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Identifying an epidermal growth factor receptor (EGFR) mutation is important because EGFR tyrosine kinase inhibitors are the
first-line treatment of choice for patients with EGFR mutation-positive lung adenocarcinomas (LUAC). This study is aimed at
developing and validating a radiomics-based machine learning (ML) approach to identify EGFR mutations in patients with
LUAC. We retrospectively collected data from 201 patients with positive EGFR mutation LUAC (140 in the training cohort
and 61 in the validation cohort). We extracted 1316 radiomics features from preprocessed CT images and selected 14
radiomics features and 1 clinical feature which were most relevant to mutations through filter method. Subsequently, we built
models using 7 ML approaches and established the receiver operating characteristic (ROC) curve to assess the discriminating
performance of these models. In terms of predicting EGFR mutation, the model derived from radiomics features and
combined models (radiomics features and relevant clinical factors) had an AUC of 0.79 (95% confidence interval (CI): 0.77-
0.82), 0.86 (0.87-0.88), respectively. Our study offers a radiomics-based ML model using filter methods to detect the EGFR
mutation in patients with LUAC. This convenient and low-cost method may be of help to noninvasively identify patients
before obtaining tumor sample for molecule testing.
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1. Introduction

Lung cancer was the second most commonly diagnosed cancer
and remained the leading cause of cancer-related death world-
wide [1]. The most common histological subtype of lung
cancer is lung adenocarcinoma (LUAC), accounting for
approximately 40% of all cases [2]. Although tremendous prog-
ress has been made in the treatment of LUAC in the last
decade, the prognosis of patients who are detected at advanced
clinical stage remains unfavorable. Epidermal growth factor
receptor (EGFR) is one of the most frequently mutated genes
in LUAC [3], and EGFR tyrosine kinase inhibitors (TKI) have
provided patients who harbor activating EGFR mutations with
clinical benefit, such as high response rate and prolonged
progression-free survival (PFS) [4]. Therefore, an EGFR-TKI
has become the first-line treatment of choice for patients with
positive EGFR mutation LUAC [5]. As a result, the detection
of EGFRmutations is of great significance in determining treat-
ment for patients with LUAC [6].

Detection of EGFRmutational profile is currently based on
cytology and noncytology biopsy samples, and mutational
sequencing has become the gold standard of EGFR mutation
detection [7]. However, tissue sampling has some disadvan-
tages. First, the tumor tissue is not easy to obtain in several
cases. Second, the biopsied sample does not necessarily repre-
sent the tumor tissue due to intratumor heterogeneity [8].
Third, biopsy testing may potentially increase the risk of cancer
metastasis, although the chance is small [9]. Finally, long turn-
around time, unfeasibly repeated biopsy, and the relative high
costs also account for the limited use of mutational sequencing
[10]. Thus, it is a critical need to explore a noninvasive and con-
venient method to predict EGFR mutation status.

Radiomics is a rapidly evolving and important field
because it can extract and analyze multiple features derived
from digital medical images with the aim of enhancing clinical
decision-making [11, 12]. Studies have revealed that somatic
mutations, which ultimately lead to tumor phenotype, can be
predicted by radiomics in different solid tumors, including
lung cancer [10, 13]. Based on imaging information extracted
frommagnetic resonance imaging (MRI), computed tomogra-
phy (CT), and positron-emission-tomography (PET), radio-
mics analysis can be performed to identify the presence of
EGFR, anaplastic lymphoma kinase (ALK), Kirsten rat sar-
coma viral oncogene (KRAS), and Erb-B2 receptor tyrosine
kinase 2 (ERBB2) mutations in patients with non-small-cell
lung cancer (NSCLC) [14–18]. With specific regard to EGFR
mutation, previous studies have documented the potential
for radiomics to predict EGFR 19Del and L858R based on
the phenotypic appearance [14, 16, 19]. For example, Rossi
et al. built a machine learning (ML) model to identify EGFR
mutant and achieved an area under the receiver operating
characteristic curve (AUC) of 0.89 [19]. By developing deep
learning models, Zhang et al. reported that radiomics features
from CT images can discriminate EGFR mutation with an
AUC of 0.910 and 0.841 for the internal and external test
cohorts, respectively [20]. Hong and colleagues [21] utilized
features from enhanced CT imaging to recognize EGFRmuta-
tion status in advanced LUAC. They reported an AUC of
0.851 for predicting EGFR mutation with a model based on

radiomics features and clinical data [21]. Although previous
studies have documented the association between radiological
characteristics and EGFR mutation status, the role of CT-
based radiomics ML in identifying EGFR mutation in LUAC
remains to be further explored.

Selection of a subset of relevant predictor variables from
highly dimensional data, which is termed as feature selection
(FS), is a critical step in analysis of radiomics features [22].
FS is the core of classification which plays a fundamental role
in ML and can reduce the learning complexity. As one of the
FS methods, filter methods assess the goodness of features
based on a simple weight score criterion [23]. In addition, filter
methods select features independent of any specific classifiers
and demand less computation [23]. As a result, filter models
have been widely studied because of their efficiency and sim-
plicity. However, few studies on prediction of EGFR mutation
status were reported using filter approaches based on ML.

Therefore, the aim of this study is to develop a radiomics-
based model to predict EGFR mutation status in patients with
LUAC using filter methods. In the present study, CT-based
radiomics features and ML methods were used to identify
EGFR mutation status and the effect of this model on predict-
ing EGFR mutation in LUAC was assessed. The outcome of
this studymay aid in distinguishing patients with EGFRmuta-
tions from those without and helping clinicians to make treat-
ment decisions for patients.

2. Materials and Methods

2.1. Patients. The study population was retrospectively
selected from patients diagnosed with LUAC from the First
Affiliated Hospital of Shandong First Medical University
(Jinan, China). The institutional review board approved this
study with a waiver for the informed consent requirement.
Patients who were (1) histologically diagnosed with primary
LUAC, (2) classified as stage III-IV according to the Eighth
Edition of the Lung Cancer Stage Classification, (3) having
detected EGFR mutations based on PCR technology, (4)
treatment-naïve subjects, and (5) receiving chest CT scan
prior to biopsies or surgery met the inclusion criteria and
were included. The exclusion criteria were given as follows:
(1) lack of clinical data, such as age, gender, stage, and serum
tumor marker, and (2) difficulty in drawing regions of inter-
est (ROIs). In the end, 201 patients were included in this
study. The flow chart of participant recruitment is shown
in Figure 1. The enrolled patients were randomly classified
into the training cohort and independent validation cohort
with the ratio of 7 (n = 140) : 3 (n = 61). The workflow of
the radiomics analysis is depicted in Figure 2.

2.2. Analysis of EGFR Mutation. Based on the tumor speci-
men, EGFR gene mutations in exons 18, 19, 20, and 21 were
examined by an amplification refractory mutation system
real-time technology using Human EGFR Gene Mutations
Fluorescence Polymerase Chain Reaction (PCR) Diagnostic
Kit (Amoy Diagnostics Co., Ltd, Xiamen, China). Wild-type
EGFR in the present study referred to absence of mutation
on those loci.
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2.3. Image Acquisition. All patients included in this study
underwent chest CT scans prior to any treatment using
two CT scanners (GE Healthcare, Milwaukee, WI, USA;
United Imaging, Shanghai, China). The scanning parameters
were given as follows: the tube voltage, 120 kVp; tube cur-
rent, 160–300mA; detector collimation, 64 or 128 × 0:625
mm; field of view, 350 × 350mm; the pitch, 0.992 : 1; and
matrix of 512 × 512. All images were reconstructed with a
section thickness of 2mm and were stored in DICOM for-
mat in the Picture Archiving and Communication Systems
(PACS) of our hospital.

2.4. Image Preprocessing. Because different CT scans were used
in this study, image preprocessing prior to segmentation and
feature extraction was undergone to make the radiomics fea-

tures more robust [24]. As previously reported by Hong et al.
[21], a resampling method and Gaussian filter were used in this
process.

2.5. Tumor Segmentation. Every lesion was independently
evaluated and segmented manually slice by slice by two
senior radiologists (both with more than 10-year experience
of CT interpretation). The ROI was delineated in ITK-SNAP
(version 3.6, http://www.itksnap.org) and confirmed by
another chest radiologist with 15-year experience [25, 26].
If one patient has multiple lesions, the radiologist only delin-
eates the tumor area where the biopsy was performed. All
radiologists were blinded to the status of EGFR mutation.

To reduce the differences in manual segmentation between
two radiologists, the intragroup correlation coefficient (ICC)

568 patients diagnosed
with LUAC enrolled

379 patients diagnosed
with LUAC remained

201 patients diagnosed
with LUAC were included

in this study

Training cohort
(N = 140)

Validation cohort
(N = 61)

178 patients excluded:
95 no gene detection results
83 multiple ROI lesions

189 patients excluded:
86 incomplete information or
images
58 unqualified CT images
45 surgery history and
radiation therapy

Conventional chest CT
scans

Figure 1: Patient recruitment workflow. In total, 201 of 568 patients were included in this study according to the selection criteria.
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for each feature was calculated [27, 28]. Only those with an ICC
greater than 0.85 was considered highly stable and selected for
the following analysis.

2.6. Feature Extraction. Based on the three-dimensional region
of interest (3D ROI), radiomics features were extracted from
each ROI using Pyradiomics package (http://pyradiomics
.readthedocs. io/en/latest/index.html). A total of 1316 features
were extracted, and these features can be divided into 3 catego-
ries: first-order statistics (n = 18 features), shape-based (n = 14
features), and textural feature [18]. The textural feature cate-
gory includes Gray-Level Cooccurrence Matrix (GLCM)
(n = 24 features), Gray-Level Run Length Matrix (GLRLM)
(n = 16 features), Gray-Level Size Zone Matrix (GLSZM)
(n = 16 features), Gray-Level Dependence Matrix (GLDM)
(n = 14 features), and Neighboring Gray Tone Difference
Matrix (NGTDM) (n = 5 features). In addition, two filters
(including wavelet (n = 744 features) and Laplacian of Gauss-
ian (n = 465 features) were also applied to the original CT
images to obtain transformed images. By decomposing the
image with wavelet transform, high- (H) or low- (L) pass fil-
ters in three dimensions were applied and 8 kinds of combina-
tions were obtained: LHL, HHL, HLL, HHH, HLH, LHH,
LLH, and LLL. To emphasize areas of gray-level change, the
LoG filter was applied to the input image and yield a derived
image for each sigma value specified [29]. In our study, five fil-

ters with different sigma values were applied (sigma = 1:0mm,
2.0mm, 3.0mm, 4.0mm, and 5.0mm). The specific number
of features is listed in supplementary Table 1.

2.7. Feature Selection. At first, univariate analysis was per-
formed for each feature and those with P values < 0.1 were
considered to be associated with genetic mutations and
selected [30]. Then, 10 FS techniques based on filter
methods were used in the current analysis and they can be
classified into two categories: univariate methods and multi-
variate methods [31]. The univariate methods included
Fisher score (FSCR), Relief (RELF), t-test score (TTSC),
chi-square (CHSQ), Wilcoxon rank sum (WLCX), Gini
index (GINI), information gain (IFGN), F-ANOVA
(FAOV), and Pearson correlation coefficient (PESC). The
multivariate methods consisted of mutual information
(MUIF). These approaches were chosen mainly due to their
computational efficiency, simplicity in implementation, and
applications in literature [32, 33]. Filter methods calculate
a relevance score for each feature, and those which are lower
than a given threshold will be removed [31].

FS methods, such as GINI, RELF, and IFGN, were per-
formed using the “attrEval” function from the “CORElearn”
package in R software package. FAOV, FSCR, TTSC, CHSQ,
WLCX, PESC, and MUIF were implemented using the
scikit-learn package in Python software (Python Software

Image acquisition
(201 LUAC patients)

Image preprocessing
(reconstruction)

Tumor segmentation
on ITK-SNAP

Feature extraction
(n = 1316)

First-order histogram features

Shape-based features

Textural features

ROC curve analysis

Model comparison
Model establishment

OutputInput

Clinical features

Feature selection

Figure 2: Workflow of the radiomics analysis.
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Foundation: http://www.python.org). In order to describe
various aspects of the EGFR mutation and avoid choosing
features from a certain feature group, features were selected
based on rankings in their own group rather than rankings
among all features. With increased numbers of selected fea-
tures, we found that the majority of classifiers showed the
best predictive performance when the top 2 features are
selected from each group. If no features passed the univari-
ate test in a certain group, this group will be ignored.

2.8. Radiomics Model Establishment and Performance
Evaluation. Seven ML algorithms were imported from the
scikit-learn library in Python software to establish models
[34]. These algorithms included decision tree (DT), AdaBoost
classifier (AD), naïve Bayes (NB), random forest (RF), logistic
regression (LR), support vectormachines (SVM), extreme gra-
dient boosting (XGBoost, XGB), and k nearest neighbors
(KNN). In combination of 10 FS methods and 7 classifiers,
we developed 70 (10 × 7 = 70) models. The nomenclature of
each model was established by two elements: the name of FS
method and classifier. For example, NB-WLCX referred to a
model combining naïve Bayes classifier with FS approach of
Wilcoxon rank sum. The predictive ability of each algorithm
was primarily assessed using AUC of receiver operating char-
acteristic (ROC) curve analysis. Then, fivefold cross-validation
was applied to examine all results and also evaluated by AUC.
The model which gives the highest cross-validation accuracy
was selected as the final model for further analysis.

2.9. Development and Validation of Models Combining
Radiomics Features and Clinical Characteristics. To further
increase the power of predicting EGFR mutation, some clin-
ical characteristics were added to the aforementioned model.
These clinical factors consisted of age, gender, smoking sta-
tus, stage of disease, and serum level of tumor markers. The
tumor markers included carcinoembryonic antigen (CEA),
neuron-specific enolase (NSE), fragment of cytokeratin sub-
unit 19 (CYFRA 21-1), squamous cell carcinoma antigen
(SCC), and pro-gastrin-releasing peptide (Pro-GRP). The
predictive performance of each algorithm was also evaluated
based on the AUC of ROC curve analysis.

2.10. Statistical Analysis. Statistical analysis was performed
using PRISM version 6 (GraphPad, La Jolla, CA, USA). Quan-
titative data were compared using Student’s t-test, and categor-
ical data were compared using the χ2 test to identify baseline
differences. The discrimination performance of models was
evaluated by the ROC curve. All statistical tests were two-tailed,
and P < 0:05 was considered statistically significant.

3. Result

3.1. Clinical Characteristics. The baseline clinical characteris-
tics of the enrolled patients are listed in Table 1. No evident
differences were found among the age, gender, stage of dis-
ease, and serum level of CEA, NSE, CYFRA 21-1, and Pro-
GRP between the EGFR-mutated and EGFR wild-type group
(P > 0:05). The smoking status was significantly different
between the EGFR-mutated and EGFR wild-type group in

the training cohort (P < 0:05). The level of SCC in the serum
was significantly different in the training and validation set
(P < 0:05).

3.2. Selected Stable Features. In total, 1316 radiomics features
were extracted. Subsequently, ICC for radiomics features in
each group were calculated (ICC =mean ± SD) and are
depicted in supplementary Fig. 1: shape-based features
(ICC = 0:97 ± 0:03), first-order features (ICC = 0:98 ± 0:01),
GLCM features (ICC = 0:98 ± 0:02), GLRLM features
(ICC = 0:99 ± 0:01), GLSZM features (ICC = 0:98 ± 0:02),
GLDM features (ICC = 0:98 ± 0:01), NGTDM features
(ICC = 0:99 ± 0:01), wavelet transformed features
(ICC = 0:97 ± 0:05), and LoG-transformed features
(ICC = 0:95 ± 0:06). Overall, 1269 of the 1316 (96.4%)
extracted radiomics features were identified as stability and
were retained. These features consist of 14 shape-based fea-
tures, 18 first-order features, 24 GLCM features, 16 GLRLM
features, 16 GLSZM features, 14 GLDM features, 49 LoG fea-
tures, 5 NGTDM features, 727 wavelet transformed features,
and 435 LoG-transformed features. The histogram of the
ICC values of the radiomics features is shown in supplemen-
tary Figure 1.

3.3. Model Performance Assessment. The mean AUC scores
for each classifier across the different FS methods are pre-
sented in a heat map form (Figure 3). When analysis was
based on radiomics features, the RF classifier performed bet-
ter than the other classifiers and the median AUC of the 10
models using RF classifier was 0.74. With regard to FS
approaches, MUIF provided the best predictive performance
and the median AUC of the 7 models using MUIF FS
method was 0.72. When various classifiers and FS methods
are combined, RF-MUIF model provided the highest perfor-
mance in the prediction of EGFR mutation and the AUC
reached 0.79 (Figure 3(a)). Moreover, the RF-MUIF model
achieved a sensitivity of 0.81, a specificity of 0.63, and an
accuracy of 0.74 for predicting EGFR mutation status. Fur-
ther, the XGBoost model outperformed other classifiers
(median AUC 0.73) and MUIF generated better AUCs
(median AUC 0.72) when the integrated model built with
radiomics signature and clinical features was analyzed. The
model of XGBoost-MUIF achieved the best predictive per-
formance, and the AUC, sensitivity, specificity, and accuracy
were 0.86, 0.95, 0.72, and 0.83, respectively (Figure 3(b)).
The cross-validated AUC scores and AUC curve on the val-
idation dataset are shown in (Figures 4(a)–4(d)).

3.4. Analysis of the Selected Radiomics and Clinical Features.
Among the selected radiomics and clinical features, 10 features
had lower values for EGFR mutant type than for EGFR wild
type. These features included original_shape_Flatness (0.57
vs. 0.60, P = 0:09), original_firstorder_Kurtosis (5.47 vs. 8.12,
P = 0:004), original_glrlm_GrayLevelNonUniformityNorma-
lized (0.20 vs. 0.23, P = 0:008), original_ngtdm_Contrast(41.36
vs. 46.74, P < 0:001), wavelet-HLH_gldm_SmallDependence-
HighGrayLevelEmphasis (0.38 vs. 0.40, P < 0:001) log-sigma-
2-0-mm-3D_gldm_LargeDependenceEmphasis (247.74 vs.
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Table 1: Characteristics of patients in training and validation cohorts.

Variable
Training cohort

P
Validation cohort

P P
Mutant type Wild type Mutant type Wild type

Age (y, mean ± SD) 65:27 ± 1:44 66:14 ± 1:24 0.66 64:35 ± 1:34 63:48 ± 1:57 0.68 0.83

Sex, n (%) 0.06 0.19 0.44

Male 34 (24.29) 40 (28.57) 9 (14.75) 19 (31.15)

Female 41 (29.29) 25 (17.86) 17 (27.87) 16 (26.23)

Smoking status, n (%) 0.01 0.05 0.64

Smoker 24 (32.00) 36 (55.38) 5 (19.23) 19 (54.29)

Never smoker 51 (68.00) 29 (44.62) 21 (80.77) 16 (45.71)

Stage, n (%) 0.43 0.15 0.07

III 46 (61.33) 44 (68.75) 16 (61.54) 15 (42.86)

IV 29 (38.67) 20 (31.25) 10 (38.46) 20 (57.14)

Serum level of tumor marker (mean ± SD)
CEA 109:0 ± 75:82 30:86 ± 7:56 0.31 114:6 ± 77:44 129:3 ± 78:20 0.89 0.28

NSE 98:39 ± 75:75 28:75 ± 6:79 0.36 100:6 ± 77:31 29:05 ± 6:932 0.36 0.27

CYFRA 21-1 6:91 ± 0:79 9:36 ± 1:58 0.17 6:88 ± 0:82 9:63 ± 1:62 0.13 0.17

SCC 0:85 ± 0:77 1:26 ± 1:65 0.08 0:62 ± 0:38 0:97 ± 0:92 0.06 0.03

Pro-GRP 45:50 ± 8:23 49:31 ± 6:49 0.72 45:33 ± 8:40 51:17 ± 7:09 0.59 0.72

CEA: carcinoembryonic antigen; NSE: neuron-specific enolase; CYFRA 21-1: fragment of cytokeratin subunit 19; SCC: squamous cell carcinoma antigen; Pro-
GRP: pro-gastrin-releasing peptide.
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Figure 3: Heat maps with the AUC of different combinations of FS methods (rows) and classification algorithms (columns). (a) The average
cross-validated AUC from 70 models based on radiomics features. (b) The average cross-validated AUC from 70 models based on radiomics
features and clinical data.
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Figure 4: Continued.
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338.90, P < 0:001), log-sigma-2-0-mm-3D_gldm_LargeDe-
pendenceLowGrayLevelEmphasis (0.91 vs 0.93, P < 0:001),
original_glcm_Idmn (0.97 vs. 0.99, P = 0:09), original_glszm_
SmallAreaHighGrayLevelEmphasis (20.63 vs. 23.87, P = 0:06),
and SCC (3.91 vs. 6.03, P = 0:15). Five features showed higher
value for EGFR mutant type compared with EGFR wild type.
These features consisted of original_glrlm_ShortRunEmpha-
sis (0.76 vs. 0.73, P = 0:03), original_glszm_LargeAreaLow-
GrayLevelEmphasis (2.36 vs. 2.20, P = 0:07), original_gldm_
DependenceEntropy (8.40 vs. 5.84, P < 0:001), original_
gldm_GrayLevelNonUniformity (9.11 vs. 8.44, P < 0:001),
and wavelet-HLH_gldm_HighGrayLevelEmphasis (15.18 vs
13.56, P < 0:001) (Figure 5).

4. Discussion

In this retrospective study, we proposed a stable predictive
model based on noninvasive CT images and clinical features
in order to predict EGFR mutation status for patients with
LUAC. The ML model was trained with 140 patients, and its
performance was validated with 61 patients. This model
showed favorable predictability in the validation set
(AUC = 0:79). Similarly, the AUC of the integrated model
built with radiomics features and clinical data was 0.86. This
study demonstrated that the association was evident between
CT image features and EGFR genotype and the ability of
radiomics to identify the EGFR mutation status. Therefore, it
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is possible to predict EGFRmutation before invasive biopsy and
expensive molecular testing based on a noninvasive method. To
the best of our knowledge, this is the only study which estab-
lishes ML models using filter methods to predict EGFR muta-
tion status in patients of LUAC. The present study has made
new contributions to the existing research in this field.

Radiomics is defined as the extraction of a myriad of
radiographic image features and the further mining of these
data with the intent of supporting adoption of precision
medicine [35]. Radiomics analysis can be used to increase
precision in establishing a diagnosis, assessing prognosis,
and predicting therapy response in cancer patients. Some
features have even been shown to identify genomic alter-
ations in tumor tissue, which is termed as “radiogenomics”
[36]. Radiogenomics examines the relationship between dis-
ease genomic characteristics and its radiomics features [37].
Although some limitations of the radiogenomics approach
exist, radiogenomics will play an important role in cancer

research because it paves an avenue of obtaining important
information from limited and incomplete data. This informa-
tion might improve decision-making and, as a result, leads to
better patient outcomes [38]. For example, recent studies have
shown that radiogenomics can aid in treatment option and
prognosis assessment in NSCLC patients [39, 40]. Addition-
ally, radiogenomics can help in evaluating the efficacy of ther-
apy and predicting outcomes of treatment [37, 39].

Previous studies have shown that EGFR mutation status
can be predicted from image features in patients with NSCLC.
For example, a study by Zhang et al. found that radiomics fea-
tures are able to discriminate EGFR mutation in patients with
NSCLC and the AUC was 0.862 and 0.873 for the training and
validation cohort, respectively [41]. Mei et al. [42] analyzed
the association between CT texture features and EGFR muta-
tion statuses in patients with LUAC. They reported that AUC
of combination with clinical and radiomics features to predict
EGFR mutations was 0.664. Liu et al. [43] also predict EGFR
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status with a model based on five radiomics features and
obtain an AUC of 0.647 in surgically resected peripheral
LUAC. When combined with clinical data, this model can
reach an AUC of 0.709. In the study conducted by Gevaert
et al. [44], the authors built a predictive model for the EGFR
mutation and achieved an AUC of 0.89. Their work showed
the potential of semantic image features to predict molecular
properties. Recently, Wang et al. proposed a deep learning
model to distinguish EGFR mutation status using CT images
and clinical data. The AUC was 0.85 and 0.81 in the training
and test cohorts, respectively [16]. Our results combined with
previous studies clearly demonstrate that radiogenomics pow-
ered by ML can potentially aid in identifying patients who will
benefit from targeted therapy.

FS is a process often used in ML, wherein a subset of pre-
dictor variables is selected from the input data for application
of a learning algorithm [23]. FS is the core of classification
which plays an essential role in image processing and ML
[22]. The aims of FS include, but are not limited to, the follow-
ing aspects: preventing overfitting of predictive and classifier
models and achieving a good prediction performance, provid-
ing quicker and more optimizing computational solutions,
and gaining a better insight into the underlying processes by
which the data are generated [31, 32]. FSmethods usually con-
sist of three categories: wrapper, embedded, and filter. Most
wrapper approaches are not computationally feasible for
high-dimensional data sets [32]. Embedded methods search
for the most optimal features during the training of the classi-
fier, and they have better computational complexity than
wrapper methods [45]. Filter methods calculate a score for
each predictor variable and select those which exceed a defined
threshold [31]. Unlike wrapper and embeddedmethods which
are specific to a given learning algorithm, filter methods could
be combined with any kind of predictive approaches [31]. Due
to its independence of learning algorithms, filter approaches
can prevent overfitting and demand less work in computation
than wrapper and embedded methods [31]. As a result,
although filter-based feature selection methods have some
shortcomings, such as ignoring feature dependencies and
providing feature subsets which perhaps contain redundant
information, filter methods are increasingly used due to their
efficiency, simplicity, and a good generalization capacity
[46]. Zhang et al. built MLmodels based on CT radiomics fea-
tures which were selected using filter methods to discriminate
arteriovenous malformation-related intraparenchymal hema-
tomas from those that were associated with other etiologies
[47]. They obtained AUCs of 0.988 and 0.957 in the training
and test cohorts, respectively. In the work presented by Par-
mar et al. [33], the authors showed that choosing WLCX,
one of the filter methods, and/or RF classification method gets
the highest performance in survival prediction based on 440
radiomics features extracted from 464 lung cancer patients.
Our models achieved an AUC of 0.79 to identify EGFR muta-
tion, which is comparable to the previous reports. It is worth
noting that a deep learning approach has some shortcoming:
requiring a huge amount of data for training, relying on more
specialized hardware and computing power, and lack of inter-
pretability [48, 49].

As a branch of artificial intelligence, ML is a method to
identify patterns and relationships in data by building algo-
rithmic models. ML has also been proven to be an interesting
field in biomedical research and focuses on teaching com-
puters to perform classification, prediction, or estimation
and improve its own performance based on some experience
(data) [50]. Supervised learning (training data are labeled)
and unsupervised learning (training data are unlabeled) are
two main common types of ML methods, and the former
has been a dominant method in the data mining field [51].
Our retrospective study showed that it was feasible for 7 ML
approaches to predict EGFR mutation status. When used in
combination with the RF classifier, the majority of FSmethods
achieved the best predictive performance. This finding is in
accordance with a recently reported study by Parmar et al.
[33], who found that RF classification method yields the high-
est performance in the prediction of two-year patient survival
in NSCLC patients. Gu et al. reported that RF-based radiomics
classifier performed best (AUC = 0:776) in predicting the Ki-
67 expression level in NSCLC [52]. Uddin et al. [51] compared
different types of supervised ML algorithms to evaluate the
potential for disease risk prediction. They found that the
SVM algorithm is most frequently used whereas the RF algo-
rithm gave superior accuracy comparatively. In addition,
MUIF was found to have the highest predictive power with
the majority of classifiers. MUIF can be used as relevant crite-
rion for selecting predictive subsets of features [53]. Under
some reasonable assumptions, features selected with MUIF
are those whose mean squared error and mean absolute error
are minimizing [54]. Our results combined with previous
researches demonstrate that RF together with MUIF is a better
ML approach for identifying EGFR mutations based on radio-
mics features.

The potential clinical utility of radiomics based model has
also been assessed to predict EFGRmutation in this study. We
identified SCC as the most important clinical predictor, which
was consistent with previous reports [55, 56]. We found that
age, gender, and s-CEA were not associated with the EGFR
mutation status, which did not accord with previous studies
[21, 57–59]. A meta-analysis of human epidemiologic data
revealed that there are significantly increased odds of EGFR
mutation in never smokers in comparison to ever smokers
[60]. Hong et al. reported that female was more likely
(OR = 3:124) to have EGFR mutations [21]. Wang et al. [57]
demonstrated that high preoperative serum CEA levels
(CEA > 20ng/mL) were effective for predicting the EGFR
mutation. With regard to the models integrating clinical char-
acteristics and radiomics features, we found that the XGBoost-
MUIF model performed better in predicting EGFR mutation
status. These results are consistent with a previous study that
reported that the genetic algorithm plus XGBoost classifier
had the most favorable performance and reached an accuracy
of 0.836 for detecting EGFR in patients with NSCLC [61].

The present study has some limitations. First, as the study
was retrospective in nature, it was associated with flaws such
as possible information and selection bias. Second, our sample
size is relatively small. However, although larger data sets are
associated with more power, radiomics analyses can be
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performed with as few as 100 patients [62]. Further studies on
large sample are required to assess the clinical applications as
well as the stability of our models. Third, there were differ-
ences in the prevalence of EGFR mutations in LUAC and in
subsequent treatments among different races [63], but all of
subjects who were involved in this study were Chinese. There-
fore, the results may lack universality and needs further verifi-
cation within other racial and ethnic population. Finally,
manual segmentation of ROI is time-consuming and its repro-
ducibility should be evaluated by interobserver reproducibility
analysis. Semiautomated or automated radiomics methods are
expected in our future research to improve the robustness.

5. Conclusions

In conclusion, the present study showed that radiomics sig-
nature extracted from CT images in combination with clin-
ical characters can identify EGFR mutation status in LUAC.
Although these findings remain to be validated with a larger
sample size, ML-based radiomics using filter methods pro-
vides a noninvasive and low-cost method to predict EGFR
mutations, which may aid in screening patients before inva-
sive sampling and developing personalized treatment design
for optimizing the outcomes of patients with LUAC.
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