic differentiation among populations. How-

ever, the Canadian population displayed high FST values which implies a considerable degree

of differentiation among populations. According to Table 5, the Kenyan and Nigerian popula-

tion groups had the highest mean pairwise differences and nucleotide diversity, indicating

higher degree of diversity in the African race group. These results corresponds to the reports

Fig 3. Confusion matrix results generated with one hot encoding, BoW and without PCA on the dataset. Numbers

0, 1 and 2 on the X and Y axis represent the African, Asian and Caucasian race groups, respectively. The values in the

matrix denote the number of correct and incorrect predictions made by classifiers: (a) Support vector machines, (b)

Linear discriminant analysis, (c) Quadratic discriminant analysis and (d) Random forest.

https://doi.org/10.1371/journal.pone.0263790.g003

Table 13. Comparison of machine learning algorithms model with one hot encoder, BoW and without PCA dataset 2.

Performance metrics BoW-SVM BoW-RF BoW-LDA BoW-QDA

Accuracy 0.648 0.47 0.548 0.337

Precision 0.433 0.351 0.556 0.333

Recall 0.648 0.47 0.548 0.337

F1-score 0.519 0.363 0.548 0.181

https://doi.org/10.1371/journal.pone.0263790.t013
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of Campbell and Tishkoff [35] and Gomez, et al. [36] which documented high levels of genetic

and phenotypic diversity present in African populations, thus making them the most diverse

race in the world.

Many applications in human genetics and biology require discriminative classification of

samples into groups and numerous methods for this assignment have been proposed. Over the

past decade, ML has paved its way into the scientific world and has been used to good effect in

several biological scenarios. In this study, four ML classification techniques (SVM, RF, LDA

and QDA) were employed to determine the best (in terms of accuracy and robustness) ML

classifier for genetic classification of genomic sequences. The WEKA results outlining the per-

formance of the four classification algorithms in Table 6, highlights the dominance of SVM as

a classifier. SVM consistently provided a greater accuracy level in comparison to RF, LDA and

QDA for each race group (Table 6). For all four classification algorithms, the highest accura-

cies were observed for the Caucasian race. This meant that the Caucasian race group was more

easily classified than the other two race groups. The success of SVM in WEKA suggests that it

is more robust for inferring genetic relatedness as well as allocating population groups for

unknown samples. These results align with the findings of studies by Lee et al. [31] and Wong

et al. [37] in which SVM proved to be the dominant ML classifier. The high accuracies

obtained for SVM demonstrate computationally efficiency which may be a result of using an

RBF kernel that provides better accuracy with robustness.

Contrary to the WEKA results, Python identified RF as the most accurate classifier, in

which it was able to achieve 100% classification accuracy for the Asian and Caucasian race

groups (Table 12). It was observed that without PCA, both SVM and RF performed equally.

However, when PCA was applied, SVM produced slightly higher accuracies for the African

and Asian race groups (Table 10 and Fig 2). However, in Table 11 showing the performance of

classification algorithms with PCA, SVM showed a significant increase and decrease in the

performance accuracy for the Asian and African race, respectively. The inconsistent accuracies

achieved by the SVM model were also observed with the WEKA results, in which SVM showed

a 10% drop in classification accuracies for the Asian race group (Table 7) when PCA was not

performed. Furthermore, QDA algorithm also showed a significant decrease in accuracy for

the African race and an increase of 39.7% for the Asian race group when PCA was applied.

From this, we can conclude SVM and QDA were the ML models most affected by PCA and

were less efficient than LDA and RF models. The classification algorithms model accuracies

with PCA outperformed those without PCA as presented in Tables 8–11.

Table 14. Comparison of machine learning algorithms model with one hot encoder, BoW and PCA on dataset 2.

Performance metrics BoW-PCA-SVM BoW-PCA-RF BoW-PCA-LDA BoW-PCA-QDA

Accuracy 0.619 0.652 0.504 0.344

Precision 0.622 0.681 0.671 0.446

Recall 0.619 0.652 0.504 0.344

F1-score 0.598 0.621 0.397 0.19

https://doi.org/10.1371/journal.pone.0263790.t014

Table 15. Accuracy measures on a new independent dataset without PCA.

Race Group Sample Size Classification Algorithm (%)

BoW-LDA BoW-QDA BoW-SVM BoW-RF

African 90 48.9 2.2 97.8 41.1

Asian 90 62.2 98.9 0 0

Caucasian 90 53.3 0 96.7 100

https://doi.org/10.1371/journal.pone.0263790.t015
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In this study, the overall results (WEKA and Python) for all four ML models had the highest

accuracy for the Caucasian race followed by the Africa race and the lowest accuracy was

obtained for the Asian race (Tables 6–11). This suggests that the African race group is the

more genetic diverse making them more complex to classify, and suggest a higher degree of

similarity in the Caucasian race than the African and Asian race. Given the results, it is clear

that Python is the better approach to analyse ML as it provided higher classification accuracies

(Table 12).

Advances in genomic data reveal that early applications of ML for genetic inferences dem-

onstrated that they outperform traditional approaches such as AMOVA [38]. Population

genetics over the past five decades has been primarily focused on reconciling molecular genetic

data with theoretical models like AMOVA that describe patterns of variation produced by a

combination of evolutionary forces. This said, AMOVA is a powerful sequence analysis tool

that has been used for many years. Comparing prediction accuracy of AMOVA as a soft tool

with ML algorithm was a component explored in the present study.

Recent studies [38,39] showed that ML techniques can leverage high-dimensional data to

attain far greater predictive power than traditional sequence analysis tools. Apart from the per-

centages generated in AMOVA indicating that there is greater variation within races, the

results did not show which population group had the most and least genetic variation present,

and other genetic analyses tools would be required for such output. However, in a single run,

ML obtained detailed results and displayed higher accuracies. Therefore, these results support

research findings which state that ML has a far greater predictive power than traditional and

current sequence analysis tools [38,40]. This suggests that ML can make more precise genetic

inferences than AMOVA.

Besides having a greater predictive power, time and interpretation of results were two con-

tributing factors in this study that made ML a better sequence analysis tool than AMOVA. We

found that AMOVA determination (in Arlequin software) took a longer time to generate

results due to the large sequence dataset used. Although this could be different for other

genetic variation tools, the present study found that ML determination took far less time to

generate results using same amount of sequence data. This is in agreement with Yang, et al.

[40] which mentioned that traditional sequence analysis tools can no longer handle large geno-

mic sequence data making them inefficient in terms of computing time. Computing time for

sequence analysis plays a crucial role in forensic investigations, particularly where large-scale

genomic data are involved. In light of this, AMOVA computation is more redundant than ML

techniques. In addition to this, there were many measures of variance produced by AMOVA

Table 16. Accuracy measures on a new independent dataset with PCA.

Race Group Sample Size Classification Algorithm (%)

BoW-PCA-LDA BoW-PCA-QDA BoW-PCA-SVM BoW-PCA-RF

African 90 50 100 97.8 65.6

Asian 90 11.1 33.3 35.6 30

Caucasian 90 100 0 52.2 100

https://doi.org/10.1371/journal.pone.0263790.t016

Table 17. Race group classification accuracy (%) results from Python and WEKA.

Software tools Classification Accuracy (%)

ASIAN AFRICAN CAUCASIAN

PYTHON 100(BoW-PCA-RF) 88.2(BoW-PCA-LDA) 100(BoW-PCA-RF)

WEKA 83.33(PCA-SVM) 88.58(PCA-SVM) 94.35(PCA-SVM)

https://doi.org/10.1371/journal.pone.0263790.t017
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and finding the most relevant result made analysis and interpretation time-consuming.

Whereas for ML, the most relevant results; true group accuracies were provided, and this

made analysis and interpretation simple and less laborious. Furthermore, ML results were gen-

erated in a short span of time which indicated its ability to handle large genome sequence data.

The future of genomic analyses rests in our ability to understand large and ever-growing

data. ML represents a new paradigm for sequence analysis with being mainly suited for deter-

mining genetic relatedness and modelling genetic inferences in forensic studies particularly

for human identification. Despite the robust and computationally efficient genetic inferences

provided by ML, there are several limitations to this approach which makes it difficult to

replace current sequence analysis tools. A general challenge for ML lies in its ability to make

more structured genetic inferences beyond simple parameter classification [38]. Nevertheless,

current developments in ML research promises future improvements to make genetic and evo-

lutionary inferences well beyond current capabilities. Therefore, ML algorithms should be

used as a supplementary sequence analysis tool for forensic applications.

Conclusion

The results showed that PCA-SVM in WEKA and BoW-PCA-RF in Python are the most

robust and accurate classifiers among compared ML algorithms with the best accuracies of

94.35% and 100%, respectively in determining genetic relatedness and modelling genetic infer-

ences in such that it was able to classify unknown samples into race groups and infer popula-

tion allocation. The success of these ML classification algorithms justify their use in genomic

sequence data analysis and reiterate the need for them to be more commonly used in the field

of Forensic Science particularly for human identification studies. The limitation of the present

study lies in the comparison of a single genetic theory (AMOVA) with four ML algorithms.

Another limitation is that only HVR I sequences were used to evaluate the performance of

sequence analysis tools, other HVR regions and genomic sequence data can be used for future

studies. ML has the ability to significantly aid in forensic and genetic investigations, however

due to the several drawbacks mentioned above, ML cannot replace traditional sequence analy-

sis tools but instead may serve as a supplementary tool.
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