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Abstract

Regulation of gene expression is essential to all aspects of physiological processes in single-cell as
well as multicellular organisms. It gives ultimately cells the ability to efficiently respond to extra-
and intracellular stimuli participating in cell cycle, growth, differentiation and survival. Regulation of
gene expression is executed primarily at the level of transcription of specific mMRNAs by RNA
polymerase Il (RNAPII), typically in several distinct phases. Among them, transcription elongation
is positively regulated by the positive transcription elongation factor b (P-TEFb), consisting of
CDK9 and cyclin T1, T2 or K. P-TEFb enables transition from abortive to productive transcription
elongation by phosphorylating carboxyl-terminal domain (CTD) in RNAPIlI and negative
transcription elongation factors. Over the years, we have learned a great deal about molecular
composition of P-TEFb complexes, their assembly and their role in transcription of specific genes,
but function of P-TEFb in other physiological processes was not apparent until just recently. In light
of emerging discoveries connecting P-TEFb to regulation of cell cycle, development and several

diseases, | would like to discuss these observations as well as future perspectives.

Introduction

Gene expression is a highly organized and tightly control-
led process involved in a broad spectrum of biological
processes, ultimately giving cells the ability to take control
of their growth, cell division, differentiation and apopto-
sis. Regulation of gene expression is executed primarily at
the level of transcription of specific mRNAs by RNA
polymerase II (RNAPII), typically in several distinct
phases: preinitiation, initiation, promoter clearance, elon-
gation, RNA processing, and termination [1-3]. RNAPII is
characteristic by the presence of an extended carboxyl-ter-
minal domain (CTD), consisting of 52 tandem hepta-pep-
tide repeats of canonical sequence, YSPTSPS [4].
Coincidently, CTD is subjected to numerous modifica-
tions, which control its ability to associate with transcrip-
tion factors involved in RNA processing, elongation and
termination [5]. Therefore, it seems that modification sta-

tus of CTD is important for control of a particular phase
of transcription [6].

Importantly, RNAPII can not initiate transcription alone.
General transcription factors assist RNAPII to form a
preinitiation complex (PIC) at the promoter of protein-
coding genes. To initiate transcription, activity of TFIIF
(CDK7/cyclin H) factor is required to begin promoter
clearance and synthesis of short nascent RNA by RNAPII.
TFIIH also phosphorylates Ser 5 at the CTD evoking its
conformational changes that allow binding of capping
complex and co-transcriptional capping of nascent RNA.
After synthesizing around 50 ribonucleotides, RNAPII is
recognized by negative elongation factor (NELF) and
DRB-sensitivity inducing factor (DSIF) causing its pro-
moter-proximal pausing. To overcome inhibitory effect of
NELF/DSIF factors and to initiate productive elongation,
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the positive transcription elongation factor b (P-TEFb) is
subsequently recruited to the paused/poised RNAPII.
After phosphorylation of RNA recognition motif-contain-
ing protein RD (a NELF-E component) and Spt5 (a subu-
nit of human DSIF) by P-TEFb, NELF leaves RNAPII;
however, DSIF stays there and becomes a positive elonga-
tion factor [7-9]. Most importantly, P-TEFb phosphor-
ylates Ser 2 of CID, increasing its affinity towards
components of splicing and polyadenylation machineries
[3,10,11].

Much of what we know about regulation of elongation
phase has come from studies using ATP analog 5,6-
dichloro-1-b-D-ribofuranosylbenzimidazole (DRB).
Treatment of cells with DRB caused dramatic reduction in
mRNA synthesis characteristic by production of short
capped RNA transcripts, suggestive of block in the elonga-
tion phase [12,13]. DRB blocked CTD phosphorylation as
well [14]. Importantly, inhibition of RNAPII elongation
by Flavopiridol, a selective P-TEFb inhibitor, resulted in
abortive transcription of most protein coding genes [15].

It has been thought for years that formation of a preiniti-
ation complex and subsequent recruitment of RNAPII to
the promoter is a rate-limiting step in transcription regu-
lation [16]. However, transcription of several genes, such
as c-myc, HSP70, JunB, did not fit the general concept [17-
20]. Over the years, it became increasingly clear that a
block of the elongation phase is a critical control mecha-
nism of transcription [21,22].

We have learned a great deal of P-TEFb genetics, biochem-
istry and molecular function from studying its function in
HIV replication in cells. Nevertheless, function of P-TEFb
in other physiological processes, such as cell differentia-
tion, cell cycle, development and diseases, has not been
pursued efficiently until just recently. The next parts of
this review are dedicated to shed a light on new discover-
ies in these processes with future perspectives.

P-TEFb - history and presence

P-TEFb is a heterodimer consisting of cyclin-dependent
kinase 9 and one of the C-type cyclins T1, T2a, T2b or K
[4,23-27]. CDK9 was first discovered by the Giordano lab
as a cell division cycle 2 - related kinase with PITALRE
motif [24]. It consists of 372 amino acids with a relative
molecular mass around 42 kDa. It was believed that
CDK9 42 kDa form (CDK9 or CDK9,,) is the only func-
tional form in cells. But such a presumption was chal-
lenged by a rather puzzling observation made by several
laboratories. When commercially available antibodies
specific for C-terminus or other domains of human
CDK9,, were used in western blotting, an extra band
migrating around 55 kDa was always detected [28,29].
Indeed, an additional form of CDK9 was identified in
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2003 by the Price lab [29]. Transcription of this CDK9
form starts from an alternative TATA box upstream of pre-
viously described housekeeping-type promoter for the
CDK9,, gene. Newly described form of CDK9 contains an
entire amino acid sequence of CDK9,, and additional 117
amino acids extension bearing proline-rich region and
glycine-rich region in its N-terminus [29,30]. The expres-
sion of both isoforms varies across different mouse tissues
[30]. The CDK9,, is predominantly expressed in spleen,
thymus and testes, whereas CDK9. is highly abundant in
brain, lung, spleen and thymus [30]. In many other cell
types, the relative abundance of both isoforms depends
on the original tissue, developmental stage, and cell com-
mitment. For instance, CDK9,, isoform is highly
expressed in human cervical carcinoma cells (HeLa) and
mouse fibroblasts (NIH 3T3)[29]. An opposite picture is
seen in primary hepatocytes, cultured macrophages or pri-
mary lymphocytes- in these cells, CDK955 form is preva-
lent at steady state [29,30]. Yet, in hepatocyte cultures, in
activated macrophages by lipopolysaccharide or lym-
phocytes by PMA/PHA CDK?9,, is induced, while the level
of CDK9. remained relatively constant or decreases upon
activation [29-31]. Interestingly enough, the CDK9. form
is almost undetectable in primary human monocytes or
primary satellite cells, but its expression is robustly
induced upon their differentiation, simply implying an
essential function for CDK95; in cell commitment and dif-
ferentiation [31,32].

It is possible to speculate at the moment that the presence
of an extra N-terminus in CDK9; will play - at least in part
- a key role in the final outcome of its function. Therefore,
both forms of CDK9 might control transcription of
diverse sets of genes and consequently be expressed in
developmental or cell fate specific manner. For example,
both CDK9 forms associate with MyoD, a factor involved
in muscle differentiation, but CDK95; seems to be more
important for satellite differentiation during injury [32].

Four years later after discovery of CDK9,,, a new type of
cyclins, called C-type cyclins, was identified to associate
with CDK9,, [26,27]. Cyclin T1 (CycT1) and two splicing
isoforms of cyclin T2a and T2b (CycT2a and CycT2b) con-
stitute the family of C-type cyclins. All cyclins associate
with both forms of CDK9 with kinase activity towards
CTD in RNAPII. They bear two prototypical cyclin boxes
at the N-terminus, histidine-rich region, providing bind-
ing to CTD of RNAPII, and proline-serine rich C-terminus.
CycT1, in contrast to CycT2a/b, contains TAR recognition
motif (TRM) next to cyclin boxes, which is important for
the formation of ternary complex between Tat/TAR/P-
TEFb and initiation of HIV transcription [27,33]. Vice-
versa, CycT2 bears a leucine-rich stretch next to its cyclin
boxes capable of binding to CTD, thus providing an extra
domain capable of targeting RNAPII [26,34]. Even though
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CycT1 seems to be the most abundant partner of CDK9 in
cultured cell lines, the expression of both CycT2 isoforms
is found in other cells and tissues as well [35,36]. Expres-
sion of CycT1/2 is regulated not just at the transcription
level, but also at the level of RNA stability, translation and
ubiquitination [37,38]. Several years after identification
of CycT1 and CycT?2, an additional cyclin was identified to
associate with CDK9 by two hybrid screens of lymphocyte
cDNA library [23]. This new member of C-type cyclins was
called cyclin K and in contrast to CycT1 and CycT?2, its
whole C-terminus (normally found in other C-type cyc-
lins) was missing. Three labs have shown that CycK can
support phosphorylation of CTD by CDK?9 in vitro, activa-
tion of P-TEFb-dependent genes when artificially tethered
to RNA but not DNA, supporting its function in transcrip-
tional elongation [23,25,39]. Moreover, expression of
CycK is transcriptionally activated by p53, thus CycK
could participate in control of cell cycle or apoptosis, but
these observations were not followed in greater details
[40].

Another milestone in P-TEFb biology was reached when
two labs independently demonstrated that 7SK small
nuclear RNA (7SK snRNA) is bound to P-TEFb and inhib-
its its kinase activity [41,42]. When RNase treatment or
extracellular stress signals were used, active P-TEFb was
released from association with 7SK snRNA, and transcrip-
tion of long transcripts was restored. Surprisingly, later in
2003, the same laboratories discovered a protein which
was able to cooperate with 7SK snRNA to inactivate P-
TEFDb in the 7SK small nuclear ribonucleic acid particle
(7SK snRNP) or simply 'large' complex [43,44]. The pro-
tein was named hexamethylene bisacetamide inducible
protein 1 (Hexim1), since Hexim1 was originally discov-
ered as a protein induced in vascular smooth muscle cell
after exposure to hexamethylene bisacetamide (HMBA)
[45]. Later the same year, Hexim2 was discovered as an
additional member of the Hexim protein family. It is
highly homologous to Hexim1 and was shown to substi-
tute function of Heximl in vivo and in vitro [46,47].
Importantly, Hexim1 and Hexim2 can form homo- or
heterodimers to incorporate P-TEFb into the large com-
plex. The oligomerization is mediated through the basic
region within the central part, with bound 7SK snRNA,
and its coiled-coil region in the C-terminal domain
[48,49]. The binding of 7SK snRNA to the basic region in
the Hexim oligomer induces exposure of the CycT1-bind-
ing domain in its C-terminus and formation of large com-
plex [43,44,46-50]. Hexim1 and Hexim2 do not represent
bona fide cyclin-dependent kinase inhibitors (CKI). The
most surprising feature of both is the fact that they associ-
ate with 7SK snRNA first in order to inhibit P-TEFb; there-
fore, they exhibit a completely new group of CKIs, since
none of the so-far studied CKIs utilize RNA as a partner to
inhibit kinase activity of CDK/cyclin complex.
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Critically, the exploration of P-TEFb associating partners
in the large P-TEFb complex has not been finished yet.
Two additional proteins participating in the formation of
large P-TEFb complex were identified during the last two
years. MEPCE (7SK snRNA methylphosphate capping
enzyme) was identified as a specific 7SK snRNA methyl-
transferase causing methylation of the gamma-phosphate
of its first 5' nucleotide [51]. LARP7 (La-related protein 7)
stabilizes 7SK snRNA by binding to its 3'-UUUU-OH tail
protecting it from degradation by exonucleases [52-54].
Both proteins are stably associated with 7SK snRNA after
release of P-TEFb caused by stress or cellular signals in
contrast to Hexim1, which are displaced from 7SK snRNA
right after disruption of large complex [52-56].

Importantly, studies of biology of active complex led to
identification of bromodomain protein 4 (Brd4), a major
binding partner of P-TEFb when 7SK snRNA along with
Hexim1/2 are displaced from P-TEFb [57,58]. Brd4 binds
to acetylated histones and might be therefore targeting P-
TEFb to actively transcribed genes if there is no specific
factor recruiting P-TEFb to these genes [59]. Therefore, P-
TEFbD is typically present in two distinct complexes in most
cell types. Heterodimer of CDK9/cyclin represents active
P-TEFb and is here referred to as a 'small' complex of P-
TEFD, irrespective of Brd4 binding (Figure 1). Whereas,
cooperative binding of P-TEFb/cyclin/7SK snRNA/
Hexim1 or 2/MEPCE/LARP7 identifies an inactive P-TEFb
form, also recognized as 'large' complex of P-TEFb (Figure
1). Application of stress stimuli, UV radiation, cytokine
treatment, chemical compounds, etc. on cells leads to dis-
sociation of P-TEFb from Hexim1/2 and 7SK snRNA/
MEPCE/LARP7 (Figure 1).

Posttranslational modifications of P-TEFb
components

Besides inhibition of P-TEFb by recruitment to the large
complex, its activation or inhibition depends primarily on
posttranslational modifications of CDK9 and its associ-
ated cyclin. We would like to discuss relevance of these
modifications in respect to their putative functions in
development. During many developmental processes,
such as gastrulation, left-right patterning, organogenesis
and many others, the morphogens are literally a moving
force navigating development forward. Morphogens can
make appropriate impact only if there is a proper receptor
on cell surface, which can pass message through various
cellular signaling pathways to particular transcription acti-
vators or repressors. Thus, it is highly possible that the
same signaling circuits involved in signal transmission
could target and consequently modify activity of P-TEFb
either in a positive or negative way.

Among so-far documented posttranslational modifica-

tions of P-TEFb, phosphorylation of cyclin and especially
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Composition and assembly of P-TEFb complexes. A) 7SK snRNA contains 5'- and 3'- ends with pppG (triphosphate
guanosine) and UUUU-OH (oligouridylate tail), respectively. 7SKsnRNA is recognized by MEPCE (7SK snRNA methylphos-
phate capping enzyme) and LARP7 (La-related protein 7). B) MEPCE methylates gamma-phosphate of its first 5'ribonucleotide,
depicted by an asterisk, and LARP7 stabilizes 7SK snRNA by binding to its oligouridylate tail. Hexim| (Hex|) homodimerizes
(or heterodimerizes with Hexim2) via its coiled-coil domain in the C-terminus, but N-terminus adopts conformation which
does not allow binding to P-TEFb (CDK9/Cyc). C) Binding of 7SK snRNA from 7SK snRNA/MEPCE/LARP7 complex to basic
region in central part of Hexim| triggers conformational changes of hexim dimer leading to exposition of CycT I-binding
domain at the C-terminus of Hex| and consequent binding of P-TEFb ('SMALL' complex). D) The 'LARGE' complex is formed
and is stabilized due to multiple protein-protein and protein-RNA contacts within the complex. Activity of P-TEFb is inhibited
in the large complex. Several stimuli have been reported to disrupt the large complex, such as UV radiation, diverse stress sig-
nals (mechanical, hypertrophic), cytokines (TNF-a., IL-6) and inhibitors (Actinomycin D, DRB).

of CDKO is a key feature of its regulation in vivo. Several
serines and threonines residues (Ser347, 354 and 357;
Thr350 and 354) at its C-terminus must be phosphor-
ylated for P-TEFb activity first [60,61]. Nevertheless, full
activation of P-TEFb is completed after conserved Thr186
in the T-loop is phosphorylated, an event triggering major
conformational changes in CDK9/CycT1 heterodimer
leading to exposition of ATP binding pocket together with
substrate site [49,62,63]. Recently, phosphorylation of
Thr29 in CDK9,, within the HIV elongation complex was
able to block transcription of viral RNAs [64]. To com-
plete list of CDK9/cyclin phosphorylation status, several
other residues, not previously described, were identified
by global mass spectrometric technology to be phosphor-
ylated in vivo [65,66]. Of course, functional consequences
of these modifications have not been investigated yet, but

they might serve as a first clue for further studies to iden-
tify appropriate kinases.

Phosphorylation of Thr186 is also a prerequisite for the
assembly of the large complex [49,62]. The reason why
large complex bears principally active P-TEFb is most
likely to allow cells, in time of need, an efficient and fast
release of stored P-TEFb to support transcription of genes
involved in given cellular responses. Indeed, certain stress
or pathological conditions induces liberation of P-TEFb
from the large complex. Two years ago, PI3K/Akt signaling
pathway was reported to disrupt large complex, by phos-
phorylating Hexim1 on two serines and two threonines in
the CycT-binding domain, after HMBA treatment [67]. In
addition, the Zhou lab demonstrated that UV and HMBA,
agents known to activate P-TEFb, disrupt P-TEFb from the
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large complex by cooperative action of calcium ion
(Ca2+)-calmodulin-protein phosphatase 2B (PP2B) and
protein phosphatase 1 (PP1a) [68]. In detail, activated
PP2B provokes conformational changes in 7SK snRNP
first, allowing PP1la to liberate P-TEFb by dephosphor-
ylating Thr186. Alternatively, PPM1A and PPM1B (pro-
tein phosphatases, magnesium-dependent) were found to
mediate dephosphorylation of Thr186 in cells under non-
stress conditions, pointing towards several alternative
mechanisms used by cells to accommodate different stress
or non-stress (physiological) stimuli [69]. Nevertheless,
inactive P-TEFb (dephosphorylated on Thr186) is subse-
quently recruited to the transcription initiation complex
by Brd4. These finding correlates with in vitro studies dem-
onstrating that Thr186 is kept unphosphorylated by
action of TFIIH in the HIV preinitiation complex [70].
Interestingly, phosphorylation of Thr29 in CDK9 medi-
ated by Brd4 was detected in HIV transcription initiation
complex just recently [64]. Upon dissociation of TFIIH
and Brd4 during elongation transcription induced by Tat,
P-TEFb is fully activated by de novo phosphorylation of
Thr186 and dephosphorylation of Thr29 [64,70]. Given
importance of protein phosphatase-2A (PP2A) in the aug-
mentation of basal activity of the HIV-1, it is tempting to
speculate that PP2A is a phosphatase acting on Thr29
[71].

Even though phosphorylation might seem to be most
essential for P-TEFb activity, ubiquitination and acetyla-
tion participate in regulation of P-TEFb activity as well.
Ubiquitination of CycT1 and CDK9 by Skp2 controls its
protein turnover and interaction with Tat/TAR, respec-
tively [72,73]. Also, human double minute-2 protein
(HDM2), a p53-specific E3 ubiquitin ligase, ubiquitinates
Hexim1 in the basic region [74]. Ubiquitination of
Hexim1 is not involved in Hexim1 proteasome-mediated
protein degradation but rather interferes with inhibition
of P-TEFb [74]. Further, acetylation of CDK9 on Lys44
located in the ATP binding domain by p300/CBP
increases its kinase activity towards CTD of RNAPII [75].
In contrast, acetylation of two lysines at positions 44 and
48 in CDK9 by P/CAF and GCN5 complexes exhibited
inhibition of its kinase activity and relocalization to insol-
uble nuclear matrix [76]. Importantly, acetylation of cyc-
lin T1 triggers dissociation of P-TEFb from the large
complex and its activation [77]. Given the importance of
p300/CBP in the acetylation of Tat and activation of HIV
transcription, it is not surprising that the HIV virus utilizes
the same acetyl transferase complex to acetylate Tat in
order to stabilize formation of Tat-P-TEFb-TAR complex
to initiate viral transcription [78]. Therefore, one could
assume that the virus intentionally subverts natural cellu-
lar cofactors of P-TEFb to support its own replication

cycle.
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Together documented posttranslational modifications are
of great interest in respect to their possible function in reg-
ulation of P-TEFb activity in diverse cellular responses,
(stress, cytokines, cell communication), disease and
development. One could predict that simple recruitment
of P-TEFb to the promoter of given genes does not guaran-
tee transcriptional initiation per se. Rather, current pattern
of posttranslational modifications (phosphorylation,
acetylation, ubiquitination) of subunits of P-TEFb will
decide if transcription is turned on or off. For example,
two P-TEFb complexes located at two different promoters
might differ in transcriptional response to given signals,
because of the Thr29 phosphorylation or Lys44 and 48
acetylation of CDK9 within one of the P-TEFb complexes.

Function of P-TEFb in cell cycle

Each phase or intercalating transitions of cell cycle are
controlled by spatio-temporal expression of CDKs and
appropriate cyclins, but in the case of CDK9 and C-type
cyclins, neither levels nor associating CDK9 kinase activity
were changed or dramatically fluctuated during this proc-
ess [24]. Such an observation does not necessary rule out
CDK9 function in the control of cell cycle, since protein
level or associated kinase activity of other CKDs and cyc-
lins are not changing during cell cycle as well [79]. Never-
theless, recent identification of Brd4 can provide the
missing link to the function of P-TEFb in cell cycle control,
since Brd4 is implicated in transition of epigenetic mem-
ory through binding to acetylated histones [57-59,80].
The Zhou lab was able to demonstrate a dramatic increase
in P-TEFb-Brd4 interaction from late mitosis to early G1
phases of cell cycle and active recruitment of P-TEFb to the
chromosomes, followed by initiation of transcription of
key genes for G1 progression. Importantly, depletion of
Brd4 abrogated the whole process by reducing transcrip-
tion of essential G1 genes, leading to G1 cell cycle arrest
and apoptosis [80]. Therefore, it is very tempting to spec-
ulate that Brd4-mediated recruitment of P-TEFb to Gl
genes is fundamental for successful G1/S transition and
could serve as a hallmark of transcriptional memory
across cell division [59,80]. However, other functional
aspect/s of Brd4-P-TEFb interaction in respect to cell cycle
must be explored first. For instance, how is the association
of Brd4 with P-TEFb and consequent recruitment to spe-
cific genes regulated in cell cycle-dependent manner in the
first place? From recent studies, we have learned that Brd4
recruits P-TEFb to inflammatory and Hox genes by inter-
action with acetylated NF-kB on Lys-310 or acetylated his-
tone 4 on Lys-5, 8 and 12, respectively [81,82]. Also,
acetylation of histone 3 at promoter-proximal regions in
CD80 genes was critical for Brd4-dependent P-TEFb
recruitment and transcription initiation [83]. If the same
mechanisms/principles apply for Brd-4/P-TEFb recruit-
ment to chromosomes at G1 phase remains to be
explored in the future.
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Moreover - is simple recruitment of P-TEFb to Brd4
enough or are posttranslational modifications involved
too? If the answer is yes, then what residues are involved,
and most importantly, what is their nature (phosphoryla-
tion, acetylation, etc)? Such a scenario would imply an
existence of specific complexes able to carry these modifi-
cations. What are these factors? It will be of great interest
to explore in more detail if CDKs participating in M or G1
phases are engaged in these events, but involvement of
other protein kinases must be taken in account, too.

Additional function of P-TEFb in cell cycle could be in
connection to the retinoblastoma protein (pRB). CDK9
was first identified as a cell division cycle-2 related kinase,
with strong kinase activity towards pRB, but not histone 1,
suggesting its role in G1/S transition [84]. Indeed, silenc-
ing of CDK9 in cells by RNA interference approach led to
the enrichment of cells in G1 phase of cell cycle support-
ing function of P-TEFb in the G1/S transition [85]. Inter-
estingly, CDK9/CycT2 but not CDK9/CycT1 complex
binds pRB suggesting diverse function of C-type cyclins in
cell cycle regulation [86].

Last but not least, CDK9 phosphorylates p53 on multiple
Ser residues (Ser33, 315 1nd 392). Phosphorylation of Ser
33 and 315 was implicated in the association with propyl
isomerase Pinl. Phosphorylation-dependent Pinl/p53
interaction induces conformational changes in p53 lead-
ing to elevated DNA binding and transactivation capacity
[87]. Phosphorylation of 392 resulted in stabilization of
p53 tetramer and enhancement of target gene expression
[88,89]. Interestingly, Cdk9 gene was also activated by
binding of p53 to its promoter, suggesting a positive role
of p53 in the regulation of its basal transcription [88].
Since Ser392 phosphorylation is not required for p53-
mediated cell cycle arrest, it is possible to speculate that
there is a positive regulatory loop between expression of
CDK9 and p53 transactivation mediated by Ser392. Nev-
ertheless, two major questions need to be elucidated.
First, why does CDK9 phosphorylate p53: is it to
strengthen DNA repair machinery or is to support apopto-
sis mediated by p53? Second, why does p53 need to con-
trol expression of CDKO, is it required for its function or is
it to ensure optimal expression of other genes involved in
adequate p53 response?

Function of P-TEFb in development

In the past decade, we have learned a great deal about
genetic, biochemical and molecular properties of P-TEFb,
mostly due to its indispensable role in HIV replication,
cytokine responses, cell differentiation, etc. Just very
recently we have started to appreciate physiological role/s
of P-TEFb in development. Individual genetic depletion of
CycT1 or CycT2 in Caenorabditis elegans had no dramatic
impact on its development. In contrast, genetic inactiva-
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tion of both cyclins simultaneously resulted in early
embryonic lethality, similarly to genetic inactivation of
RNAPII [90].

To test whether P-TEFb is essential for Drosophila devel-
opment, CDK9 was down-regulated by RNA interference
(RNAi) approach. CDK9 knock-down flies died during
metamorphosis, suggesting fundamental role of P-TEFb
in Drosophila early development [91]. Relatively later
lethality in flies in comparison to C. elegans could reflect
major differences between these two species. First, timing
and efficiency of CDK9 knock-down could differ and
most importantly, stored maternal mRNA or protein
might compensate for the loss of de novo expression of
CDKO9 for some time [91].

The role of CDK9 in zebra fish development was investi-
gated by usage of specific morpholinos (MO), which
mediate degradation of CDK9 messenger RNA and conse-
quent down-regulation of CDK9 protein. Injection of spe-
cific Cdk9-morpholinos had a severe effect on definitive
erythropoiesis manifested by significant reduction of
runxl signal in the dorsal aorta precursor population
[92,93]. Taking into account ubiquitous expression of
CDKO9 in the whole developing embryo, it is surprising
that only an effect on hematopoietic system was observed.
It was probably due to insufficient depletion of CDK9
from other cells; therefore, these cells have enough CDK9
for their proper function. In the case of hematopoietic
cells, the level of CDK9 did not reach critical threshold
necessary for terminal differentiation of hematopoietic
precursors. Supporting evidence to this threshold scenario
comes from studies of HIV replication in cells, too. RNA
mediated knock-down of P-TEFb in Hela cells did not
cause cellular death but inhibited Tat transactivation and
HIV-1 transcription instead [94].

To investigate final consequences of nonfunctional P-
TEFb in mice, we tried to generate knock-out mice for
CycT1 and CycT2 using the B-geo gene trap technology
[95]. Regretfully, our attempts to generate a complete
knock-out mouse for CycT1 were not successful, and only
a hypomorphic mouse with residual expression of CycT1
in the whole body was generated. These hypomorphic
mice exhibited only modest immunological defects, such
as, altered class switch recombination (not published
data) and moderate appearance of autoimmunity due to
impaired negative selection of autoreactive T cells in thy-
mus [96]. In the case of CycT2, after conducting numer-
ous matings of heterozygous mice, we were not able to
detect any newborn mice bearing nonfunctional allele of
CcnT2 gene. When developing embryos and fetuses at dif-
ferent developmental stages were genotyped, still no null
animal for CcnT2 gene was found, suggesting a develop-
mental block even before mid gestational period. Indeed,
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embryonic lethality preceding even blastocyst implanta-
tion was observed. This early lethality could be attributed
to impaired zygotic gene activation taking place in two-
four cell embryos or to decreased expression of critical
genes, which were revealed by siRNAs against CycT2 in
embryonic stem cells [36,97].

So far, only examples of developmental consequences of
P-TEFb loss of function were described, but ectopic activa-
tion of P-TEFb exhibits dramatic consequences for normal
development as well. Genetic ablation of Clp-1, the
mouse homologue of human Hexim1, resulted in embry-
onic death at E16.5 due to cardiac hypertrophy [98].
Down-regulation of LARP7 orthologue in zebra fish
caused embryonic death due to aberrant splicing, suggest-
ing a fundamental role for P-TEFb in coupling transcrip-
tion elongation with alternative splicing [52].

To finalize developmental properties of P-TEFb, we would
like to describe a situation where inhibition of P-TEFb is
necessary indeed for normal development of germ-line
blastomeres (C. elegans) or polar cells (D. melanogaster),
specialized cell types similar to primordial germ cells in
mammals. These cells are kept in undifferentiated stage by
repressed mRNA transcription due to absence of Ser2
phosphorylation in CTD of the RNAPIL PIE-1 in C. ele-
gans and pgc (polar granule component) in D. mela-
nogaster block Ser2 phosphorylation by binding to P-
TEFb and preventing its recruitment to CTD [99-101]. Pre-
dictably, the next step should be to elucidate if the inhibi-
tion of P-TEFb is a common mechanism for germ line
specification in other species as well. Similarly to PIE-1
and Pgc, Runx1, a repressor of CD4 expression in double
negative thymocytes, disables transcription of CD4 gene
by decoying P-TEFb from the already engaged RNAPII
[102].

Collectively, we have learned a key role of P-TEFb in early
development from nematodes to mammals, but still we
do not know what the target genes are within develop-
mental programs. The first clue pointing to the right direc-
tion/s could come from our siRNA experiments in ES cells
[36]. RNAi approach was used to down-regulate CycT1 or
CycT2 and check for changes, by microarrays, in the
expression of genes influenced by depletion of either cyc-
lin. Reduction in CycT2 affected mostly expression of
genes participating in the TGFp and Wnt signaling path-
ways, as well as autophagy. The most affected genes were
Lefty 1 and Lefty 2, members of the TGFb superfamily,
which are highly expressed in the inner cell mass and tro-
phoectoderm during embryogenesis [103]. Moreover,
genes involved in ubiquitin-proteasomal system and
autophagy, which are indispensable for rapid degradation
of maternal protein during the transition from oocytes to
embryos, were also lessened. Of note, autophagy-defec-
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tive oocytes fail to develop beyond the four- and eight-cell
stage [104]. In contrast, CycT1 knock-down decreased
expression of genes involved in fatty acid and glucose
metabolism, cell communication and cell cycle [36]. Crit-
ically, although glucose metabolism was affected in both
cases, targeted genes were different.

From these or similar microarray data, we can indeed pin-
point target genes of different P-TEFb complexes, yet fun-
damental questions remain to be solved.

- 1) How does P-TEFb achieve its broad binding capacity
towards myriad transcription factors?

- 2) What are principal transcription factors driving normal
development, cell fate commitment or terminal differentia-
tion through interaction with P-TEFb?

- 3) Why is only a specific subset of P-TEFb-dependent genes
transcribed in response to given intra- and extracellular
stimuli?

Ad 1) Usually, when we think of P-TEFb, two functional
states are considered: active (small complex, typically
CDK9,,/CycT1) and inactive (large complex, CDK9,,/
CycT1/7SK snRNA/Hexim1/LARP7/MEPCE). One must
actually revise our rather simplified view on P-TEF com-
plexes, as proposed in several publications [36,105].
Active P-TEFb consists of CDK9 and C-type cyclin, but two
forms of CDK9 exist (CDK9,, and CDK9;;) and at least
four isoforms of C-type cyclins (CycT1, CycT2a, CycT2b
and CycK). By simple combinatorial math, it leaves us
with 8 different complexes of active P-TEFb (Figure 2A).
Taking in account the existence of Hexim1, Hexim2, 7SK
snRNA, LARP7 and MEPCE, we will come to number 16
for inactive P-TEFb complexes (Figure 2B). All together
there are 24 P-TEFb complexes with unique molecular sur-
face composition. One might argue that binding of P-
TEFb strictly depends on recognition capacity of cyclin
boxes, histidine-rich and leucine rich regions in cyclins
and substrate binding site in CDK9, but other possibilities
should be considered, too. CDK9/cyclin adopts more
open conformation different from CDK2/CycA providing
extra molecular surfaces available for new interactions
[63]. Also, other components of small or large complexes
can mediate interaction with various factors. Indeed,
nucleophosmin and NFkB associate with basic region of
Hexim1 [45,106]. Also, estrogen and glucocorticoid
receptors bind Hexim1 through its basic region [107,108].
Examples of these associations have served only to dem-
onstrate hidden reserves of P-TEFb to interact with distinct
factors.

Ad 2) We found that Leftyl and Lefty2 proteins were less

expressed in ESc with down-regulated CycT2 but not
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Figure 2

Active and inactive P-TEFb complexes. A) Active P-
TEFb complexes. CDK9,, (green oval) and CDK9;; (orange
oval) can separately bind to individual CycT1 (yellow circle),
CycT2a (violet oval), CycT2b (lavender oval) and CycK (pink
oval). B) Inactive P-TEFb complexes with CycT1. Only large
complexes with CycT | are presented for illustration, but the
same would apply for CycT2a, CycT2b and CycK too. Com-
plexes of 42- and CDK9;5 with CycT| are presented at the
left side. 'Large' complexes consisting of CDK9/CycT]1 are at
the right side. Hexim 1/7SK snRNA (light blue oval), Hexim2/
7SK snRNA (turquoise blue oval), MEPCE/LARP7 (light
orange oval).

CycT1. Oct4, Sox2, key transcriptional factors guarding
self-renewal property of ES, were shown to bind to the
promoter of Leftyl gene and activate it [109]. Thus, it is
possible that CycT2 binds specifically Oct4 and Sox2 but
CycT1 does not. Along with this line, CycT2 together with
CDK9,, is required for myogenesis in vitro by activating
MyoD-dependent transcription [110]. On the contrary,
MEF-2 related to MyoD, associates with CycT1 [111].
Recently, function of P-TEFb complex composed of
CDK95; and CycT2 was demonstrated to play a funda-
mental role in muscle regeneration by governing myob-
last differentiation from satellite cells in vivo [32]. These
examples demonstrate clearly that one developmental
program (myogenic differentiation) can employ three dis-
tinct P-TEFb complexes to regulate a particular part of dif-
ferentiation process. Of note, two repressors of MyoD
family, I-mfa (inhibitor of MyoD family) and HIC
(human I-mfa-domain-containing) employ P-TEFb for
their function in myogenic differentiation too [112]. In
addition, PPARy (peroxisome proliferator-activated recep-
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tor y), a master regulator of adipogenesis, utilizes CDK955
for its function [113]. Importantly, CycT2 was identified
by two-hybrid screen as a Mix.3/mixer, a Pax-like homeo-
domain protein, essential for endoderm formation [114].
On the other hand, association of CycT1 with GATA-1, a
transcription factor involved in differentiation of numer-
ous hematopoietic lineages, is indispensable for efficient
megakaryopoiesis [115]. Last but not least, CDK9 partici-
pates in haematopoiesis in zebra fish through regulation
of Ldb1 (LIM domain binding protein), which controls
transcription of Hox genes [93]. Thus, specific transcrip-
tion factors operating in certain developmental process
utilize different P-TEFb complexes for their developmen-
tal tasks.

Ad 3) We believe that two equally important mechanisms
help P-TEFb to decide if certain gene/s will be turned on
or off. A) One layer of control is provided by functional
interaction with specific cofactors (chromatin remodeling
complexes, mediators) bound at transcription sites. B)
The other one is the result of co-operative effect of signal-
ing pathways regulating P-TEFb activity.

- A) Once P-TEFb is recruited to the promoter, it is
exposed to interactions with other multiprotein com-
plexes and to their catalytic activities resulting in post-
translational modifications triggering activation or
inhibition of P-TEFb activity (Figure 3B). Indeed, repre-
sentatives of histone acetyltransferases p300/CBP and
GCNS5 with P/CAF can acetylate CDK9 to either activate or
repress its kinase activity [75,76]. BRG1, a component of
mammalian homologous of the SWI/SNF chromatin
remodeling complexes, binds CDK9; together they acti-
vate STAT3-mediated transcription in response to
cytokine receptor stimulation [116]. Moreover, co-repres-
sor of thyroid hormone receptors (TR) and retinoic acid
receptors (RAR) - N-CoR - associates with Hexim1 affect-
ing ability of CDK9 to phosphorylate CTD of RNAPII
[75].

- B) Signaling pathways serve, most likely, two primary
functions in P-TEFb biology: first to trigger release of P-
TEFb from the large complex; second to target and modify
components of P-TEFb complexes (Figure 3A and 3C). At
present, we know what stimuli/signals dissociate P-TEFb
from the large complex, but we have just begun to explore
signaling pathways responsible for it (see also posttransla-
tional modification). Regretfully, we have almost no basic
knowledge about signaling pathways operating and tar-
geting P-TEFD activity during development, except for few
examples. The PKNa, a fatty acid- and Rho-activated ser-
ine/threonine protein kinase, which was shown to bind
CycT2a and consequently enhanced CycT2a mediated
expression of myogenic differentiation markers during
starvation, induced differentiation [117]. Further, the
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Figure 3

Regulation of P-TEFb activity during transcription.
A) P-TEFb is inactivated in the large complex. After given
stimuli (UV radition, cytokines, hypertrophic signals), active
P-TEFb is released from the large complex by activity of sign-
aling pathways downstream of these stimuli. Then, P-TEFb is
recruited to the responsive promoter/s either by a specific
activator (pink oval) such as MyoD or a co-activator, such as
Brd4 (violet oval). P-TEFb is engaged at the promoters with
poised RNAPII phosphorylated on Ser5 (light blue oval with
letter S5) in CTD mediated by TFIIH. P-TEFb initiates tran-
scription elongation by phosphorylating Ser2 of CTD in
RNAPII (red oval with letter S2), DSIF or NELF (red ovals
with letter P). Still, activity of P-TEFb can be controlled by
two additional mechanisms. B) If there is a co-factor (acetyl-
transferase, mediator, corepressor) associating with P-TEFb
at the promoter, then the activity of P-TEFb will depend on
particular posttranslational modifications mediated by these
co-factors, for example acetylation of Lys44 and 48 in CDK9
(white oval with letters Ac). C) Also, signaling pathways acti-
vated by given stimuli can modify components of the small
complex, for example phosphorylation of CDK9 on Thr28
and Thr186 (white oval with letter P), and additionally modu-
late final activity of P-TEFb. Khaki barrels represent nucleo-
somes, and +| depicts transcription start site.

MEK1-extracellular signal-regulated kinase (ERK) signal-
ing pathway promotes CDK9/CycT1 dimer formation and
induction of immediate early genes (like c-fos) in neu-
roendocrine cells [118]. From our microarray data we
know that transcription of Leftyl is CycT2-dependent
[36]. Leftyl contributes to the establishment of left-right
symmetry during vertebrate development. Bone morpho-
genetic protein (BMP) type I receptor was demonstrated
to positively regulate Leftyl expression in the chimeric
embryo [119]. Therefore, one could hypothesize that BMP
signaling could be involved in P-TEFb (CycT2) activation.
Even if we identify pathways modulating P-TEFb activity,
it is still critical to determine what component/s of P-TEFb
complexes they target and what the nature of particular
modification is. In summary, it is realistic to assume that
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recruitment of particular P-TEFb complex in combination
with transcriptional co-factors to unique set of genes can
control various aspects of transcriptional programs in nor-
mal development.

Except already introduced transcriptional factors, a pleth-
ora of diverse transcriptional factors/enhancers were
found during the past decade to utilize P-TEFb for various
cellular pathways and physiological processes: 1) cytokine

signaling - p65 subunit of NFkB, STAT3
[45,116,120,121]; 2) hormone nuclear receptors - estro-
gen,  glucocorticoid and  androgen  receptors

[107,122,123]; xenobiotic sensing - arylhydrocarbon
receptor [124]; immunity - class II transactivator, AIRE
[96,125,126] and cell proliferation/differentiation - c-myc
[127]. P-TEFD plays a special function in HIV infection by
initiating its transcription through binding to Tat, a spe-
cific viral transcriptional transactivator [27].

Promoter-proximal pausing of RNAPII

At last, we would like to dedicate a special part of this
review to a very intriguing function of P-TEFb in develop-
mental control through activation of stalled RNAPII. His-
torically, initiation of transcription was viewed as a rate-
limiting step in the expression of majority of genes [16].
Interestingly, early studies indicated that specific genes,
such as c-myc, junB and HSP70, surpass this concept, and
their expression is subjected to elongation control
through poised polymerase [17,18,20]. In principal,
RNAPII initiates transcription but is immediately poised
after synthesizing short RNA by action of negative elonga-
tion factors at the promoter-proximal region [21]. Never-
theless, a growing body of evidence demonstrates that
RNAPII pausing is a novel mode of transcription control
rather than exception from the rule [128-130]. Recent
studies in Drosophila and mammalian system validated
RNAPII distribution across the whole genome and clearly
demonstrated that a significant number of genes was reg-
ulated at an early step of transcription elongation
[129,130]. Among them, genes involved in development,
cellular response to stimuli, cell communication, cell
adhesion and differentiation demonstrated promoter-
proximal RNAPII stalling. Importantly, down-regulation
of NELF by RNAI resulted in loss of stalled RNAPII mark
and re-expression of most of these genes [129]. To extend
the concept of stalled polymerase to developmental per-
spective, transcription of Hox genes, governing anterior-
posterior patterning in metazoan embryos, was found to
be regulated at the level of elongation. Intact CDK9 activ-
ity was necessary to alleviate stalled RNAPII at the pro-
moter of two hox genes in Drosophila (Ultrabithorax and
Abdominal-B) [131]. Authors also suggested that Cdk9
could be involved in the regulation of Notch-, EGF-, and
Dpp-signaling genes, again pointing towards connection
of P-TEFb and regulation of developmental genes [131].
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During preparation of this manuscript, new publication
had appeared focusing on biological function of stalled
RNAPII in the signal-dependent gene expression [81]. To
study genes fitting to this criterion, authors employed
LPS-inducible inflammatory gene expression in macro-
phages to demonstrate: 1) that genes induced in the pri-
mary response (LPS) have stalled RNAPII at the promoter-
proximal region, 2) their induction is regulated by signal-
dependent P-TEFb, 3) which is recruited via Brd4 binding
to Histone 4 acetylated on Lys 5, 8 and 12. Moreover, tran-
scription of these genes is repressed before stimulation by
cooperative function of repressors [81]. Interestingly,
developmentally regulated genes share the same charac-
teristics as the LPS-inducible genes. It is stalled RNAPII
and hierarchical expression of activators/repressors along
with their co-factors.

These are very important observations in respect to possi-
ble role of P-TEFb in development. Since P-TEFb induces
a transition form abortive to productive transcription
elongation by phosphorylation of NELF and DSIF, it is
logical to envision that P-TEFb might be a primary sensor
to various developmental demands. In theory, P-TEFb
could work as a platform capable of accommodating
diverse stimuli and respond to them by switching on and
off appropriate set of genes, along with cooperative func-
tion of developmental activators and repressors. Consid-
ering all available facts, it is now becoming clear that
elongation block, by means of stalled RNAPII, represents
a highly specific control module in transcription regula-
tion.

P-TEFb and disease

Cardiac hypertrophy

Cardiac hypertrophy is probably the best illustrative
example how deregulation of p-TEFb activity manifests in
pathological phenotype, a disease. Cardiac hypertophy
(heart growth) is characterized by enlargement of cardiac
myocytes in response to diverse signals, such as biome-
chanical stress, sarcomeric and cytoskeletal protein muta-
tions, G protein-coupled receptors for ligands, etc. At the
molecular level, cardiac hypertrophy is characterized by
an increase in cell size and protein synthesis and reactiva-
tion of the fetal gene program [132]. In turn, increased
synthesis of mRNA species results in elevated activity of
RNAPII phosphorylated at Ser2 within CTD [133]. Ser2 is
a target of P-TEFb, thus it is not surprising that P-TEFb was
identified to be the limiting factor for pathological mani-
festation in vitro and in vivo [98,134]. Briefly, ectopic acti-
vation of P-TEFb either by ablation of cardiac lineage
protein 1 (Clp-1), the mouse homologue of Hexim1, or
overexpression of CycT1 in adult heart led to fetal lethality
or heart growth due to cardiac hypertrophy, respectively
[98,132].
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Striking characteristic of cardiac hypertrophy is the fact
that all hypertrophic stimuli led to release and activation
of P-TEFb [132]. Since most of the signaling pathways
downstream of these signals are well characterized, it will
be critical to determine their role in the activation of P-
TEFb. Truly enough, Jak/STAT signal transduction path-
way is involved in the release of P-TEFb from large com-
plexes [135]. Yet, it is not clear at the moment if Jak/STAT
pathway targets and modifies any component of the large
complex directly or indirectly. Moreover, from develop-
mental perspectives of P-TEFb, it is highly probable that
the signaling pathways governing pathological activation
of P-TEFb will be, in part, the same signaling circuits driv-
ing growth of heart earlier during normal heart develop-
ment [135]. Therefore, it will be of great interest to explore
and characterize what the major differences in signaling
pathways diverging to either adaptive or pathological P-
TEFb activation are. In particular, what are these pathways
by nature? Do they 'just’ disrupt large complex or do they
modify components of large/small P-TEFb complexes?
Finally, how can we use this acquired knowledge to mod-
ulate de-repressed activity of P-TEFb in various diseases?

Cancer

Historically, the first recognition of P-TEFb in malignant
processes came from a study focused on identification of
novel tumor antigens associated with serous ovarian can-
cer [136]. By employing SEREX immunoscreening, the
authors identified 9 immunogenic antigens, among them
Hexim1, to be potential targets for immunotherapy. Rele-
vance of P-TEFb in progression of ovarian cancer was not
recognized at the time, since connection between Hexim1
and P-TEFb had not been established yet.

Another piece of the P-TEFb puzzle in cancer came from
studies of mixed-lineage leukemia (MLL) fusion proteins
in leukemic transformation. The gene for the histone
methyltransferase MLL often participates in chromosomal
translocations that eventually create MLL-fusion proteins
associated with very aggressive forms of childhood acute
leukemia [137,138]. Two proteins, Eleven Nineteen
Leukemia (ENL) and AF4 proteins, common associating
partners of MLL in childhood acute leukemia, were found
to bind and utilize P-TEFb for their transformation prop-
erties [139,140]. These studies provided compelling evi-
dence for direct role of AF4 and ENL in the regulation of
transcription elongation and chromatin modification.
This could also suggest that therapies targeting P-TEFb
activity in leukemia might be a direction to pursue.
Indeed, Flavopiridol, a specific inhibitor of CDK9, was
able to induce apoptosis in chronic lymphocytic leukemia
cells by suppressing transcription of short-lived antiapop-
totic proteins, such as Mcl-1 [141].
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Connection of Hexim1 in malignant processes through its
binding to estrogen receptor was recently provided [108].
Estrogen receptors (ERs) are found in significant numbers
of breast cancer, and targeted therapy against ERs has been
used intensively [142]. Hexim1 binds ERa through its
basic region and blocks ERa mediated gene expression
[123]. Critically, overexpression of Hexim suppressed
proliferation of breast cells. In accordance with this find-
ing, expression of Hexim1 was down-regulated in samples
from invasive breast cancer patients in comparison to
Hexim1 level in normal breast tissue [108].

Certainly, the most illustrative example of P-TEFb dys-
function in malignant conversion has been demonstrated
by the Zhou lab [53]. They identify PIP7S, also known as
La-related protein 7 (LARP7), to associate and stabilize
7SK snRNP formation. LARP7 contains 3 RNA binding
motifs, La binding motif in its N-terminus, a RNA recog-
nition motif (RRM) 1 and RRM3, which are all needed for
the stabilization of 7SK snRNA and formation of large
complex [52-54]. Interestingly, its C-terminus is often
deleted in human tumors suggesting that activation of P-
TEFb mediated by LARP7 destabilization of large complex
is important for proliferation and tumorigenicity of can-
cer cells. Indeed, RNAi mediated down-regulation of
LARP7 blocking mammary epithelial cell differentiation
[53]. In the same line, genetic inactivation of MXC, the
Drosophila homologue of LARP7, resulted in overgrowth
of lymph glands and hematocyte overproliferation [143].
Moreover, down-regulation of LARP7 was reported to be
a suitable prognostic marker to predict the presence of
lymph node metastasis in early stage of squamous cell cer-
vical cancer before treatment [144]. In conclusion, it is
likely that ectopic activation of P-TEFb in cancer cells
serves to support transcription of key tumor-progressing
genes, unchecked proliferation ultimately converging in
tumorigenesis.

Frontiers

What is the future of P-TEFb in development? We know
that targeted inactivation of cyclin T2 in mouse caused
embryonic lethality even prior implantation [36]. To be
able to follow function of CycT2 in other developmental
processes, conditional mouse for CycT2 must be gener-
ated first. In these animals, expression of CycT2 can be
switch off at a precise developmental stage; then, impact
of CycT2 ablation on particular developmental program
can be examined. Not only the aspect of CycT2 in early
development can be addressed, but function of CycT2 in
cell differentiation, regeneration and cell cycle can be
revealed, too. Similarly, generation of conditional trans-
genic mice for other components of P-TEFb complexes
will be instrumental to understand their function in vari-
ous developmental processes.

http://www.celldiv.com/content/4/1/19

By utilizing those conditional animals, other important
question rendering function of P-TEFb can be revealed.
For example, how is P-TEFb recruited to developmental
genes? Is recruitment of P-TEFb by a specific activator suf-
ficient or are additional co-factors needed? If so, are these
co-factors components of histone-remodeling machinery,
mediator complexes? And finally, is P-TEFb released from
the large complex and then recruited to the promoter or is
large complex bound to promoter/enhancer structures
and active P-TEFD is released locally then? Thus, future
studies are necessary to gain more light on these and other
P-TEFb challenges.

If one thinks of function of P-TEFb in cancer, two aspects
of involvement just come to mind. In the literature, one
can find examples of indirect or direct involvement of dys-
regulated activity of P-TEFb in cancer. Down-regulation of
Hexim1 and/or LARP7 in breast and cervical cancer most
likely leads to increase of free-pool P-TEFb and conse-
quent activation of cancer-related genes. Nevertheless, is
simple increase in P-TEFb activity enough to promote
malignant transformation or is it part of multi-step tum-
origenic process? Yes, activation of P-TEFb in breast cancer
cells seemed to be sufficient to promote malignant trans-
formation [53]. Yet, in case of acute childhood leukemia,
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Figure 4

Role of P-TEFb in a broad spectrum of biological
processes. P-TEFb (blue pentagon) participates in many dif-
ferent biological processes, such as development (light
orange oval), cancer (violet oval), cell cycle (yellow oval),
cytokine response (pink oval) and others (green oval).
Abbreviations in each oval represent particular transcription
factors which have been found to employ P-TEFb in given
biological phenomena (more information in the text). Impor-
tantly, dysregulation of P-TEFb-dependent transcription fac-
tors involved in development or cell cycle could also
significantly contribute to malignant transformation of normal
cells, as depicted by arrows in this figure.
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simple activation has no effect on induction of tumori-
genesis but rather misplaced recruitment of P-TEFb
through oncogenic chimeric proteins (MLL-ENL) is the
driving force [140]. Also, ectopic expression of cyclin T1 in
heart did not lead to tumor formation, implying existence
of buffering mechanism in cells to deal with elevated P-
TEFb activity. On the other hand, ectopic expression of
CycT1 in other cellular systems might have deleterious
consequences, because of no existing compensatory
mechanisms. Again, generation of conditional mouse
model might be helpful in this regard to ultimately dissect
this conundrum.

It is becoming increasingly clear that P-TEFb participates
in broad spectrum of biological processes (Figure 4). It is
feasible to assume that the same transcription factors, dif-
ferent co-factors and signaling pathways co-operating
with P-TEFb in cell cycle and development will be
involved in pathophysiological effects of P-TEFb in vari-
ous diseases, too. Therefore, the final task will be to iden-
tify what differences in these regulatory circuits are. What
is the nature of these changes and if there is a way, to
revert de-repressed P-TEFb activity back to normal "phys-
iological state".
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