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Abstract

Disease detection through gas analysis has long been the topic of many studies because of

its potential as a rapid diagnostic technique. In particular, the pathogens that cause urinary

tract infection (UTI) have been shown to generate different profiles of volatile organic com-

pounds, thus enabling the discrimination of causative agents using an electronic nose. While

past studies have performed data collection on either agar culture or jellified urine culture,

this study measures the headspace volume of liquid urine culture samples. Evaporation of

the liquid and the presence of background compounds during electronic nose (e-nose) device

operation could introduce variability to the collected data. Therefore, a headspace gas chro-

matography-mass spectrometry method was developed and validated for quantitating etha-

nol in the headspace of the urine samples. By leveraging the new method to characterize the

sample stability during e-nose measurement, it was revealed that ethanol concentration

dropped more than 15% after only three measurement cycles, which equal 30 minutes for

this study. It was further shown that by using only data within the first three cycles, better

accuracies for between-day classification were achieved, which was 73.7% and 97.0%, com-

pared to using data from within the first nine cycles, which resulted in 65.0% and 81.1% accu-

racies. Therefore, the newly developed method provides better quality control for data

collection, paving ways for the future establishment of a training data library for UTI.

Introduction

It is widely known that different types of disease can influence the pattern of volatile organic

biomarkers released in exhaled gas or waste materials such as fecal matter or urine [1–3]. This

is especially true for infectious diseases, stemming from the fact that different bacterial species
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can generate different profiles of volatile organic compounds (VOCs). Indeed, Bos et al. sys-

tematically reviewed the literature for the headspace VOC of six bacterial species and found

that while they share some compounds, they form different patterns as some compounds are

uniquely produced by only certain species [4]. Even among compounds that are commonly

produced by multiple species, a study using Selected Ion Flow Tube Mass Spectrometry

(SIFT-MS) revealed that the produced concentrations are different, thus still ensuring the

unique pattern for species differentiation [5]. These fingerprint VOC profiles can be examined

with headspace analysis and classified using a computer algorithm to enable remarkable detec-

tion of urinary tract infection [3, 6]. A recent review by Dospinescu et al. on studies of UTI-

associated bacterial VOCs revealed a heavy reliance on Gas-liquid chromatography to discrim-

inate VOC patterns until recently when e-noses emerged as a promising technology for identi-

fying infectious UTI-causing strains in a clinical setting [7]. The use of the e-nose as a rapid

diagnostic tool is valuable for clinical use because the gold standard of UTI detection is bacte-

rial culture which can take days to obtain a result. While a dipstick is also a rapid, fairly accu-

rate, and low-cost candidate, a key advantage of the e-nose is the potential to identify specific

bacterial species in real-time.

Static headspace gas chromatography is a technique used for the concentration analysis of

volatile organic compounds. This technique is relatively simple and can provide sensitivity

that is similar to dynamic purge and trap analysis. The popularity of this technique has grown

and gained worldwide acceptance for analyses of alcohol in blood, urine, and other biological

samples, as well as residual solvents in pharmaceutical products. Sample matrices like blood,

plastic, and cosmetics contain high molecular weights, non-volatile material that can remain

in the GC system and result in poor analytical performance. Many laboratory analysts use

extensive sample preparation techniques to extract and concentrate the compounds of interest

from this unwanted non-volatile material. These extraction and concentration techniques can

become time-consuming and costly. Static headspace analysis avoids this time and cost by

directly sampling the volatile headspace from the container in which the sample is placed.

While state-of-the-art methods such as GC-MS and SIFT-MS are useful in characterizing

VOC profiles, they are usually expensive, non-portable, and time-consuming in terms of sam-

ple preparation. As alternatives, there are a plethora of studies using commercially available

sensors for the same purpose, which led to a technology called Electronic Nose (e-nose) [8].

An e-nose is essentially a system of gas sensors with pattern recognition capability to detect

diseases. An e-nose must consist of appropriate hardware and software. Hardware refers to the

type of sensors, most commercially available being Metal Oxide (MOX), and software refers to

the analytical method used, usually in the form of a machine learning algorithm. Table 1 sum-

marizes some different combinations of sensors and analytical methods used in past studies.

Noticeably, a minimum of six sensors with an artificial neural network (ANN) model was

enough to yield a high prediction accuracy, albeit a small number of labels of two.

While many more e-nose technologies exist for other applications, Table 1 is a survey of

urine-based or pathogen detection studies. Many of these studies were conducted using non-

physiological media such as nutrient broth, culture media, agar, or urine made into an agar.

On the other hand, many urine-based studies did not involve pathogen classification in the

context of UTI. Using LDA, PCA, and cluster analysis, many authors aimed to discriminate

between only two labels, healthy controls and diseased samples for a variety of diseases, such as

prostate cancer [13, 16], bacteriuria [14], diabetes mellitus [15, 19], and Azotemia [18]. We

envisioned that point-of-care prediction of UTI should be performed directly on a patient’s

urine sample with more labels to identify a wider range of causative agents. This combined

lack of e-nose studies on liquid urine and a more complex classification model presents a need
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for urine-based tests for UTI on an e-nose equipped with a more powerful classification

model.

Escherichia coli is known to be the most prevalent cause of UTI [20]. Therefore, a simple in
vitro UTI model could be created by infecting commercially available human urine with path-

ogenic E. coli to test the e-nose system. Ethanol is a by-product of E. coli metabolism with lac-

tose and arabinose and was considered a biomarker for E. coli, and ethanol level was also

indicative of bacterial concentration in the sample [7]. However, urine samples are known to

degrade over time [21, 22]. Volatile urine output has been shown to decrease after nine months

of storage at -80˚C [23]. Urine analysis performed on samples stored within a year resulted in

much better accuracy than including samples within four years [19]. Therefore, minimization

of the variability in the collected data caused by evaporation and sample degradation must be

achieved before confidently and correctly establishing a library of training data for future real-

time, point-of-care prediction of UTI. Therefore, a GC-MS method was needed for character-

izing the headspace samples so that decisions can be made regarding the optimal measurement

time, followed by the exclusion of examples that do not genuinely represent the intended

labels, which could poison the analytical model.

There was little evidence in the literature that there exists an exact method for the determi-

nation of ethanol concentration in urine using headspace GC-MS. Table 2 summarizes the lit-

erature survey. Also, Tangerman argued that the headspace technique is notorious for

requiring a substantial amount of labor and volumes of the biological specimen while being

less sensitive [24]. However, the headspace method more closely represents the approach done

with the e-noses. Therefore, a new method for the quantitation of ethanol concentration in the

Table 1. Literature survey of sensors and classification models for e-nose studies.

Study Sensors Analysis Labels Medium Average Accuracy

Craven (1997) [9] 6 MOX Multi-layer perceptron and Linear

discriminant analysis (LDA)

4 Nutrient broth 82.2%

Gibson et al. (1997)

[10]

14 Conductive polymers Multi-layer perceptron 13 Nutrient agar 89.7%

Gardner et al.

(2000) [11]

6 MOX ANN with backpropagation 2 Blood agar then

nutrient broth

96.0%

Pavlou et al. (2002)

[12]

14 Conductive polymers Genetic algorithm and backpropagation

neural network

4 Agar, Brain heart

infusion, cooked meat

broth

95.0%

Roine et al. (2014)

[6]

Commercial ion mobility spectrometer-

based e-nose and 6 MOX

LDA and logistic regression 5 Normal urine made

into an agar

83.9%

Asimakopoulos

(2014) [13]

8 metalloporphyrin-coated sensors Supervised Partial Least Square–

Discriminant Analysis

2 Urine 84.8%

Aathithan et al.

(2001) [14]

4 conductive polymers Principal component analysis (PCA) 2 Artificial urine 72.30% sensitivity; 89.38%

specificity

Seesaard et al.

(2016) [15]

4 nanocomposites PCA and cluster analysis 2 Urine 99.5%

Filianoti et al.

(2022) [16]

Cyranose 320 Linear canonical discriminant analysis 2 Urine 85.3%

Seesaard et al.

(2020) [17]

A hybrid of 3 nanocomposites and 3

MOX

PCA and cluster analysis 4 Bacterial culture

media

99.7%

Yumang et al.

(2020) [18]

7 MOX PCA then K-nearest neighbor analysis 2 Urine 90%

Esfahani et al.

(2018) [19]

Field-Asymmetric Ion Mobility

Spectrometry (FAIMS) or FOX4000 (18

MOX)

Sparse Logistic Regression, Random

Forest, Gaussian Process, and Support

Vector

2 Urine 85–94%, depending on e-

nose choice and sample

age

https://doi.org/10.1371/journal.pone.0275517.t001
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headspace volume of urine samples inoculated with E. coli was developed and validated in this

study. Finally, it was used to help improve the classification accuracy of the EVA.

There are also portable systems capable of detecting and quantifying ethanol, such as

zNose, or GC-IMS, which are gas sensors coupled with a GC column, or an alcohol breath ana-

lyzer, which employs a single optical gas sensor. However, we are interested in quantifying eth-

anol to assist with establishing a working protocol for the EVA. Therefore, a GC-MS method

was developed and validated for ethanol quantification in urine. To our knowledge, this is the

first paper describing the validation and quantitation of alcohol release from the bacteria by

using inoculated urine samples. Using the method, we devised a plan to determine the optimal

time length for measuring the urine samples to maximize the data collected without sacrificing

classification accuracy.

In this paper, we use the Electronic Volatile Analyzer (EVA), a rapid, gas-sensing Internet

of Things (IoT) platform under development at IBM Research, Almaden–designed to deliver

classification results in under two minutes [30]. The main objective of this study was to dem-

onstrate the utility of EVA in differentiating between a nonpathogenic (K12) and a uropatho-

genic (UPEC) strain of E. coli in inoculated urine and the possibility of classification

improvement by using a validated GC-MS method to quantify ethanol reduction as a sign of

diminished sample quality.

Materials and methods

The IBM electronic volatile analyzer™
The EVA (Fig 1) an electronic nose under development at IBM Research Almaden. The plat-

form consists of a modular design with each gas sensor mounted on its own sensor module

which is a printed circuit board of common design carrying an integrated microcontroller and

the circuitry needed to operate the sensor. The sensor modules communicate via I2C protocol

with a central hub (BeagleBone Black), which is a single-board computer that orchestrates the

modules and processes the multi-sensorial output. Table 3 describes the set of six commercial

MOX gas sensors used to collect the measurements described in the following sections. The

selection of the sensor portfolio was based on the indications of their respective manufacturers

regarding the nominal target gases of each sensor. It is imperative to include sensors for vari-

ous compounds to capture enough differential responses for pattern recognition of complex

VOC profiles. These sensors together target CO, H2, ethanol, methane, ammonia, H2S, and

unspecified combustible gases. Consequently, the as-selected sensor array was expected to

respond to a variety of volatile molecules, including alcohols, hydrocarbons, ammonia, meth-

ane, as well as a wide range of volatile organic compounds (VOC), with a lower limit of detec-

tion at parts per million (ppm) level.

Each MOX sensor was operated using an individualized multi-step, periodic voltage profile

applied to the heating element, which resulted in stepwise modulation of the device

Table 2. Literature survey of gc methods for the quantitation of ethanol in biological matrices.

Study Analyte Sample Matrix Method

Mihretu et al. (2020) [25] Ethanol Blood Headspace GC-FID (Flame ionization detector)

Chun et al. (2016) [26] Alcohols Brain tissue Headspace GC-FID

Xiao et al. (2014) [27] Ethanol Blood Headspace GC-MS

Kristoffersen et al. (2006) [28] Ethanol Whole blood and plasma Headspace GC-FID

Smith et al. (1999) [29] Alcohols Urine Headspace SIFT-MS

Tangerman (1997) [24] Ethanol Whole blood, serum, urine, fecal supernatants Direct Injection GC-MS

https://doi.org/10.1371/journal.pone.0275517.t002
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temperature (Fig 2). Modulation of the temperature of MOX sensing elements is a well-known

technique that can be used to enhance and tune the dependence of the sensing element resis-

tance to the surrounding environment. The heater voltage profiles applied to the EVA sensors

were optimized to maximize the sensitivity of each sensor with respect to a subset of target

VOC, as well as to improve response orthogonality. Although the duration and amplitude of

the individual waveforms was adjusted independently for each sensor, all waveforms were syn-

chronized to a period of 80 s to simplify the handling and processing of the sensor array out-

puts. The resistance of each MOX sensing element was monitored at a fixed voltage and a rate

Fig 1. The Electronic Volatile Analyzer (EVA). (A) Sensor array prototype with parts labeled. (B) A block diagram of

key components of the EVA.

https://doi.org/10.1371/journal.pone.0275517.g001

Table 3. MOX sensors for the electronic volatile analyzer.

Sensor Targeted gases Commercial application Manufacturer

GGS2330 CO, H2, ethanol Wide range applications Umwelt Sensor Technik, Germany

GGS1330 Hydrocarbon, combustible gases Gas leak detection Umwelt Sensor Technik, Germany

TGS2611 Methane Gas leak detection Figaro USA, Inc., USA

TGS2602 VOCs and odorous gases such as ammonia and H2S Indoor air quality monitoring Figaro USA, Inc., USA

TGS2600 H2, ethanol, air pollutants Indoor air quality monitoring Figaro USA, Inc., USA

TGS8100 H2, ethanol, air pollutants Indoor air quality monitoring Figaro USA, Inc., USA

https://doi.org/10.1371/journal.pone.0275517.t003
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of 10 Hz. During operation, a constant flow of 150 ± 10 sccm was established by means of a

small pump, drawing air from the environment in a continuous fashion while also collecting

the headspace of the sample of interest. The vapor-carrying flow was directed towards an

enclosed chamber containing the six MOX gas sensors for the exposure and detection to take

place.

Chemicals and reagents

Normal Human Urine was purchased from UTAK Laboratories Inc., USA. The vendor

obtained consent from the donors, who were healthy and drug-free. Two strains of E. coli were

purchased from the American Type Culture Collection (ATCC). A nonpathogenic strain

(ATCC 29425) is designated as K12, and the other is a uropathogenic strain (ATCC 700928)

designated as CFT073. They are, henceforth, referred to as K12 and UPEC, respectively. Bacte-

rial growth medium was prepared from Tryptic Soy Broth (TSB) powder (BD Bacto). For

GC-MS, HPLC-grade ethanol (EtOH) and isopropyl alcohol (IPA) were obtained from Sigma

Aldrich, USA.

Preparation of EVA samples and GC-MS reagents

After thawing, the urine bottle was vigorously shaken and aliquoted into multiple 50-ml cen-

trifuge tubes. Upon usage, the tubes were centrifuged at 15,000 rpm for 15 minutes to concen-

trate any visible sediments, which were then removed by filtration. The resultant urine was

named filtered normal urine or fNU.

The TSB medium was mixed and autoclaved using the standard method printed on its bot-

tle. The powder form of the bacteria was resuspended in liquid TSB. Each suspension was then

streaked on a Tryptic Soy Agar using standard aseptic techniques. The presence of many colo-

nies after 24 hours of incubation at 37˚C indicated bacterial viability. The handling of the

UPEC was carried out by BSL-2 trained personnel under a BSL-2 cabinet. The agars with colo-

nies were stored at 4–7˚C and re-streaked every two weeks to keep the cell line fresh.

Fig 2. Example of a temperature profile modulation for MOX sensors for IBM EVA™: (i) periodic waveform of

heater voltage, expressed as a percentage of the maximum operating voltage recommended by the sensor

manufacturer; (ii) corresponding variations in MOX sensor resistance under constant environment.

https://doi.org/10.1371/journal.pone.0275517.g002
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One colony of each E. coli strain was aseptically inoculated in separate tubes of 10 ml of

fNU. The cultures were incubated for 24 hours before being filtered using the same procedure

for fNU, except the centrifugation speed was 5000 rpm to avoid the destruction of the bacterial

cells that can inadvertently introduce unwanted substances to the supernatant. Five milliliters

of the supernatant were transferred to a septa-top vial and kept in the refrigerator at 4–7˚C

until analysis.

A stock solution for EtOH at a 1/100 dilution was prepared by adding 1 ml of pure,

200-proof ethanol in 9 ml of Millipore water in a tube labeled 1/10 EtOH. After vortexing, 1

ml of the 1/10 EtOH was added to 9 ml of Millipore water in a tube labeled 1/100 EtOH and

vortexed. The 1/100 solution of IPA was prepared in a similar manner from a bottle of pure

IPA. The equivalent concentration in g/ml and ppm for both solutions is 0.008 g/ml and

8 ppm.

EVA measurement and two-fold cross-validation ANN

Samples were prepared in Wheaton Septa-top Vials with a rubber-top cap that can be punc-

tured with two needles to allow air intake. The first needle is connected to the EVA by a silicon

tubing for headspace flux, and the second is connected to a HEPA carbon filter (0.22 μm) and

left open to lab air for venting. Four samples were measured with EVA: an empty vial as lab

air, 5 ml of normal fNU, 5 ml of K12, and 5 ml of UPEC. Each vial was measured sequentially

at a sampling rate of 10 Hz. Additionally, the measurement sequence was randomized to mini-

mize any history effects. Each sample was measured once in each cycle for ten minutes in a

continuous flow and reiterated after all other samples have been measured. Between each vial

measurement, the device was also flushed for five minutes to purge off residual VOCs.

With temperature oscillation resulting from the heater voltage waveform over 80 seconds,

the six sensors give rise to a total of 120 features. Feature extraction was achieved through an

amplitude-driven approach of extracting the mean area under the curve for the given response

duration using GNU Octave v-5.1.0.0 (GUI), available through open source. Feature extraction

every 80s constitutes one training example for the ANN model for a total of 7 examples per

sample per cycle. Upon determining the training and testing sets by randomly splitting the

overall dataset in half, both datasets are fed into a backpropagating ANN with two hidden lay-

ers of 24 and 9 nodes, respectively, which reports the training and testing results. The accuracy

was calculated by dividing the total number of correct predictions over the total number of

examples. Second-fold cross-validation was performed by switching the training and testing

sets and repeating the analytics. The robustness of the ANN model was assessed with both

accuracies.

Preparation of calibration standards

Calibration standards were prepared by spiking urine with certain amounts of EtOH and IPA.

The final alcohol concentration was calculated using the following equation:

C ¼
X � D � Valc

Vurine
�
106 ppm
1 g=ml

where C is the concentration in ppm; X is the dilution factor, which is 1/100; D is the density

of the alcohols, which is 0.8 g/ml for both IPA and EtOH; Valc is the volume in μl of the alco-

hols and Vurine the volume in μl of urine.

A preliminary investigation found that the EtOH in UPEC-inoculated urine was approxi-

mately 20 to 30 ppm using a non-validated headspace GC-MS analysis with random EtOH cal-

ibrators. Based on this result, a more defined range of concentrations for the EtOH calibrators
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were determined to be 10, 15, 20, 30, 50, 75, and 100 ppm. The final volume reflects the ulti-

mate amount after transferring some amount to make lower dilutions (e.g., 12.0 ml of the

100-ppm concentration was used to make the 75-ppm concentration). Approximately 16 milli-

liters of each concentration were prepared so that they could be split into three batches for sub-

sequent inter-day validation. The exact volume for each concentration was carefully calculated

and tabulated in Table 4. After aliquoting 5 ml of each concentration into septa-top vials, each

vial was spiked with 31.25 μl of IPA for a final concentration of 50 ppm IPA.

Preparation of quality control standards

Three Quality Control (QC) standards were prepared at 25 ppm, 60 ppm, and 90 ppm and

named QCL, QCM, and QCH, respectively, for low, medium, and high concentrations. Ideally,

the QCL should be at the maximum of three times higher than the lower limit of quantitation

(LLOQ), which is ten ppm. However, the QC level should not repeat any calibration concen-

tration, so the 25 ppm was determined. They were prepared by directly spiking the urine with

the 1/100 ethanol stock. Six QC vials were required, so 32 ml of each QC level was spiked as in

Table 5.

The 32-ml QCs were then dispensed into six vials at 5 ml per vial and spiked with 31.25 μl

of IPA for a final concentration of 50 ppm IPA. The same QC preparation shall be repeated for

each subsequent day of validation. For a full three-day validation, approximately 500 ml of fil-

tered urine is required. The method was validated for its specificity, linearity, intra-day and

inter-day inaccuracy and imprecision. The validation method and acceptance criteria were

according to Bioanalytical Method Validation, published by the US Food and Drug Adminis-

tration [31].

GC-MS parameters and conditions

The GC-MS used was an Agilent 6890 GC system equipped with HP 5973 Mass Selective

Detector. Detection was done using a quadrupole detector with an electron impact source.

The analytical run was performed on a DB ALC column with 30-m length, 0.32 internal

Table 4. Serial dilution of calibration standards.

Target Concentration (ppm) Urine Volume (ml) EtOH Volume (ml) EtOH Source Final Volume (ml)

100 47.4 0.6 1/100 Stock 16.0

75 4.0 12.0 100 ppm 16.0

50 20.0 20.0 100 ppm 16.2

30 11.6 17.4 50 ppm 15.7

20 9.6 6.4 50 ppm 16.0

15 8.0 8.0 30 ppm 16.0

10 10.6 5.3 30 ppm 15.9

https://doi.org/10.1371/journal.pone.0275517.t004

Table 5. Preparation details for QC standards.

QC Name Concentration (ppm) EtOH Volume (ml) Urine Volume (ml) Final Volume (ml)

QCH 90 0.360 31.64 32

QCM 60 0.240 31.76 32

QCL 25 0.100 31.90 32

LLOQ 10 0.040 31.96 32

https://doi.org/10.1371/journal.pone.0275517.t005
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diameter, and 1.80 film thickness. Inlet temperature was set at 100˚C. The oven temperature

was initially held for two minutes at 40˚C then ramped for 25˚C/min until 250˚C and held for

another two minutes, and the total running time was 26 minutes under the scanning mode.

Under the selected ion monitoring (SIM) mode, inlet temperature was set at 100˚C and the

column temperature at 40˚C without temperature ramping. The column flow was set at 6 mL/

min with a total runtime of six minutes. The split mode was used with a split ratio of 25:1.

Helium was used as a carrier gas with a flow rate of 0.9 mL/min. Isopropyl alcohol was used as

an internal standard (ISTD). A Hamilton 1005SL 5-ml gas-tight syringe was used to withdraw

and inject the headspace samples into the GC-MS manually.

Before the injection, the sample was placed in a heat block that had been heated to approxi-

mately 80˚C and kept incubating for ten minutes to increase headspace VOCs (S1 Fig). A

metal blockade was placed on top of the vial cap to prevent accidental touching of the syringe

tip and the liquid. Five milliliters of the headspace sample was injected into GCMS under scan-

ning mode as described previously to determine the compound of interest. After injection, the

syringe was thoroughly cleaned with water and dried with an air gun.

Assessment of sample stability after EVA measurement

Sample evaporation becomes an issue during EVA measurement due to continuous suction of

the headspace volume. It was observed that the sample volume got reduced over time. There-

fore, the newly developed method was used to quantitate the stability of ethanol content in

K12-inoculated urine during measurement.

Due to the destructive nature of the GC-MS assay, multiple spiked samples were prepared

to be measured at different time points (S2 Fig). A stock of 25-ppm ethanol-spiked urine stock

was prepared and split into nine vials. One vial was quantitated with the GC-MS to confirm

the initial concentration. The remaining eight vials were divided into two groups: one group

was measured by the EVA, and the other group was not (control). One vial from each group

was quantitated by GC-MS after each EVA measurement cycle of ten minutes.

Results and discussion

Specificity

The mass over charge number ratios (m/z) 31 and 45 for ethanol and the m/z 45 and 43 for iso-

propyl alcohol were selected based on pre-scanning of ethanol and IPA. Blank urine sample,

blank urine sample spiked with the internal standard, and blank urine sample spiked with

10 ppm EtOH and 50 ppm ISTD were prepared and injected into GC-MS. Two separate peaks

were observed for EtOH and ISTD (Fig 3). In particular, ethanol was detected at 4.38 min and

IPA at 5.45 min. No significant interfering peaks were found at the retention times at which

ethanol and IPA appears. The signal to noise ratios for both drugs was greater than 10. The

results demonstrate the adequacy of the method for the specificity of the compounds involved.

Linearity

A calibration curve was plotted for each validation day for the ratio of EtOH to ISTD response

against the concentrations of ethanol (Fig 4). The linearity was observed for all calibration

curves performed during method validation with all R2 values above 0.990 (Table 6).

Within-assay reproducibility

The mean concentration from six replicates of each QC level was calculated, along with their

standard deviation and coefficient of variation (Table 7). The mean inaccuracy was calculated
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Fig 3. Chromatograms of (a) blank urine, (b) urine sample spiked with 50 ppm IPA, and (c) urine sample spiked with 10 ppm ethanol and

50 ppm IPA.

https://doi.org/10.1371/journal.pone.0275517.g003

Fig 4. A representative standard curve. The y-axis plots the response ratio between the internal standard and the analyte.

https://doi.org/10.1371/journal.pone.0275517.g004
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by averaging the percent difference between each data point and the mean value. All inaccu-

racy values were within acceptable ranges according to US FDA guidelines (20% or less for

LLOQ and 15% or less for other QCs).

Between-assay reproducibility

The between-assay repeatability was assessed by calculating the mean, the standard deviation,

the CV, and the mean inaccuracy across all 18 samples from the three batches. All mean inac-

curacy values were within acceptable ranges according to FDA guidelines (Table 8).

Quantitation of ethanol in E. coli-inoculated urine

As mentioned in the introduction, there are numerous studies on the e-nose application in

detecting and differentiating the causative pathogenic species. Interestingly, most of these

studies looked at the VOCs of bacteria in a nutrient agar or jelified urine instead of directly

measuring the headspace of the urine sample. Presumably, the solidified form could minimize

the evaporation of background components since the presence of water molecules and volatile

Table 6. Standard curve equations and their coefficients of determination.

Validation assay Linear equation R2

Day 1 y = 0.0064x + 0.0096 0.9957

Day 2 y = 0.0065x + 0.0068 0.9916

Day 3 y = 0.0063x + 0.0134 0.9916

https://doi.org/10.1371/journal.pone.0275517.t006

Table 7. Within-assay coefficients of variation and mean inaccuracies.

Batch number QC Nominal conc. (ppm) Mean (n = 6) (ppm) SD (ppm) CV (%) Mean inaccuracy (%)

1 LLOQ 10 8.50 0.83 9.76 15.00

QCL 25 24.24 1.31 5.40 4.9

QCM 60 61.59 3.19 5.18 4.74

QCH 90 98.01 4.77 4.87 9.01

2 LLOQ 10 8.70 1.07 12.30 15.62

QCL 25 22.98 2.44 10.62 11.89

QCM 60 55.68 7.47 13.42 12.92

QCH 90 87.47 5.63 6.44 5.49

3 LLOQ 10 11.06 0.97 8.77 10.63

QCL 25 25.07 3.30 13.16 8.80

QCM 60 62.38 3.45 5.53 4.79

QCH 90 89.87 4.63 5.15 4.25

https://doi.org/10.1371/journal.pone.0275517.t007

Table 8. Between-assay coefficients of variation and mean inaccuracies.

QC Nominal conc. (ppm) Mean (n = 18) (ppm) SD (ppm) CV (%) Mean inaccuracy (%)

LLOQ 10 9.42 1.5 15.92 13.75

QCL 25 24.1 2.5 10.37 8.56

QCM 60 59.88 5.69 9.50 7.48

QCH 90 91.79 6.62 7.21 6.25

https://doi.org/10.1371/journal.pone.0275517.t008
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nutrient broth components could have introduced variability to the sensor system. It is thus

important to demonstrate the differentiation capability of an e-nose directly within the head-

space of liquid samples for better representation as a point-of-care device. Aathithan et al. ana-

lyzed the direct urine samples but did not comment on sample quality, and the reported

sensitivity and specificity were not impressive, given that the classification is either positive or

negative infection without further strain identification. Here, we devised a benchtop model of

UTI by infecting the normal urine samples because it is easy to access, establish, and control in

terms of bacterial culture (K12 vs. UPEC) and ethanol concentration. Patient-derived samples

could have extremely varied bacterial profiles as well as VOC profiles; that would be beyond

the scope of this study. Using a benchtop model, we can decouple confounding factors to

understand better the contribution of data quality in discriminating between species. There-

fore, the GC-MS method was used to measure samples of K12-inoculated and UPEC-inocu-

lated urine in tandem with an artificial neural network classification of odor data collected by

the EVA.

The GC-MS quantitation resulted in 31.33 ppm of ethanol in UPEC-inoculated urine and

18.00 ppm in K12-inoculated urine. Besides the two abovementioned labels, the EVA also

measured lab air and normal urine. The dataset was split in half for the training and testing set

and evaluated with two-fold cross-validation. The classification resulted in 100% accuracy for

both validations, which was determined by taking the ratio between the number of correctly

predicted examples over the total number of examples. The VOC fingerprints are visualized by

plotting the log of the electrical resistance across all features (Fig 5). The results thus

highlighted the potential of EVA to distinguish bacterial strains directly on liquid samples.

These results demonstrated that UPEC and K12 E. coli produced distinguishable levels of

ethanol, thus causing different VOC fingerprints. The four color-coded labels clearly show dif-

ferent patterns from one another when taking all feature responses as a whole. Without exten-

sive scans, it is not known whether the two strains also have distinct levels of other VOCs.

However, the difference in compound concentration enables the differentiation of these two

strains of the same species. The GC-MS method allows researchers to directly study the VOC

Fig 5. Visualization of VOC fingerprints shows different patterns in electrical resistance across calculated sample

features for each sensor.

https://doi.org/10.1371/journal.pone.0275517.g005
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profiles in inoculated urine and aids in decision-making regarding establishing a better mea-

surement protocol and choice of training data for e-nose application.

Sample instability and consideration for EVA measurement time

The concentration of ethanol-spiked urine was quantitated after every EVA cycle for four

cycles. Adhering to the FDA acceptance range, a percent change of 15% or more was deemed

significant. Fig 6 shows that the concentration of ethanol diminished significantly (more than

15%) as early as after the third cycle, which is equivalent to 30 minutes of measurement per

vial.

Next, a new classification was performed using only three labels of lab air, normal urine,

and K12. Data were collected up to 15 cycles each day for two days. The data from the first

three cycles were used as a training set to test every subsequent set of three cycles. The results

in Table 9 indicate that accurate classification was possible up to nine cycles. Therefore, there

are two thresholds for measurement cut-off: the first three cycles and the first nine cycles.

Instability in biological samples, especially urine, has been investigated and shown that long

storage time can reduce the emitted VOCs as measured by an e-nose [23]. Typically, the first

few examples taken by e-nose are discarded during data processing to avoid variability due to

sensor drifting and initial sample instability [32]. However, little is known about sample insta-

bility during e-nose measurement. Roine et al. suggested the measurement time can be

reduced to 5 minutes based on their classification results [6]. However, this suggestion can

only be made after the fact without a priori quantitative basis. Also, a short measurement time

gives fewer examples for training the e-nose, a trade-off that needs to be carefully considered.

Here, we determined the appropriate measurement time then tested whether using the data

Fig 6. Percent change in ethanol concentration after each EVA measurement cycle.

https://doi.org/10.1371/journal.pone.0275517.g006
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within the specified cut-off would yield a better classification than including data after the cut-

off.

Between-day classifications were used to evaluate the two cut-offs, and the results are plot-

ted in Fig 7. Training with the first 30 minutes (three cycles) of data gives better accuracies of

97.0% and 73.7% compared to training with the first 90 minutes of data.

Thus, sample instability was induced after 30 minutes of measurement with an e-nose. Spe-

cifically, the ethanol concentration was reduced by more than 15%, which is significant

according to the FDA guidelines. It was further demonstrated that the ANN model gave supe-

rior classification accuracies when using only data from the first 30 minutes of measurement.

The result is an example of machine learning basics: data quality is more important than data

quantity. The inclusion of data from unstable samples is detrimental to the classification

model. The GC-MS method was thus proved useful for determining the measurement cut-off

time.

Here, each measurement cycle lasts for ten minutes, which agrees with other studies in the

literature [6, 13]. However, there is no standardized protocol for how long this process should

be. In a more recent study by Capelli et al., the urine headspace was flown into the sensor

chamber for 50 minutes [33]. It is thus possible to rerun sample collection to increase the

Table 9. Classification accuracies from training with the first three cycles.

Tested on: Cycles 4–6 Cycles 7–9 Cycles 10–12 Cycles 13–15

Average accuracy: 95.70% 98.20% 55.50% 37.10%

https://doi.org/10.1371/journal.pone.0275517.t009

Fig 7. Cross-validation accuracies between days for 90-min and 30-min measurements.

https://doi.org/10.1371/journal.pone.0275517.g007
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number of training examples for the model as long as the cut-off time can be determined,

which could improve the efficiency of this assay.

Since e-noses typically output electrical resistances, which result from the collective interac-

tion of the whole VOC profile with the sensors, they lack the credibility to aid in decision-mak-

ing regarding quality control of the data. Furthermore, we recognize that the VOC profiles in

real patient-derived UTI samples are likely more complicated. For example, E. coli is not the

only species that produce ethanol as a by-product, but other UTI-causing strains such as Kleb-
siella aerogenes, albeit less prevalent, also ferment lactose and release ethanol. It would be bene-

ficial to strengthen the sensitivity and specificity of the sensors toward ethanol. However, the

EVA will be designed to distinguish various bacterial strains, many of which may produce

compounds other than ethanol. Thus, we must also include a variety of sensors to account for

this dynamicity. These sensors are modular and can be added, removed, or replaced. There-

fore, we could optimize a sensor array that targets the most prevalent strains associated with

UTI.

There are a number of limitations to this study that should be acknowledged. The most

notable one is that we tested the EVA on inoculated urine in developing our assay. While pro-

viding consistency in sample preparation in a proof-of-concept setting, we cannot project the

results for clinical samples in which urine can vastly vary in texture and contents, causing a lot

of noise for the neural network. It is important to analyze the differential concentration of

VOCs in healthy vs. UTI to screen for appropriate sensors that respond to the top compounds

with the most difference. A second limitation is the drifting of sensors. We did not specifically

assess the age of the sensors used in our experiment. Bax et al. showed that classification using

one-year-old sensors was much worse than using new ones, and they proposed a correction

model that significantly improved the performance from 55% to 80% [34]. Regarding drift,

baseline shift among analyses performed on different days could also be seen as a shortcoming

of the study, as ambient temperature or humidity could influence baseline sensor readings. We

did not observe a significant shift in baseline over the experimental duration. However, Bax

et al. also described a pre-treatment procedure to compensate for baseline drift by using Stan-

dard Normal Variate. The same procedure can be adapted to improve our model. A third limi-

tation is that the testing time of 10 minutes for each sampling cycle could have been a little too

long. As aforementioned, a shorter test time has been proposed [6]. We could further reduce

the length of a single measurement from 80 seconds.

Future studies should carefully evaluate the degree of sample degradation. While sample

instability is inevitable, it is efficient to determine the extent of this degradation to maximize

data quantity without a trade-off for data quality. The same headspace analysis should be con-

sidered in every future experimental design to determine the ground truth, which is the con-

centration of analytes, before proceeding to use the collected data. By characterizing the

sample stability during measurement, one can safely reduce variability in the data due to the

very act of measurement itself while being able to incorporate background compounds as part

of the VOC profile.

Conclusion

In this paper, we demonstrated the validation and quantitation data of ethanol in the head-

space of urine samples inoculated with E. coli. The method validation fulfilled all the criteria as

outlined in the Bioanalytical Method Validation protocol published by the US FDA. The

method was successfully applied on ethanol measurement in samples of K12 and UPEC-inocu-

lated urine as an initial step towards improving the outcome of VOC measurement by elec-

tronic nose technology through a validated headspace GC-MS method. The main interest of
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using this method was to characterize E. coli-inoculated urine samples that are prepared for

training an electronic nose to detect urinary tract infection and differentiate between different

causative agents. By using the new method, it was shown that different strains of E. coli could

produce different levels of ethanol concentration, making it possible to differentiate between

them based on distinct VOC fingerprints. The quantitation also revealed that e-nose measure-

ment could affect sample stability over time. Therefore, the cut-off time for future measure-

ment should be wisely determined to avoid the collection of unusable data due to a reduction

in compound concentration. The GC-MS will continue to be a useful tool to support technol-

ogy development, in characterizing samples to build a useful training library for UTI detection

directly through liquid samples without extra preparation steps; thus enabling next generation

real-time and point-of-care diagnosis of UTI.

Supporting information

S1 Fig. Headspace sample being withdrawn from urine vial heated in a heat block. The real

temperature was measured in an adjacent water vial by a digital thermometer. Inset: Urine

sample in a septa-top vial for headspace analysis.

(TIF)

S2 Fig. A schematic of urine sample stability test with GC-MS.

(TIF)

S3 Fig. Sample set up with the EVA.

(TIF)
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