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Abstract

Research in human-associated microbiomes often involves the analysis of taxonomic count

tables generated via high-throughput sequencing. It is difficult to apply statistical tools as the

data is high-dimensional, sparse, and compositional. An approachable way to alleviate

high-dimensionality and sparsity is to aggregate variables into pre-defined sets. Set-based

analysis is ubiquitous in the genomics literature and has demonstrable impact on improving

interpretability and power of downstream analysis. Unfortunately, there is a lack of sophisti-

cated set-based analysis methods specific to microbiome taxonomic data, where current

practice often employs abundance summation as a technique for aggregation. This

approach prevents comparison across sets of different sizes, does not preserve inter-

sample distances, and amplifies protocol bias. Here, we attempt to fill this gap with a new

single-sample taxon enrichment method that uses a novel log-ratio formulation based on

the competitive null hypothesis commonly used in the enrichment analysis literature. Our

approach, titled competitive balances for taxonomic enrichment analysis (CBEA), generates

sample-specific enrichment scores as the scaled log-ratio of the subcomposition defined by

taxa within a set and the subcomposition defined by its complement. We provide sample-

level significance testing by estimating an empirical null distribution of our test statistic with

valid p-values. Herein, we demonstrate, using both real data applications and simulations,

that CBEA controls for type I error, even under high sparsity and high inter-taxa correlation

scenarios. Additionally, CBEA provides informative scores that can be inputs to downstream

analyses such as prediction tasks.

Author summary

The study of human-associated microbiomes relies on genomic surveys via high-through-

put sequencing. However, microbiome taxonomic data is sparse and high-dimensional

which prevents the application of standard statistical techniques. One approach to address

this problem is to perform analyses at the level of taxon sets. Set-based analysis has a long

history in the genomics literature, with demonstrable impact on improving both power

and interpretability. Unfortunately, there is limited interest in developing new set-based
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tools tailored for microbiome taxonomic data given its unique features compared to other

‘omics data types. We developed a new tool to generate taxon set enrichment scores at the

sample level through a novel log-ratio formulation based on the competitive null hypothe-

sis. Our scores can be used for statistical inference at both the sample and population lev-

els, and as inputs to other downstream analyses such as prediction models. We

demonstrate the performance of our method against competing approaches across both

real data analyses and simulation studies.

This is a PLOS Computational Biology Methods paper.

Introduction

The microbiome is the collection of microorganisms (bacteria, protozoa, archaea, fungi, and

viruses) which co-exists with its host. Previous research has shown that changes in the compo-

sition of the human gut microbiome are associated with important health outcomes such as

inflammatory bowel disease [1], type II diabetes [2], and obesity [3]. To understand the central

role of the microbiome in human health, researchers have relied on high-throughput sequenc-

ing methods, either by targeting a specific representative gene (i.e. amplicon sequencing) or by

profiling all the genomic content of the sample (i.e. whole-genome shotgun sequencing) [4].

Raw sequencing data is then processed through a variety of bioinformatic pipelines [5, 6],

yielding various data products, including taxonomic tables which can be used to study associa-

tions between members of the microbiome and an exposure or outcome of interest.

However, there are unique challenges in the analysis of these taxonomic count tables [7, 8].

The data is sparse, high-dimensional, and likely compositional [7–9]. Even though these prob-

lems are challenging, a very approachable solution is to use set-based analysis methods, also

termed gene set testing in the genomics literature [10, 11]. Aggregated variables can be less

sparse, and testing on a smaller number of features can reduce the multiple-testing burden. As

such, gene set testing methods have been shown to increase power and reproducibility of geno-

mic analyses. Furthermore, through the usage of functionally informative sets defined a priori
based on historical experiments (for example, MSigDB [12], and Gene Ontology [13]), gene

set analysis also allows for more biologically informative interpretations.

A diverse set of methods has already been developed in this field. Traditional methods uti-

lize the hypergeometric distribution to test for the overrepresentation of a gene set using a can-

didate list of genes screened based on a marginal model [11]. Unfortunately, these approaches

are sensitive to the differential expression test as well as the chosen threshold when trying to

select genes for the candidate list. Aggregate score methods, which are generally preferred

[14], instead assign a score for each gene set based on gene-specific statistics such as z-scores

or fold change. Of these approaches, methods such as GSEA [12] perform a test for each gene

set at the population level, summarizing information across all samples. Conversely, methods

such as GSVA [15] and VAM [16], generate enrichment scores at the sample level and are

more akin to a transformation. In addition to being able to screen for enriched sets per sample,

this strategy also allows for the flexible incorporation of different downstream analyses, such

as fitting prediction models, or performing dimension reduction.

In microbiome research, even when no explicit enrichment analysis is performed, research-

ers often aggregate taxa to higher Linnean classification levels such as genus, family, or phy-

lum. However, there is limited research done to extend existing set-based methods to
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microbiome relative abundance data. Some software suites, such as MicrobiomeAnalyst, do

offer tools to perform enrichment testing with curated taxon sets [17]. However, the approach

used in MicrobiomeAnalyst is a form of overrepresentation analysis at the population level and

therefore similarly sensitive to the differential abundance approach used and the p-value

threshold. One of the primary challenges for adapting gene set analysis to the microbiome con-

text is the compositional nature of the data. Sequencing technologies constrain the total num-

ber of reads, and samples are expected to have the same number of reads instead of DNA

content [18, 19]. However, different samples still yield arbitrarily different total read counts [9,

20], which suggests the usage of normalization methods to allow for proper comparison of fea-

ture abundances across samples. However, microbiome data sets do not follow certain

assumptions that enable the cross-application of methods from similar fields (such as RNA-

seq) [18, 19]. For example, DESeq2’s estimateSizeFactors [21] assumes that the majority of

genes act as housekeeping genes with constant expression levels across samples. As such, prac-

titioners often rely on total sum normalization to transform count data into relative propor-

tions that sum to one [22]. Some studies have provided emprical performance evaluations

supporting this normalization schema [23]. Since this approach imposes a sum constraint on

the data, post normalization microbiome data sets are compositional [9], which means that the

abundance of any taxon can only be interpreted relative to another. Under this scenario, log-

ratio based approaches from the compositional data analysis (CoDA) literature [24] are moti-

vated to address this issue.

Unfortunately, the standard practice for aggregating variables using element-wise summa-

tions (referred to as “amalgamations” in the CoDA literature), does not adequately address the

compositional issue [25]. First, inter-sample Aitchison distances computed on original parts

are not preserved after amalgamation [26]. This means that cluster analyses might show differ-

ent results depending on the level of amalgamation and differ from the those computed from

original variables. Second, amalgamations do not allow for comparison between sets of differ-

ent sizes within the same experimental condition since larger sets will have larger means and

variances. Third, considering that each taxa has specific measurement biases [25], an amal-

gamation-based approach would make the bias of the amalgamated variable dependent on the

relative abundance of its constituents. In other words, if taxon 1 has abundance A1 and bias B1,

while taxon 2 has abundance A2 and bias B2, then the bias of the aggregate variable (for exam-

ple, a genus) is (A1B1 + A2B2)/(A1 + A2) (see Appendix 1. from McLaren et al. [25]). This

means that bias invariant approaches (such as analyses of ratios) would no longer be invariant

when applied to amalgamated variables, as bias now varies across samples. The alternative

would be to multiply the proportions rather than to sum them [26].

Here, we present a taxon-set testing method for microbiome relative abundance data that

addresses the aforementioned issues. Our approach generates enrichment scores at the sample

level similar to GSVA [15] and VAM [16]. We leverage the concept of the Q1 competitive

hypothesis presented in Tian et al. [27] to formulate the enrichment of a set as the composi-

tional balance [28] of taxa within the set and remainder taxa using multiplication as the

method of aggregating proportions [26]. This well-defined null hypothesis allows us to per-

form significance testing with interpretable results through estimating the empirical distribu-

tion of our statistic under the null that can also account for variance inflation due to inter-taxa

correlation [29].

In the following sections, we present our approach, titled competitive balances for taxo-

nomic erichment analysis (CBEA). First, we present the step-by-step formulation of CBEA

and discuss its statistical properties. Second, we detail our evaluation strategy using both real

data and parametric simulations and the methods we are comparing. Third, we present results

on enrichment testing using CBEA for single samples as well as at the population level. Fourth,
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we show the performance of CBEA in downstream disease prediction. Finally, we discuss our

results and the limitations of our method. An R package implementation of CBEA can be

installed via Bioconductor. The development version can be found on GitHub (www.github.

com/qpmnguyen/CBEA).

Materials and methods

Competitive balances for taxonomic enrichment analysis (CBEA)

The CBEA method generates sample-specific enrichment scores for microbial sets using prod-

ucts of proportions [30]. Details on the computational implementation of CBEA can be found

in S1 File. The CBEA method takes two inputs:

• X: n by p matrix of positive proportions for p taxa and n samples measured through either

targeted sequencing (such as of the 16S rRNA gene) or whole genome shotgun sequencing.

Usually, X is generated from standard taxonomic profiling pipelines such as DADA2 [5] for

16S rRNA sequencing, or MetaPhlAn2 [6] for whole genome shotgun sequencing. CBEA

does not accept X matrices with zeroes since they invalidate the log-ratio transformation.

Users can generate a dense matrix X using their method of choice, however, by default

CBEA will add a pseudocount of 10−5 if zeroes are detected in the matrix.

• A: p by m indicator matrix annotating the membership of each taxon p to m sets of interest.

These sets can be Linnean taxonomic classifications annotated using databases such as

SILVA [31], or those based on more functionally driven categories such as tropism or eco-

system roles (Ai,j = 1 indicates that microbe i belongs to set j).

The CBEA method generates one output:

• E: n by m matrix indicating the enrichment score of m pre-defined sets identified in A across

n samples.

The procedure is as follows:

1. Compute the CBEA statistic: Let M be a n by m matrix of CBEA scores. Let Mi,k be the

CBEA score for set k and sample i:

Mi;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k Aikðp �

P
k AikÞ

p

s

ln
gðXi;jjAj;k ¼ 1Þ

gðXi;jjAj;k 6¼ 1ÞÞ

 !

ð1Þ

where g(.) is the geometric mean. This represents the ratio of the geometric mean of the rel-

ative abundance of taxa assigned to set k and the remainder taxa.

2. Estimate the empirical null distribution: Enrichment scores represent the test statistic for

the Q1 null hypothesis Ho that relative abundances in X of members of set k are not

enriched compared to those not in set k. Since the distribution of CBEA under the null var-

ies depending on data characteristics (Fig 1), an empirical null distribution will be esti-

mated from data.

• Compute the CBEA statistic on permuted and un-permuted X. Let Xperm be the column

permuted relative abundance matrix, and Mperm be the corresponding CBEA scores gener-

ated from Xperm. Similarly, we let Munperm be CBEA scores generated from X.

• Estimate the correlation-adjusted empirical distribution for each set. For each set, a fit

a parametric distribution to both Mperm and Munperm. The location measure estimated

from Mperm and the spread measure estimated from Munperm will be combined as the
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correlation-adjusted empirical null distribution Pemp for each set. Two available options

are the normal distribution and the mixture normal distribution. For the normal distribu-

tion, parameters were estimated using the method of maximum likelihood implemented

in the fitdistr package [32]. For the mixture normal distribution, parameters were esti-

mated using an expectation-maximization algorithm implemented in the mixtools package

[33].

Fig 1. Properties of the null distribution of CBEA under the global null simulations. Panel (B) presents kurtosis and skewness of CBEA scores while

panel (A) presents the goodness of fit (as Kolmogorov-Smirnov D statistic) for mixture normal and normal distributions. Panel (C) is a density plot of

the shape of the null distribution. Results indicated the necessity of estimating an empirical null and demonstrating that the mixture distribution was

the better fit compared to the basic normal.

https://doi.org/10.1371/journal.pcbi.1010091.g001
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3. Calculate finalized CBEA scores with respect to the empirical null: Enrichment scores

Ei,k are calculated as the cumulative distribution function (CDF) values or z-scores with

respect to Pemp distribution. Raw p-values can be calculated by subtracting E from 1.

Properties of CBEA

CBEA and balances between groups of parts. The CBEA statistic is based on the multipli-

cation-based aggregation approach used to calculate balances between groups of parts [26].

These balances are computed using the isometric log-ratio (ILR) transformation [30] formula.

For a given balance i splitting variables across sets R and S, we have the balance coordinate x�i as:

x�i ¼
ffiffiffiffiffiffiffiffiffiffi

rs
r þ s

r

log
gðXjjj2RÞ

gðXjjj2SÞ

 !

ð2Þ

where r and s are the cardinalities of sets R and S respectively, g(z) is the geometric mean, and Xj

are values of the original predictors with indexes defined by membership in R and S.

CBEA belongs to a set of methods that seeks to leverage compositional balances for the

analysis of microbiome data [28, 34–36]. Unlike methods such as PhILR [35], CBEA does not

present an orthonormal basis for the complete ILR transformation (such as a a sequential

binary partition) [30]. Therefore, it is not a subclass of the ILR transformation and is adjacent

to this approach. A similar method to CBEA would be phylofactor [34]. However, instead of

performing an optimization procedure to identify interesting balances, CBEA constructs bal-

ances a priori using pre-defined sets, and formulates the enrichment of a set as the scaled log-

ratio between the center of the subcomposition represented by microbes within the set and the

center of the subcomposition represented by remainder taxa. This formulation aligns with the

Q1 null hypothesis from the gene set testing literature [27].

Estimating the null distribution. We can assume that the CBEA statistic, similar to other

log-ratio based transforms, follows a normal distribution [30, 37]. However, when applying

CBEA for hypothesis testing at the sample level, it is expected that the researcher will be testing

a large number of hypotheses. Under the assumption that the number of truly significant

hypotheses is low, Efron [38] showed that estimating the null distribution of the test statistic

directly (termed the “empirical null distribution”) is much more preferable than using the the-

oretical null due to unobserved confounding effects inherently part of observational studies.

As such, to perform significance testing using CBEA, we also estimated the null distribution

from observed raw CBEA variables.

This assumption is also supported by preliminary simulation studies (detailed below). We

simulated microbiome taxonomic count data under the global null across different data fea-

tures and compute raw CBEA scores as well as kurtosis and skewness of the distribution under

the null in Fig 1A. We found that the characteristics of the distribution change depending on

sparsity and inter-taxa correlation. Sparsity seems to drive it to be more positively skewed

while inter-taxa correlation encourages platykurtic (negative kurtosis) behaviour. The effect is

most dramatic under both high inter-taxa correlation and sparsity. This heterogeneity further

supports the decision to estimate an empirical null distribution, as suggested by Efron [38].

Additionally, the degree of kurtosis and skewness also suggests that the normal distribution

itself might not be a good approximation of the null. To address this issue, we also evaluated a

two-component normal mixture distribution. Fig 1B showed the goodness of fit each distribu-

tion form using the Kolmogorov-Smirnov (KS) test statistic comparing each fitted distribution

to CBEA scores generated under global null simulation scenarios. We can see that the mixture
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normal distribution is a better fit (lower KS scores) than the normal distribution (across both

sparsity and correlation settings).

We performed our empirical null estimation by fitting our distribution of choice and com-

puting relevant parameters on raw CBEA scores on taxa-permuted data (equivalent to gene

permutation in the gene expression literature). As such, the null distribution is characterized

by scores computed on sets of equal size with randomly drawn taxa.

Variance inflation due to inter-taxa correlation. When taxa within a set are highly cor-

related, the variance of the sample mean of taxon-wise statistics is inflated. Without loss of

generalizability, for a set of taxa with taxon-specific statistics x1, . . ., xp, we have the variance of

the mean �x to be:

Varð�xÞ ¼
1

m2

X

i¼1

ðs2

i Þ þ
X

i<j

rijsisj

 !

ð3Þ

where σi is the standard deviation of taxon i and ρij is the correlation between i and j. The sec-

ond term of (3) is the correlation dependent variance component, which goes to 0 if there is

no correlation. The CBEA statistic follows a similar pattern. Since the geometric mean of a set

of variables is equivalent to the exponential of the arithmetic mean of their logarithms, we can

re-write CBEA score for a set k with size K as follows:

Mi;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðp � KÞ

K þ ðp � KÞ

s

logXi;jjj2K � log Xi;jjj=2K

� �
ð4Þ

where p is the overall number of taxa, j is the index of a taxa, and K is the set of indices of taxa in

set k. The CBEA statistic then looks similar to a t-statistic for difference in means of log-trans-

formed proportions. As such, the pooled variance of CBEA is dependent on the variance infla-

tion of both mean components log Xi;jjj2K and log Xi;jjj=2K. The result of this variance inflation is

an inflated type I error since highly correlated sets are also detected as significantly enriched.

However, as Wu et al. [29] showed, performing column permutations to estimate the null

distribution of a competitive test statistic does not allow for adequate capture of this variance

inflation factor since the permutation procedure disrupts the natural correlation structure of

the original variables. It is important to address this problem since there is strong inter-taxa

correlation within the microbiome [39]. Our strategy for addressing this issue is to use the

location (or mean) estimate from the column permuted raw score matrix, with the spread (or

variance) estimate taken from the original un-permuted scores. This still allows us to leverage

the null distribution generated via column permutation while using the proper variance esti-

mate taken from scores where the correlation structure has not been disrupted. As such, this

procedure assumes that the variance of the test statistic under the alternate hypothesis is the

same as that of the null. Details of the computational implementation to this estimation pro-

cess can be found in S1 File.

However, set-based analysis is an exploratory approach that can help generate functionally

informative hypotheses, and as such users might not want strict type I error control in favor of

higher power. This is especially true for competitive hypotheses where its stricter formulation

compared to the self-contained approach implies that the test naturally has lower power [11,

40]. Furthermore, sets that are highly correlated compared to background can be biologically

relevant. Therefore, CBEA provides an option for users to specify whether correlation adjust-

ment is desired.
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Evaluation

We based our evaluation strategy on gene set testing benchmarking standards set by Geistlin-

ger et al. [41] and utilized the same approaches whenever possible. All data sets are obtained

from either the curatedMetagenomicData [42] and HMP16SData [43] R packages (2020–10-02

snapshot), or downloaded from the Qiita platform [44]. All code and data sets used for evalua-

tion of this method are publicly available and can be found on GitHub (qpmnguyen/CBEA_

analysis). Additional packages used to support this analysis includes: tidyverse [45], pROC
[46], phyloseq [47], mia [48], targets [49].

Statistical significance

We evaluated the inference procedure of CBEA compared to alternate methods using two

approaches: randomly sampled taxa sets and sample label permutation. These analyses were

performed on the 16S rRNA gene sequencing of the oral microbiome from the Human Micro-

biome Project [1, 50]. This data set contains 369 samples split into two subsites: supragingival

and subgingival. We processed this data set by removing all samples with total read counts less

than 1000 and OTUs whose presence (at least 1 count) is in 10% of samples or less.

Sample-level inference. Due to CBEA’s self-contained null hypothesis, we can perform

inference at the sample level for the enrichment of a set. We evaluated this application by gen-

erating one random taxon-set of different sizes S 2 {20, 50, 100, 150, 200} across 500 iterations.

Random sets can act as our estimate for type I error since they match the CBEA null hypothesis

stated in Materials and methods, where we expect that within each sample sets of randomly

drawn taxa should not be significantly enriched compared to the remainder background taxa.

For this evaluation, we estimated type I error as the fraction of samples in which our random

set is detected as significant at a p-value threshold of 0.05 with confidence bands computed

from the standard error across all iterations. Additionally, this analysis also tests whether

CBEA is sensitive to different set sizes.

Population-level inference. We can perform enrichment testing at the population level

by generating corresponding sample level CBEA scores and performing a two-sample test

such as Welch’s t-test. In order to evaluate CBEA under this context, we generated CBEA

scores of sets representing genus-level annotation in the above gingival data set [1, 50] and

applied a t-test to test for enrichment (similar to GSVA [15]) across a randomly generated var-

iable indicating case/control status (repeated 500 times). Type I error is estimated as the frac-

tion of sets per iteration found to be significantly enriched with confidence bands computed

from the standard error across all iterations. In addition, we performed a random set analysis

assessment, where we generated 100 sets of different set sizes S 2 {20, 50, 100, 150, 200} and

evaluated the fraction of genera that were found to be differentially abundant across the origi-

nal labels (supragingival versus subgingival subsite). 95% confidence intervals were computed

using the Agresti-Couli approach [51].

Phenotype relevance

We want to evaluate whether sets found to be significantly enriched by CBEA are relevant to

the research question. To perform this assessment, we relied on the gingival data set men-

tioned above [1, 50]. This data set was chosen because its clear biological interpretation can

serve as the ground truth. Specifically, we expect aerobic microbes to be enriched in the supra-

gingival subsite where the biofilm is exposed to the open air, while conversely anaerobic

microbes should thrive in the subgingival site [52]. Genus-level annotations for microbial

metabolism from Beghini et al. [53] were obtained from the GitHub repository associated with

Calagaro et al. [54]. For sample-level inference, we assessed power as the fraction of
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supragingival samples whereby aerobic microbes are significantly enriched. For population-

level inference, power is the fraction of sets representing genus-level taxonomic assignments

that were significant across subsite labels.

In addition to statistical power, we also assessed phenotype relevance through evaluating

whether highly ranked sets based on CBEA scores were more likely to be enriched according

to the ground truth. This is represented by the area under the receiving operator curve

(AUROC/AUC) scores computed on CBEA scores against true labels (similar approach was

used to evaluate VAM [16]). DeLong 95% confidence intervals for AUROC [55] were obtained

for each estimate.

Disease prediction

CBEA scores can also be used for downstream analyses such as disease prediction tasks. We

utilized two data sets for this evaluation:

1. Whole genome sequencing of stool samples from inflammatory bowel disease (IBD)

patients in the MetaHIT consortium [56]. This data set contains 396 samples from a cohort

of European adults, of whom 195 adults were classified as having IBD (which includes

patients diagnosed with either ulcerative colitis or Crohn’s disease). We processed this data

by removing all samples with less than 1,000 total read counts as well as any OTU that was

present (with non-zero proportions) in 10% of the samples or fewer. Prior to model fitting,

we back-transformed relative abundances into count data (to align the format with our 16S

rRNA gene sequencing data set), using the provided total number of reads aligned to

MetaPhlan marker genes (per sample).

2. 16S rRNA gene sequencing of stool samples from IBD patients in the RISK cohort [57].

This data set contains 16S rRNA gene sequencing samples from a cohort of pediatric

patients (ages< 17) from the RISK cohort enrolled in the United States and Canada. Of the

671 samples obtained, 500 samples belong to patients with IBD. We processed this data set

by removing all samples with less than 1,000 total read counts as well as any OTU that was

present (at least 1 count) in 10% of the samples or fewer.

We evaluate disease prediction performance by fitting a random forest model [58] using

CBEA scores as inputs to classify samples of patients with IBD or as healthy controls. Random

forest was chosen as a baseline learner due to its flexibility as an out-of-the-box model that is

easy to fit. In this instance, we evaluated predictive performance of a default random forest

model (without hyperparameter tuning) AUROC after 10-fold cross validation. Additionally,

we utilized SMOTE to correct for class imbalances [59]. Implementation was done using the

tidymodels suite of packages [60].

Comparison methods

We benchmarked the statistical properties of CBEA against existing baseline approaches. For

sample-level inference analyses, we utilized the Wilcoxon rank-sum test, which non-paramet-

rically tests the difference in mean counts between taxa from a pre-defined set and its remain-

der similar to CBEA. For assessments at the population level, we compared CBEA against the

performance of a standard test for differential abundance with set-level features generated via

element-wise summations instead. We chose DESeq2 [21] and corncob [61] because they rep-

resent methods extrapolated from RNA-seq [47] and those developed specifically for micro-

biome data.

Since disease prediction models and rankings-based phenotype relevance analyses seek to

evaluate the informativeness of CBEA scores instead of relying on computing p-values, we
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compared performance against other single-sample-based approaches from the gene set test-

ing literature, specifically ssGSEA [62] and GSVA [15]. Additionally, for evaluating predic-

tions, we also compared performance against a standard analysis plan where inputs are count-

aggregated sets with the centered log-ratio (CLR) transformation.

Results

In this section, we present results for evaluating statistical significance, phenotype relevance,

and predictive performance. In addition to real data, we also evaluated models based on

parametric simulations. Results can be found in the Supplemental Materials (S1–S5 Figs).

Statistical significance

Inference at the sample level. CBEA provides significance testing at the sample level

through a self-contained competitive null hypothesis. Generating random sets approximates

the global null setting where within each sample, sets generated by randomly sampling taxa

should not be significantly more enriched than remainder taxa.

Fig 2 demonstrates type I error of sample-level inference evaluated using the random set

approach. The Wilcoxon rank sum test and unadjusted CBEA under mixture normal assump-

tion demonstrated good type I error control at the appropriate α level. This fits with our expec-

tations since the mixture normal distribution, has a much better fit than the normal

distribution especially at the tails of the empirical distribution (Fig 1). However, other variants

of CBEA demonstrated inflated type I error, especially correlation adjusted variants compared

to their unadjusted counter parts. Encouragingly, all methods demonstrate consistent perfor-

mance across all set sizes, with a slight increase in type I error at the highest levels.

Interestingly, simulation results (S1 Fig) showed an opposite pattern. Adjusted approaches

were good at controlling for type I error, especially under the low inter-taxa correlation values

within the set (similar to generating random sets where the natural correlation structure is dis-

rupted). In these simulations, unadjusted approaches and the Wilcoxon rank sum test had sig-

nificant type I error inflation with increasing correlation. All approaches seems to be invariant

to the level of data sparsity.

Inference at the population level. Similar to other single-sample approaches to gene set

testing such as GSVA [15], we can perform inference at the population level by utilizing a two-

sample difference in means test. Here, we evaluated using CBEA scores generated under differ-

ent settings with Welch’s t-test in a supervised manner to assess whether a set is enriched

across case/control status.

Fig 3 shows results for this scenario using both random sample label and random set evalu-

ations. The random sample label approach (Fig 3A) provided a controlled setting where we

can estimate type I error rate controlled at α = 0.05. Across all replications, CBEA methods

were able to control for type I error at the nominal threshold of 0.05, with CBEA raw scores

being the most performant. Neither output types, correlation adjustment, nor distributional

assumption improved performance values. Surprisingly, DESeq2 and corncob both exhibited

significantly inflated type I error.

We also assessed the impact of set-size on the inference procedure by testing for enrichment

using the original sample labels, but with randomly sampled sets of different sizes (Fig 3B).

Overall, we observed very similar values across CBEA as well as corncob and DESeq2, suggest-

ing that no individual method was systematically identifying too many significant sets. Addi-

tionally, similar to analogous analyses at the sample level, no approach was significantly

sensitive to changes in set sizes.
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Phenotype relevance

Inference at the sample level. In Fig 4, we evaluated whether sets found to be significant

by CBEA are relevant to the phenotype of interest. We leveraged the gingival data set as stated

in Properties of CBEA section knowing beforehand that aerobic microbes were more likely to

be enriched in supragingival subsite samples and vice versa.

We estimated statistical power using this data set as the fraction of supragingival samples

where the set representing aerobic microbes was significantly enriched. We observed that

adjusted CBEA approaches demonstrated much lower power compared to the Wilcoxon rank-

sum test and unadjusted variants. This is surprising given the fact that in statistical significance

analyses, the adjusted CBEA approach provides inflated type I error, especially if the normal

distribution assumption was chosen. This indicated a mismatch in estimating the null distribu-

tion since a high type I error did not result in increased power.

We also evaluated phenotype relevance by assessing whether enriched sets according to

ground truth are preferentially ranked higher using assigned continuous scores (instead of per-

forming a hypothesis test). This aspect was captured through computing AUROC values com-

paring computed enrichment scores and true labels. Consistent with the previous type I error

evaluation, adjusting for correlation did not improve performance, whereas obtained AUROC

were around 0.5 and at the same level as the benchmark Wilcoxon rank sum statistic.

Fig 2. Random taxa set analyses for inference at the sample level of CBEA under different parametric assumptions compared against a Wilcoxon rank-

sum test. Type I error (y-axis) was evaluated by generating random sets of different sizes (x-axis) (500 replications per size) and computing the fraction of

samples in which the set was found to be significantly enriched at α = 0.05. Error bars represent the mean type I error ± sample standard error computed across

500 replications of the experiment. Only the unadjusted CBEA with the mixture normal distribution and the Wilcoxon rank sum test were able to control for

type I error at 0.05. All approaches are invariant to set sizes.

https://doi.org/10.1371/journal.pcbi.1010091.g002
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Unadjusted methods were much better at ranking true enriched sets, however the mean

AUROC values were lower than alternate single-sample enrichment methods (GSVA [15] and

ssGSEA [62]) even though this difference is not significant due to overlapping confidence

intervals.

Fig 3. Random sample label (A) and random set (B) analyses for population level inference. (A) Type I error (x-axis) was estimated as the overall

fraction of sets found to be enriched α = 0.05 using randomly generated sample labels (500 permutations). Error bars represent the mean type I

error ± sample standard error. (B) Proportion of significant sets (y-axis) using 100 randomly generated sets of different set sizes (x-axis). Confidence

intervals computed using Agresti-Couli method for binomial proportions. For sample label permutation (A), all CBEA approaches were able to control

for type I error but not for corncob and DESeq2. For random set analyses (B), all approaches demonstrated similar rates of accepting significant sets

and were invariant to overall set size.

https://doi.org/10.1371/journal.pcbi.1010091.g003
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The above results were replicated in simulation studies where we observed that adjusted

approaches were very conservative and demonstrated significantly lower power (S3 Fig), with

increasing correlation even at the highest evaluated effect sizes. When assessing score rankings,

the performance of CBEA was closer to ssGSEA and GSVA compared to real data evaluations,

however all single-sample approaches were much better than using the W statistic from the

Wilcoxon Rank Sum test.

Inference at the population level. We also assessed statistical power for population level

inference scenarios using a similar approach. Here, enrichment scores for sets representing all

identified genera were computed, and power was estimated as the fraction of sets found to be

differentially enriched across sample site labels (supragingival or subgingival). We compared

these results against performing a differential abundance test of genus level features generated

via sum-based approaches. Results are shown in Fig 5. Some CBEA variants, such as CDF out-

puts for the mixture normal distributional assumption, did not correctly detect as many signif-

icant sets as DESeq2 or corncob despite very close performance values. Using raw CBEA

scores was best approach, however, it did not exceed values obtained from DESeq2 and

corncob.

Fig 4. Statistical power (A) and score rankings (B) to assess phenotype relevance. (A) Power (x-axis) was estimated as the overall fraction of aerobic microbes found to

be enriched in supragingival samples at α = 0.05. 95% confidence intervals were computed using the Agresti-Couli approach for binomial proportions. (B) Score

rankings were evaluated by comparing computed scores against true values using AUROC (x-axis). DeLong 95% confidence intervals for AUROC were computed.

https://doi.org/10.1371/journal.pcbi.1010091.g004
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Disease prediction

Since CBEA can generate informative scores that can discriminate between samples with

inflated counts for a set (Fig 4), we wanted to assess whether these scores can also act as useful

inputs to predictive models. In this section we assessed the predictive performance of a stan-

dard baseline random forest model [58] with different single-sample enrichment scoring

methods as inputs (CBEA, ssGSEA, and GSVA). Additionally, we also compared the predictive

performance of using these scores against a standard approach of using the centered log-ratio

transformation (CLR) on taxon sets aggregated via abundance summations.

We fit our model to two data sets with a similar disease classification task of discriminating

patients who were diagnosed with IBD (includes both Crohn’s disease and ulcerative colitis)

using only microbiome taxonomic composition. The two data sets represent different micro-

biome sequencing approaches: the Gevers et al. [57] data set uses 16S rRNA gene sequencing,

while the Nielsen et al [56] data set uses whole genome shotgun sequencing.

Fig 6 illustrates the performance of our model with AUROC as the evaluation criteria. In

the 16S rRNA data set, the best performing CBEA variant (CDF values computed from an

unadjusted mixture normal distribution) outperforms both GSVA and ssGSEA but not the

standard CLR approach. Interestingly, in the whole genome sequencing data set, CBEA out-

performed CLR, but was similar in performance to GSVA. However, due to large confidence

intervals, no method significantly out-performed other evaluated approaches. As such, these

results indicate that, for a given pre-determined collection of sets, CBEA generated scores can

be informative and provide competitive performance when acting as inputs to disease predic-

tive models. Simulation studies (S5 Fig) showed similar results, however CBEA more

Fig 5. Statistical power to assess phenotype relevance of inference tasks at the population level. Power (x-axis) was estimated as the overall fraction of sets

representing genera that are aerobic or anaerobic microbes found to be differentially enriched across sample type (supragingival or subgingival). 95%

confidence intervals were computed using the Agresti-Couli approach for binomial proportions.

https://doi.org/10.1371/journal.pcbi.1010091.g005

PLOS COMPUTATIONAL BIOLOGY CBEA: Competitive balances for taxonomic enrichment analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010091 May 18, 2022 14 / 24

https://doi.org/10.1371/journal.pcbi.1010091.g005
https://doi.org/10.1371/journal.pcbi.1010091


consistently underperformed compared to CLR across all scenarios. Interestingly, the perfor-

mance gap decreased with increasing sparsity levels and correlation.

Discussion

Inference with CBEA

CBEA is a microbiome-specific approach to generating sample-specific enrichment scores for

taxonomic sets defined a priori. The formulation of CBEA as a comparison between taxa

Fig 6. Predictive performance of a naive random forest model trained on CBEA, ssGSEA, and GSVA generated scores, as well as the standard CLR approach on

predicting patients with inflammatory bowel disease versus controls using genus level taxonomic profiles. The data sets used span both 16S rRNA gene

sequencing (Gevers et al. [57]) and whole-genome shotgun sequencing (Nielsen et al. [56]). CBEA performs better than GSVA and ssGSEA but not as well as CLR,

with the exception of the whole genome sequencing data set.

https://doi.org/10.1371/journal.pcbi.1010091.g006
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within the set and its complement corresponds to the competitive null hypothesis in the gene

set testing literature [27]. Since this null hypothesis is self-contained per sample, it allows users

perform enrichment testing at the sample level. Additionally, in combination with a difference

in means test, CBEA can also test for enrichment at the population level across case/control

status similar to GSVA [15].

For single-sample analyses, we demonstrated that the CBEA approach (unadjusted with

mixture normal parametric assumption) was able to control for type I error at the nominal

level of 0.05 under the global null (Fig 2), while also demonstrating adequate power (Fig 4).

This performance is consistent across different set sizes as well as our prior distributional fit

analyses (Fig 1), in which the mixture normal displayed superior fit to the null distribution.

Unfortunately, other variants of CBEA demonstrated neither good type I error control nor

power. Interestingly, while the adjusted methods showed poor performance in real data evalu-

ations (Fig 2), in simulation studies (S1 and S3 Figs) these approaches were able to control for

type I error well with the trade-off of much lower power. For the population-level inference

task, CBEA also performed very well. Under the permutation global null, representing genera

abundance using CBEA scores in combination with Welch’s t-test controls for type I error at

the correct α threshold while also keeping respectable power. Since the population level

enrichment test is equivalent to a differential abundance test using set-based features, we com-

pared the CBEA approach against using element-wise summations with corncob [61] and

DESeq2 [21] to test for set-level differential abundance. We chose DESeq2 because it is an

older approach from the bulk RNA-seq literature that has strong support for usage in micro-

biome taxonomic data [47]. Alternately, corncob is a newer method developed specifically for

microbiome taxonomic data sets, which models taxonomic counts directly using a beta-bino-

mial distribution instead of relying on normalization via size factor estimation. We observed

that using this approach resulted in an inflated type I error compared to all variants of CBEA

(Fig 2), yet did not improve power (Fig 4). Results for CBEA approaches were replicated in

simulation analyses, however, for corncob and DESeq2 we observed an opposite effect: in sim-

ulation experiments, both methods show good type I error control but low power (S2 and S4

Figs).

We hypothesized that the discrepancy between simulation and real data evaluations could

be due to differences in our assumptions regarding the data generating process that informed

our simulation schema. For the non-zero component of each taxon, we sampled from the

same negative binomial distribution where designated enriched taxa were generated with

inflated means (but the same dispersion). These marginals were simulated to account for block

exchangable correlation within the enriched set only. This might have affected our results in

two ways. First, our simulation scenario ensures that all designated non-enriched taxa are

identical to each other. This is not the case for real data, because our null scenario involves ran-

domly sampled sets that might by chance all have taxa with inflated means compared to

remainder taxa. This is represented in S7 Fig, where the distribution of type I error across 500

replications is right skewed for underperforming CBEA variants, indicating that these

approaches are much more sensitive compared to the Wilcoxon rank sum test or unadjusted

CBEA with mixture normal distribution. Second, as described in the Introduction section, we

did not consider taxon-specific biases that distort the observed relative abundance of taxa com-

pared to true values [25]. In the context of sum-based aggregations, the resulting bias of the

aggregated taxon-set is dependent on the relative abundances of the contributing taxa (Appen-

dix I in [25]). Conceptually, this means that measurement error for a taxon-set is different

across samples as the relative abundances of contributing taxa change, leading to issues when

attempting to perform inference. As such, we expect methods like corncob or DESeq2, when

performed on such sum aggregates in the presence of taxon-specific biases, to have inflated
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type I error compared to our multiplication based approach. This also explains why conversely

in simulation studies, where taxon-specific biases are absent, corncob and DESeq2 performed

better.

Downstream analysis using predictive models

The sample-level enrichment scores generated by the CBEA method can be used in down-

stream analyses such as disease prediction. We evaluated whether CBEA can be used to gener-

ate set-based features for disease prediction models.

We fit a basic random forest model [58] to predict continuous and binary outcomes using

CBEA generated scores as inputs. Similar to our inference analysis, we compared CBEA

against both ssGSEA and GSVA. Additionally, we evaluated CBEA against a standard

approach where counts of a set were aggregated using sums and applied the centered log-ratio

transformation (CLR). This is because CLR is considered standard practice in using micro-

biome variables as predictors for a model [9]. Results showed that CBEA generates scores per-

form well across both real data and simulation scenarios. Since predictive models consider the

effect of variables jointly (and in the case of random forest, consider interactions as well), good

performance indicates that CBEA scores can capture joint distribution of sets, enabling both

uniset and multi-set type analyses. Comparatively, CBEA generated scores outperformed

other enrichment score methods (GSVA and ssGSEA), suggesting that CBEA is more tailored

for microbiome taxonomic data sets. This is consistent with our sample ranking analysis (Fig

4), showing that CBEA scores are on average more informative when used to rank samples

based on their propensity to have inflated counts. However, CBEA did not outperform the

CLR approach across our simulation studies, and only marginally performed better in the real

data analysis with WGS data. Fortunately, in simulation studies, this performance gap between

CLR and CBEA decreases with higher sparsity and correlation, especially in low effect satura-

tion scenarios.

Limitations and future directions

These above results demonstrate the applicability of CBEA under different data analysis sce-

narios. If researchers are interested in performing inference, they can decide between an unsu-

pervised sample level approach (i.e. screen samples for enrichment of certain characteristics)

or a supervised population level approach (i.e. identifying characteristics that are differentially

abundant across case/control status). For the unsupervised approach, utilizing the unadjusted

CBEA with the mixture normal distribution provides a good initial starting point. In the case

where researchers only want to screen samples with mean-inflated taxon sets (instead of addi-

tionally detecting taxon sets with increased correlation), they can apply the adjusted approach,

which can be effective at conserving type I error even for high correlation scenarios. However,

the trade-off for this adjustment is power, which decreases with increasing correlation. For the

supervised analysis, all CBEA variants control for type I error and provide adequate statistical

power. However, using raw CBEA scores with a difference-in-means test such as Welch’s t-test

is preferable since is the least computationally expensive (no estimation process) while still

outperforming the use of a sum-based approach with a standard differential abundance test.

Beyond inference, CBEA scores are flexible and can be useful for downstream analysis. We

demonstrated that for a given number of set-based features, CBEA can produce informative

scores that contribute to competitive performance of prediction models even in low signal-to-

noise ratios with high inter-taxa correlation and sparsity. This is especially true for whole

genome sequencing data sets, where CBEA outperfrorms the standard approach of applying a

CLR transformation. Researchers might find CBEA useful under situations of high sparsity
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and inter-taxa correlation, or if the property of a singular covariance matrix (a byproduct of

the CLR transformation [9]) is undesired. Even though we only evaluated prediction models,

researchers can benchmark their own usage of CBEA for other downstream tasks such as sam-

ple ordination.

However, there are various limitations to our evaluation of CBEA. First, our simulation

analysis may not capture the appropriate data-generating distributions underlying micro-

biome taxonomic data. There is strong evidence to suggest that our zero-inflated negative

binomial distribution is representative [63], however other distributions such as the Dirichlet

multinomial distribution [64] have been used in the evaluation of prior studies. More recent

studies have suggested utilizing the hierarchical multinomial logistic normal distribution to

model microbiome data sets [65, 66]. As such, there is space to evaluate and adapt CBEA to

these different distributional assumptions that underlie the data generating process. Second,

we were not able to evaluate the phenotype relevance of enrichment results as in Geistlinger

et al. [41] due to limited consistent annotations for microbiome signatures in health and dis-

ease, especially those that are experimentally verified (and not just from differential abundance

studies). We attempted to perform this evaluation by leveraging the gingival data set similar to

[63]. However, we acknowledge that this is not a perfect solution, since the oxygen usage label

of each microbe in the data set is only available at the genus level, and the difference in counts

for obligate aerobes and anaerobes across the supragingival and subgingival sites might not be

as clear-cut. As such, results from power analyses using this data set are only relative between

the comparison methods and cannot be treated as absolute measures of power or phenotype

relevance. Third, fitting the mixture normal distribution to raw CBEA scores using the expec-

tation-maximization algorithm is difficult, as the convergence rate is slow when there is high

overlap between the mixtures, resulting in a small mixing coefficient for one of the compo-

nents and increased runtime (S6 Fig) [67]. In our implementation, we attempted to account

for this by increasing the maximum number of iterations and relaxing the tolerance threshold.

Finally, we assumed that taxa within a set are all equally associated with the outcome. This lim-

its our ability to evaluate the performance of CBEA when only a small number of taxa within

the set are associated with the outcome, or if there is variability in effect sizes or association

direction of taxa within a set.

Our evaluation also showed various drawbacks of the CBEA method itself. First, inference

with CBEA at the sample level is limited, and can be affected by inter-taxa correlation if users

wish to detect mean-inflated sets only. Second, for downstream analyses, CBEA might not

always perform better than competing methods, especially when being used to generate inputs

to predictive models. We hypothesized that this might be due to the lack of fit for the underly-

ing null distribution in high correlation settings, especially the identifiability problem associ-

ated with the estimation procedure while adjusting the mixture normal distribution. As such,

we hope to refine the null distribution estimating procedure by either choosing a better distri-

butional form, or to further constrain the optimization procedure of the mixture normal dis-

tribution by fixing the third and fourth moments.

In addition, CBEA itself did not consider other aspects of microbiome data. First, across all

analyses, we relied on adding a pseudocount to ensure log operations are valid. Users can

directly address this by incorporating model-based zero correction methods prior to model-

ling such as in [68] or [69]. However, in our simulation studies, sparsity seems to not have a

significant impact on the overall performance of our approach. Second, CBEA also treated all

taxa within the set as equally contributing to the set. Incorporation of taxa-specific weights

(similar to PhILR [35]) could reduce the influence of outliers, such as rare or highly invariant

taxa. Finally, even though for a given set of a priori annotations CBEA can generate useful

summary scores, such values are limited in their utility if the annotations themselves are not
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meaningful. As such, curating and validating sets (similar to MSigDB [12]) based on physio-

logical or genomic characteristics of microbes [70] or their association with human disease (in

beta BugSigDB https://bugsigdb.org/Main_Page) can allow for incorporating functional

insights into microbiome-outcome analyses.

Conclusion

Gene set testing, or pathway analysis, is an important tool in the analysis of high-dimensional

genomics data sets; however, limited work has been done developing set based methods specif-

ically for microbiome relative abundance data. We introduced a new microbiome-specific

method to generate set-based enrichment scores at the sample level. We demonstrated that

our method can control for type I error for significance testing at the sample level, while gener-

ated scores are also valid inputs in downstream analyses, including disease prediction and dif-

ferential abundance.

Supporting information

S1 Fig. Simulation results for type I error evaluation for CBEA sample-level inference.

Type I error rate (y axis) was estimated for each approach across data sparsity levels (x axis)

across different set sizes (horizontal) and inter-taxa correlation within the set (vertical). We

compared variatns of CBEA against a Wilcoxon rank sum test at α of 0.05. For each scenario, a

data set of 10,000 samples (equivalent to 10,000 hypotheses) was utilized. Confidence bounds

were obtained using Agresti-Couli approach.

(EPS)

S2 Fig. Simulation results for type I error evaluation for CBEA population-level inference.

Type I error (y-axis) was estimated as the average proportion of sets with significant enrich-

ment at 0.05 across 10 replications per simulation condition under the global null. Error bars

were estimated using standard errors computed across 10 replicated data sets. Performance

was evaluated across different sparsity (x-axis) and inter-taxa correlation levels. For CBEA

methods, enrichment analysis was performed using a Welch’s t-test across case/control status

with single-sample scores representing set-based features generated by CBEA (across different

output types and distributional assumptions). For corncob and DESeq2, set-based features

were constructed using element-wise summations.

(EPS)

S3 Fig. Simulation results for phenotype relevance evaluation for CBEA sample-level infer-

ence. (A) demonstrate statistical power (y-axis) across different data sparsity levels (x-axis)

and power (B) for differential abundance test across different parametric simulation scenarios.

For CBEA methods, differential abundance analysis was performed using a difference in

means test (either Wilcoxon rank-sum test or Welch’s t-test) across case/control status using

single-sample scores generated by CBEA (across different output types and distributional

assumptions). CBEA associated methods demonstrated similar type I error to conventional

differential abundance analysis methods but with more power to detect differences even at

small effect sizes.

(EPS)

S4 Fig. Simulation results for phenotype relevance evaluation for CBEA population-level

inference. Power (y-axis) was estimated as the average proportion of sets correctly identified

as significantly enriched (at 0.05) across 10 replications per simulation condition under the

global null. Error bars were estimated using standard errors computed across 10 replicated

data sets. Performance was evaluated across different sparsity (x-axis) and inter-taxa
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correlation levels. For CBEA methods, enrichment analysis was performed using a Welch’s t-

test across case/control status with single-sample scores representing set-based features gener-

ated by CBEA (across different output types and distributional assumptions). For corncob and

DESeq2, set-based features were constructed using element-wise summations.

(EPS)

S5 Fig. Simulation results for predictive pefromance evaluation for CBEA. Predictive per-

formance of a random forest model (with no hyperparameter tuning) trained on set-based fea-

tures as inputs. Methods to generate these features include CBEA, ssGSEA, GSVA, and the

CLR transformation applied on sum-aggregated sets. Simulation data was generated across dif-

ferent levels of data sparsity, inter-taxa correlation, effect saturation, and signal-to-noise ratio.

Panel (A) presents performance on a regression task using RMSE (root mean squared error)

as the evaluation measure. Panel (B) presents performance on a classification task with

AUROC as the evaluation measure.

(EPS)

S6 Fig. Runtime performance. Overall runtime of CBEA under different parameters for a

data set of 500 samples, 800 taxa (40 sets of size 20 each). This data set was generated via simu-

lations.

(EPS)

S7 Fig. Distribution of type I error values across all replications in real data random set

evaluations for CBEA inference at the sample-level. Density (y-axis) for type I error values

(x-axis) of each evaluated approach for sample-level inference using real data across 500 replica-

tions. Here, type I error was estimated as the proportion of samples where a randomly sampled

set of different sizes where identified to be statistically significant at p-value threshold of 0.05.

(EPS)

S1 File. Supplemental derivations. Includes additional details on addressing variance infla-

tion due to correlation in CBEA, simulation analyses, and run-time performance.

(PDF)
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tions for Compositional Data Analysis. Mathematical Geology. 2003; 35(3):279–300. https://doi.org/10.

1023/A:1023818214614

31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA Ribosomal RNA Gene

Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Research. 2013;

41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219 PMID: 23193283

32. Delignette-Muller ML, Dutang C. Fitdistrplus: An R Package for Fitting Distributions. Journal of Statisti-

cal Software. 2015; 64(4):1–34. https://doi.org/10.18637/jss.v064.i04

33. Benaglia T, Chauveau D, Hunter DR, Young D. Mixtools: An R Package for Analyzing Finite Mixture

Models. Journal of Statistical Software. 2009; 32(6):1–29. https://doi.org/10.18637/jss.v032.i06

34. Washburne AD, Silverman JD, Leff JW, Bennett DJ, Darcy JL. Phylogenetic Factorization of Composi-

tional Data Yields Lineage-Level Associations in Microbiome Datasets. PeerJ. 2017; p. 26. https://doi.

org/10.7717/peerj.2969 PMID: 28289558

35. Silverman JD, Washburne AD, Mukherjee S, David LA. A Phylogenetic Transform Enhances Analysis

of Compositional Microbiota Data. eLife. 2017; 6:e21887. https://doi.org/10.7554/eLife.21887 PMID:

28198697

36. Morton JT, Sanders J, Quinn RA, McDonald D, Gonzalez A, Vázquez-Baeza Y, et al. Balance Trees

Reveal Microbial Niche Differentiation. mSystems. 2017; 2(1):e00162–16. https://doi.org/10.1128/

mSystems.00162-16 PMID: 28144630

37. Aitchison J, Shen SM. Logistic-Normal Distributions:Some Properties and Uses. Biometrika. 1980; 67

(2):261–272. https://doi.org/10.2307/2335470

38. Efron B. Large-Scale Simultaneous Hypothesis Testing. Journal of the American Statistical Association.

2004; 99(465):96–104. https://doi.org/10.1198/016214504000000089

39. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and Compositionally

Robust Inference of Microbial Ecological Networks. PLOS Computational Biology. 2015; 11(5):

e1004226. https://doi.org/10.1371/journal.pcbi.1004226 PMID: 25950956

40. Ackermann M, Strimmer K. A General Modular Framework for Gene Set Enrichment Analysis. BMC

bioinformatics. 2009; 10(1):1–20. https://doi.org/10.1186/1471-2105-10-47 PMID: 19192285

PLOS COMPUTATIONAL BIOLOGY CBEA: Competitive balances for taxonomic enrichment analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010091 May 18, 2022 22 / 24

https://doi.org/10.1093/bioinformatics/bty175
https://doi.org/10.1093/bioinformatics/bty175
http://www.ncbi.nlm.nih.gov/pubmed/29608657
https://doi.org/10.1038/s41467-019-10656-5
http://www.ncbi.nlm.nih.gov/pubmed/31222023
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
http://www.ncbi.nlm.nih.gov/pubmed/28253908
https://doi.org/10.1111/2041-210X.13115
https://doi.org/10.1214/lnms/1215463786
https://doi.org/10.7554/eLife.46923
http://www.ncbi.nlm.nih.gov/pubmed/31502536
https://doi.org/10.1007/s11004-005-7381-9
https://doi.org/10.1073/pnas.0506577102
http://www.ncbi.nlm.nih.gov/pubmed/16174746
https://doi.org/10.1128/mSystems.00053-18
https://doi.org/10.1128/mSystems.00053-18
http://www.ncbi.nlm.nih.gov/pubmed/30035234
https://doi.org/10.1093/nar/gks461
http://www.ncbi.nlm.nih.gov/pubmed/22638577
https://doi.org/10.1023/A:1023818214614
https://doi.org/10.1023/A:1023818214614
https://doi.org/10.1093/nar/gks1219
http://www.ncbi.nlm.nih.gov/pubmed/23193283
https://doi.org/10.18637/jss.v064.i04
https://doi.org/10.18637/jss.v032.i06
https://doi.org/10.7717/peerj.2969
https://doi.org/10.7717/peerj.2969
http://www.ncbi.nlm.nih.gov/pubmed/28289558
https://doi.org/10.7554/eLife.21887
http://www.ncbi.nlm.nih.gov/pubmed/28198697
https://doi.org/10.1128/mSystems.00162-16
https://doi.org/10.1128/mSystems.00162-16
http://www.ncbi.nlm.nih.gov/pubmed/28144630
https://doi.org/10.2307/2335470
https://doi.org/10.1198/016214504000000089
https://doi.org/10.1371/journal.pcbi.1004226
http://www.ncbi.nlm.nih.gov/pubmed/25950956
https://doi.org/10.1186/1471-2105-10-47
http://www.ncbi.nlm.nih.gov/pubmed/19192285
https://doi.org/10.1371/journal.pcbi.1010091


41. Geistlinger L, Csaba G, Santarelli M, Ramos M, Schiffer L, Turaga N, et al. Toward a Gold Standard for

Benchmarking Gene Set Enrichment Analysis. Briefings in bioinformatics. 2021; 22(1):545–556. https://

doi.org/10.1093/bib/bbz158 PMID: 32026945

42. Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, et al. Accessible, Curated Metage-

nomic Data through ExperimentHub. Nature Methods. 2017; 14(11):1023–1024. https://doi.org/10.

1038/nmeth.4468 PMID: 29088129

43. Schiffer L, Azhar R, Shepherd L, Ramos M, Geistlinger L, Huttenhower C, et al. HMP16SData: Efficient

Access to the Human Microbiome Project through Bioconductor. American Journal of Epidemiology.

2019. https://doi.org/10.1093/aje/kwz006

44. Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, et al. Qiita:

Rapid, Web-Enabled Microbiome Meta-Analysis. Nature Methods. 2018; 15(10):796–798. https://doi.

org/10.1038/s41592-018-0141-9 PMID: 30275573

45. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the Tidyverse.

Journal of Open Source Software. 2019; 4(43):1686. https://doi.org/10.21105/joss.01686

46. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: An Open-Source Package

for R and S+ to Analyze and Compare ROC Curves. BMC Bioinformatics. 2011;12:77. https://doi.org/

10.1186/1471-2105-12-77 PMID: 21414208

47. McMurdie PJ, Holmes S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLOS

Computational Biology. 2014; 10(4):e1003531. https://doi.org/10.1371/journal.pcbi.1003531 PMID:

24699258

48. Ernst FGM, Shetty SA, Borman T, Lahti L. Mia: Microbiome Analysis; 2021.

49. Landau WM. The Targets R Package: A Dynamic Make-like Function-Oriented Pipeline Toolkit for

Reproducibility and High-Performance Computing. Journal of Open Source Software. 2021; 6

(57):2959. https://doi.org/10.21105/joss.02959

50. Consortium THMP, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure,

Function and Diversity of the Healthy Human Microbiome. Nature. 2012; 486(7402):207–214. https://

doi.org/10.1038/nature11234

51. Agresti A, Coull BA. Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions.

The American Statistician. 1998; 52(2):119–126. https://doi.org/10.2307/2685469

52. Thurnheer T, Bostanci N, Belibasakis GN. Microbial Dynamics during Conversion from Supragingival to

Subgingival Biofilms in an in Vitro Model. Molecular Oral Microbiology. 2016; 31(2):125–135. https://doi.

org/10.1111/omi.12108 PMID: 26033167

53. Beghini F, Renson A, Zolnik CP, Geistlinger L, Usyk M, Moody TU, et al. Tobacco Exposure Associated

with Oral Microbiota Oxygen Utilization in the New York City Health and Nutrition Examination Study.

Annals of Epidemiology. 2019; 34:18–25.e3. https://doi.org/10.1016/j.annepidem.2019.03.005 PMID:

31076212

54. Calgaro M. Mcalgaro93/Sc2meta: Paper Release; 2020. Zenodo.

55. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the Areas under Two or More Correlated

Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics. 1988; 44(3):837–

845. https://doi.org/10.2307/2531595 PMID: 3203132

56. Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al. Identification and Assem-

bly of Genomes and Genetic Elements in Complex Metagenomic Samples without Using Reference

Genomes. Nature Biotechnology. 2014; 32(8):822–828. https://doi.org/10.1038/nbt.2939 PMID:

24997787

57. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The Treatment-

Naive Microbiome in New-Onset Crohn’s Disease. Cell Host & Microbe. 2014; 15(3):382–392. https://

doi.org/10.1016/j.chom.2014.02.005 PMID: 24629344

58. Breiman L. Random Forests. Machine Learning. 2001; 45(1):5–32. https://doi.org/10.1023/

A:1010933404324

59. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Tech-

nique. Journal of Artificial Intelligence Research. 2002; 16:321–357. https://doi.org/10.1613/jair.953

60. Kuhn M, Wickham H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using

Tidyverse Principles.; 2020.

61. Martin BD, Witten D, Willis AD. Modeling Microbial Abundances and Dysbiosis with Beta-Binomial

Regression. The Annals of Applied Statistics. 2020; 14(1):94–115. https://doi.org/10.1214/19-

aoas1283 PMID: 32983313

62. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA Interference

Reveals That Oncogenic KRAS-Driven Cancers Require TBK1. Nature. 2009; 462(7269):108–112.

https://doi.org/10.1038/nature08460 PMID: 19847166

PLOS COMPUTATIONAL BIOLOGY CBEA: Competitive balances for taxonomic enrichment analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010091 May 18, 2022 23 / 24

https://doi.org/10.1093/bib/bbz158
https://doi.org/10.1093/bib/bbz158
http://www.ncbi.nlm.nih.gov/pubmed/32026945
https://doi.org/10.1038/nmeth.4468
https://doi.org/10.1038/nmeth.4468
http://www.ncbi.nlm.nih.gov/pubmed/29088129
https://doi.org/10.1093/aje/kwz006
https://doi.org/10.1038/s41592-018-0141-9
https://doi.org/10.1038/s41592-018-0141-9
http://www.ncbi.nlm.nih.gov/pubmed/30275573
https://doi.org/10.21105/joss.01686
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
https://doi.org/10.1371/journal.pcbi.1003531
http://www.ncbi.nlm.nih.gov/pubmed/24699258
https://doi.org/10.21105/joss.02959
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.2307/2685469
https://doi.org/10.1111/omi.12108
https://doi.org/10.1111/omi.12108
http://www.ncbi.nlm.nih.gov/pubmed/26033167
https://doi.org/10.1016/j.annepidem.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/31076212
https://doi.org/10.2307/2531595
http://www.ncbi.nlm.nih.gov/pubmed/3203132
https://doi.org/10.1038/nbt.2939
http://www.ncbi.nlm.nih.gov/pubmed/24997787
https://doi.org/10.1016/j.chom.2014.02.005
https://doi.org/10.1016/j.chom.2014.02.005
http://www.ncbi.nlm.nih.gov/pubmed/24629344
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1613/jair.953
https://doi.org/10.1214/19-aoas1283
https://doi.org/10.1214/19-aoas1283
http://www.ncbi.nlm.nih.gov/pubmed/32983313
https://doi.org/10.1038/nature08460
http://www.ncbi.nlm.nih.gov/pubmed/19847166
https://doi.org/10.1371/journal.pcbi.1010091


63. Calgaro M, Romualdi C, Waldron L, Risso D, Vitulo N. Assessment of Statistical Methods from Single

Cell, Bulk RNA-seq, and Metagenomics Applied to Microbiome Data. Genome Biology. 2020; 21

(1):191. https://doi.org/10.1186/s13059-020-02104-1 PMID: 32746888

64. Wu C, Chen J, Kim J, Pan W. An Adaptive Association Test for Microbiome Data. Genome Medicine.

2016; 8(1):56. https://doi.org/10.1186/s13073-016-0302-3 PMID: 27198579
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