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Since their discovery in 2004, neutrophil extracellular traps (NETs) have been
characterized as a fundamental host innate immune defense against various pathogens.
Released in response to infectious and pro-inflammatory stimuli, NETs can immobilize
invading pathogens within a fibrous matrix consisting of DNA, histones, and
antimicrobial peptides. Conversely, excessive or dysregulated NET release may hold
a variety of detrimental consequences for the host. A fine balance between NET
formation and elimination is necessary to sustain a protective effect during infectious
challenge. In recent years, a number of microbial virulence factors have been shown
to modulate formation of NETs, thereby facilitating colonization or spread within the
host. In this mini-review we summarize the contemporary research on the interaction of
bacterial exotoxins with neutrophils that modulate NET production, focusing particular
attention on consequences for the host. Understanding host–pathogen dynamics in this
extracellular battlefield of innate immunity may provide novel therapeutic approaches for
infectious and inflammatory disorders.
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NEUTROPHIL EXTRACELLULAR TRAPS

The formation of neutrophil extracellular DNA traps (so called NETs) was first recognized as
a host innate immune defense mechanism against infections by Brinkmann et al. (2004). This
discovery altered the fundamental conception of the innate immune function of phagocytes
against pathogenic microbes in a most fascinating way. Whereas it was previously believed that
neutrophils kill invading pathogens by intracellular uptake (phagocytosis) and subsequent killing,
the discovery of NETs revealed an additional phagocytosis-independent mechanism. The released
nuclear material including histones and DNA within the extracellular trap (ET) immobilize and
occasionally kill several medically important bacteria, viruses, or parasites (Brinkmann et al., 2004).

Regarding the cellular pathways that lead to NET formation, most studies show that the cell
in question undergoes NETosis, a process of death that differs morphologically from necrosis
and apoptosis (Fuchs et al., 2007). In contrast to apoptotic or necrotic cells, cells that undergo
NETosis show a prelytic decondensation of the chromatin associated with the disruption of the
nuclear membrane. This disintegration of the nuclear membrane allows mixing of DNA and
histones with granule components, which are then extracellularly released as web-like fibers with a
diameter of approximately 15 to 17 nm, associated with globular proteins or antimicrobial peptides.
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NET-based antimicrobial activity remains active when cells are
treated with the actin microfilament inhibitor cytochalasin D,
indicating that this phenomenon is independent of phagocytosis.
However, the antimicrobial activity of NETs can be abolished
when NETs are treated with DNase, confirming that DNA
comprises the functional backbone of the released fibers
(Brinkmann et al., 2004; Fuchs et al., 2007).

The formation of NETs was initially thought to be an
antimicrobial defense strategy and cell death pathway specific for
neutrophils (Brinkmann et al., 2004). However, von Köckritz-
Blickwede et al. (2008) mast cells were shown to also deploy
mast cell extracellular traps (MCETs) in defense against
bacterial pathogens. During recent years, further evidence has
accumulated demonstrating ET formation occurs in eosinophils
(Yousefi et al., 2008), basophils (Schorn et al., 2012), fibrocytes
(Kisseleva et al., 2011), macrophages (Bartneck et al., 2010; Chow
et al., 2010), and monocytes (Bartneck et al., 2010; Chow et al.,
2010).

It is important to mention that some authors have
demonstrated experimentally that eosinophils and neutrophils
can release antimicrobial ETs in response to infection while
remaining in a viable status (Yousefi et al., 2008, 2009). NET
release by viable cells was confirmed in vivo in a murine
model of Staphylococcus aureus skin infection (Yipp et al.,
2012). Here, NET formation was seen as a dynamic process,
which occurs by vesicular release of nuclear material during
migration of neutrophils through the tissue. It is still unclear,
however, how such budding and final release of nuclear
material is initiated. Thus, based on current knowledge it
seems that at least two different mechanisms can lead to NET
formation: a viable form involving vesicular release and the
more well-understood NETosis form associated with rupture
of the nuclear membrane. Research has begun to explore
how certain drugs, including statins (Chow et al., 2010)
and tamoxifen (Corriden et al., 2015), modulate neutrophil
functions to accentuate NET formation, which could be
beneficial as an adjunctive therapy for extracellular pathogens
such as S. aureus that efficiently avoid phagocytic killing by
neutrophils.

In contrast to their protective effect against several
infections, there is increasing evidence that a dysregulated
NET release can provoke autoimmune reactions, tissue damage
and impaired cellular functions (Villanueva et al., 2011;
Saffarzadeh et al., 2012). Unchecked, aberrant NET formation
can result in pathological damage as vascular thrombosis
(Fuchs et al., 2010) or chronic lung inflammation in cystic
fibrosis (Papayannopoulos et al., 2011). Countermeasures to
the excessive NET formation may be of therapeutic utility
in such cases as for example DNAse treatment in patients
with cystic fibrosis (Fuchs et al., 1994) or the usage of anti-
histone antibodies to alleviate vascular thrombosis (Semeraro
et al., 2011). Since sustained blockade of NET formation may
carry a risk of increased susceptibility to certain infections,
anti-NET therapy might be targeted to severe autoimmune
or inflammatory diseases, when pro-inflammatory activities
of NETs outweigh their protective benefits (Saffarzadeh and
Preissner, 2013).

THE ROLE OF NETs AGAINST
INFECTION

In several studies, NETs were found to play a protective
role against various infecting organisms, often employing
mutagenesis of key evasion factors of the respective organisms.
It is thought that NETs can act in two ways: (1) pathogen
immobilization and (2) growth inhibition or killing of the
microbe. The relative importance of killing is a point of some
contention in the literature (Menegazzi et al., 2012). However,
based on vital immunofluorescent staining of bacteria with
DNA intercalating dyes, microbial killing by NETs has been
demonstrated definitively by several authors (Lauth et al., 2009;
Berends et al., 2010; Halverson et al., 2015). However, since
the overall killing potential of NETs is physically restricted, the
cumulative effect of NETs may be functionally bacteriostatic
(Baums and von Köckritz-Blickwede, 2015).

Because some bacteria have evolved highly efficient resistance
strategies against antimicrobial activity of NETs, in some specific
circumstances, NETs can help to establish an infectious niche.
For example, in the case of a primary influenza A infection of
the middle ear which boosts formation of NETs by infiltrating
neutrophils, resistant Streptococcus pneumoniae can use those
NETs to multiply and persist in the middle ear cavity (Short et al.,
2014). Additionally, some studies show that S. pneumoniae and
Haemophilus influenzae can incorporate NETs into biofilms that
promote their persistence in the host (Hong et al., 2009; Reid
et al., 2009). In the end, it depends on the pathogen, its array of
immune resistance factors and the anatomical site of infection,
as to whether NETs can serve a protective function for the host
during an infection (Figure 1).

CATEGORIES OF BACTERIAL NET
EVASION FACTORS

Neutrophil extracellular trap evasion factors can be classified in
three different phenotypes: (1) NET degradation, (2) resistance
to the intrinsic antimicrobial effectors within NETs, or (3)
the suppression of NET production (von Köckritz-Blickwede
and Nizet, 2009). The best-studied NET evasion factor is the
activity of microbial nucleases that degrade NETs deployed by
innate immune cells to escape entrapment. Membrane-bound
or released nucleases have been shown to be expressed by
the following microbes as NET evasion factors: Aeromonas
hydrophila (Brogden et al., 2012), Escherichia coli (Möllerherm
et al., 2015), Leptospira sp. (Scharrig et al., 2015), Neisseria
gonorhoeae (Juneau et al., 2015), S. aureus (Berends et al., 2010),
S. agalactiae (Derré-Bobillot et al., 2013), S. pneumoniae (Beiter
et al., 2006), S. pyogenes (Buchanan et al., 2006; Chang et al.,
2011), Streptococcus synguinis (Morita et al., 2014), S. suis (de
Buhr et al., 2014), Vibrio cholera (Seper et al., 2013), and Yersinia
enterocolitica (Möllerherm et al., 2015). Whereas, resistance to
antimicrobial effectors in ETs is mainly mediated by surface-
bound virulence factors, e.g., exopolysaccharide capsules in case
of S. pyogenes (Cole et al., 2010) or S. pneumonia (Wartha
et al., 2007), the suppression of NET formation is mainly carried
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FIGURE 1 | Extracellular trap formation during infections: consequences for the host. The figure summarizes the protective versus detrimental role of NETs
for the host during an infection with respective pathogens. In some cases (highlighted with an asterisk), there is benefit and harm depending on site, timing and
magnitude of infection. The immunofluorescence micrograph is showing the release of NETs from human blood-derived neutrophils. NETs were stained with
antibodies against histone-DNA complexes (green) and DAPI to stain the nuclei and nuclear DNA (blue).

out by released factors including proteases (Zinkernagel et al.,
2008).

BACTERIAL EXOTOXINS THAT
MODULATE NET FORMATION

During the last 10 years, there is increasing evidence in the
literature that different exotoxins released by Gram-positive or
Gram-negative bacteria are able to modulate the process of NET
formation (Table 1): to date, at least 11 different exotoxins have
been published to modulate NET formation, with nine of them
reported to enhance NET formation while two suppress the
process (Table 1). First we will set our attention on those toxins
that induce NET formation.

The M1-protein of the Gram-positive bacterium S. pyogenes,
also known as group A Streptococcus (GAS), was the first
exotoxin described to induce formation of ETs by neutrophils
and mast cells (Lauth et al., 2009). The surface-anchored M1
protein is a classical virulence factor that promotes resistance
to phagocytosis. However, after proteolytic release from the

S. pyogenes surface, the M1 protein forms a proinflammatory
supramolecular network with fibrinogen that contributes to
the pathophysiology of streptococcal toxic shock-like syndrome
(Herwald et al., 2004). Two parallel studies showed in 2009, that
the M1 protein is able to mediate formation of NETs as well
as MCETs, and thereby contribute to entrapment and killing of
the bacteria (Lauth et al., 2009; Oehmcke et al., 2009). Besides
induction of ETs, M1 protein promotes resistance to the human
cathelicidin antimicrobial peptide LL-37, an important effector of
bacterial killing by neutrophils and mast cells (Lauth et al., 2009;
LaRock et al., 2015).

Staphylococcus epidermidis is a common colonizer of
healthy human skin and is hypothesized to play a mutually
beneficial role in the cutaneous niche. Cogen et al. (2010)
demonstrated that S. epidermidis phenol-soluble-modulin γ

(δ-toxin) boosts NET production and further colocalizes with
endogenous host antimicrobial peptides within the architecture
of the expressed NETs. In antimicrobial assays against the
pathogen S. pyogenes, δ-toxin cooperated with host-derived
antimicrobial peptides cathelicidins (human LL-37 and murine
CRAMP) and human beta-defensins (hBD2 and hBD3) to
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TABLE 1 | Effect of bacterial exotoxins on formation of extracellular traps.

Microbe Exoprotein Effect on cells Mechanism Cell death Putative consequences
for the host

Reference

Bordetella
pertussis

Adenylate
cyclase toxin
(ACT)

Suppression of NET
formation and apoptosis

Generation of
cAMP and inhibition
of oxidative burst

Impairment of cell
lysis

ACT promotes neutrophil
infiltration by inhibiting
neutrophil death

Eby et al., 2014

Escherichia coli Hemolysin Induction of ETs in murine
and human macrophages

Not known Not known Not known Aulik et al.,
2012

Mannheimia
haemolytica

Leukotoxin Induction of ETs in bovine
neutrophils, as well as
bovine, murine, and human
macrophages

CD18- and
NADPH-oxidase
dependent

Delayed LDH
release, no
necrosis, no
aptoptosis

Trapping and killing of
M. haemolytica

Aulik et al.,
2010, 2012

Mycobacterium
tuberculosis

Early secretory
antigen-6
protein

Induction of secondary
necrosis and ET formation
of phosphatidylserine
externalized neutrophils

Intracellular Ca2+

overload
Cell lysis Necrotic granulomas during

tuberculosis
Francis et al.,
2014

Pseudomonas
aeruginosa

Pyocyanin Induction of NETs NADPH- oxidase-
and Jun N-terminal
kinase-dependent

Cell lysis Inflammatory condition
during cystic fibrosis

Rada et al.,
2013

Staphylococcus
aureus

N-terminal
ArgD peptides

Induction of NETs Unknown Cell lysis Aggravation of skin lesions Gonzalez et al.,
2014

Staphylococcus
aureus

Leukotoxin GH Induction of NETs Non-specific
cytolysis

Non-specific
cytolysis

Entrapment of S. aureus Malachowa
et al., 2013

Staphylococcus
aureus

Panton-
Valentin-
leukocidin

Induction of rapid nuclear
NET formation

Vesicular release of
nuclear DNA,
independent of
NADPH- oxidase

No cell lysis Entrapment of S. aureus Pilsczek et al.,
2010

Staphylococcus
epidermidis

Phenol-soluble-
modulin γ

(δ-toxin)

Induces NET formation and
colocalizes with NETs and
host antimicrobial peptides

Physically binding
to host derived
antimicrobial
peptides and DNA

Cell lysis Cooperates with host
antimicrobial peptides
against bacterial pathogens

Cogen et al.,
2010

Streptocococus
pyogenes

M1 protein Induces formation of NETs
and MCETs

Unknown Cell lysis Trapping and killing of
S. pyogenes

Lauth et al.,
2009;
Oehmcke et al.,
2009

Streptocococus
pyogenes

Streptolysin O Suppression of NET
formation

Impairment of
oxidative burst

Sublytic
con-centrations

Severe infection Uchiyama
et al., 2015

kill the pathogenic streptococci. Coimmunoprecipitation and
tryptophan spectroscopy demonstrated direct binding of δ-toxin
to LL-37, CRAMP, hBD2, and hBD3, as well as DNA. These
data suggest that commensal S. epidermidis-derived δ-toxin
cooperates with the host-derived antimicrobial peptides in
the innate immune system to reduce survival of an important
human bacterial pathogen. This could be corroborated in a
mouse wound model where S. pyogenes survival was reduced
when the wounds were pretreated with δ-toxin. These data
described a novel therapeutic application of a bacterial toxin
against pathogenic bacteria to enhance formation of NETs and
support the host innate immune system.

Mannheimia haemolytica leukotoxin (LKT) induces
formation of extracellular traps in bovine neutrophils and
macrophages (Aulik et al., 2010, 2012). LKT is a member of
the repeats-in-toxin (RTX) family of exoproteins produced by
a wider variety of Gram-negative bacteria. In addition to the
native fully active LKT, its non-cytolytic pro-LKT precursor also
stimulated macrophage extracellular traps (METs) formation.
Formation of METs in response to LKT required NADPH
oxidase activity, as previously demonstrated for NETosis. METs

induced in response to LKT trapped and killed a portion of the
toxin-producing M. haemolytica cells. In contrast to NETosis,
which is reported to occur between 10 min to 4 h after pathogen
exposure, LKT-induced MET formation was extremely rapid,
with significant accumulation of extracellular DNA within 2 min
after macrophage stimulation.

Interestingly, the LKT-mediated cytotoxic effects are specific
to ruminants, since LKT binds to amino acids 5–17 of the signal
sequence of CD18, which is not present on mature leukocytes
from humans and other mammalian species (Shanthalingam
and Srikumaran, 2009). CD18 was confirmed by Aulik et al.
(2010) to play a role in LKT-dependent NET formation in bovine
phagocytes. Similarly, to the LKT, the related RTX family toxin,
uropathgenic E. coli (UPEC) hemolysin, induced NET formation
in the mouse and human monocyte/macrophage cell lines
indicating that NET induction may be a general phenomenon
in response to active RTX toxins (Aulik et al., 2012). At this
point it remains difficult to assess whether NET production
in response to RTX toxins leads to a protective host defense
against M. haemolytica or other Gram-negative bacteria. In the
case of LKT, bacterial cells entrapped in NETs can continue to
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secrete LKT, an important virulence determinant, which could
exacerbate lung inflammation (Aulik et al., 2010, 2012).

The Pseudomonas aeruginosa virulence factor pyocyanin
stimulates the release of NETs in a NADPH oxidase-dependent
manner (Rada et al., 2013). Pyocyanin is a redox-active
pigment associated with diminished lung function in cystic
fibrosis. In cystic fibrosis airways, P. aeruginosa resides
in biofilms protected from neutrophil phagocytic activity
or from entrapment by NETs (Rada et al., 2013). The
authors speculate that enhanced ROS-dependent NET formation
by P. aeruginosa pyocyanin contributes to inflammatory
conditions observed in chronically infected cystic fibrosis
airways. Parenthetically, chronic granulomatous disease (CGD)
patients, whose neutrophils are unable to make NETs, are not
recognized to be disproportionately susceptible to infections with
Pseudomonas species (Rada and Leto, 2008).

A specific activity of an exotoxin was shown for the
Mycobacterium tuberculosis leukocidin ESAT-6, which induced
NET formation only in a subpopulation of neutrophils with
externalized phosphatidylserine as a marker for apoptosis
(Francis et al., 2014). Thus, ESAT-6 induced NET formation
was similar to secondary necrosis of pre-activated neutrophils
and dependent on Ca2+. In this case, increased NET formation
was also speculated to contribute to virulence of tuberculosis,
since it was recently observed that the development of necrotic
granulomas in a mouse model of progressive tuberculosis were
associated with the presence of extracellular bacteria, neutrophil
necrosis and NET-like structures (Francis et al., 2014).

In the case of the leading human pathogen S. aureus, three
different exotoxins enhance the release of NETs: N-terminal
AgrD peptides (Gonzalez et al., 2014), leukotoxin GH
(Malachowa et al., 2013), also known as LukAB (Dumont
et al., 2011), thus named here LukGH/AB, and Panton-
Valentin leukocidin (PVL; Pilsczek et al., 2010). AgrD is the
precursor for the auto-inducing peptide in a well-known
quorum sensing system regulating virulence phenotypes of
S. aureus. A recent mass spectrometry-based study identified
formylated and non-formylated peptide variants derived
from AgrD N-terminal leader domain in S. aureus cell-free
culture supernatant to act cytotoxic, modulate neutrophil
chemotaxis and induce formation of NETs. As a consequence
a detrimental effect for the host was hypothesized as indicated
by aggravation of skin lesions in vivo in a murine model.
The cellular pathways mediating this process of AgrD
induced NET formation remain unclear (Gonzalez et al.,
2014).

Staphylococcus aureus LukGH/AB, also promotes formation
of NETs in association with death of the neutrophil (Malachowa
et al., 2013). LukGH/AB is a pore-forming cytolytic toxin
with proinflammatory properties, similar to those established
for PVL. But unlike PVL, LukGH/AB did not prime human
neutrophils for increased production of reactive oxygen species
nor did it enhance binding and/or uptake of S. aureus.
LukGH/AB promoted the release of NETs, which in turn
ensnared but did not achieve killing of S. aureus. These authors
found that electropermeabilization of human neutrophils,
used to create pores in the neutrophil plasma membrane,

induced NET formation in a similar way. This finding
indicated that NETs can be generated during non-specific
cytolysis.

The above phenomemon stands in contrast to NET formation
initiated by PVL production in S. aureus. Pilsczek et al.
(2010) demonstrated a novel rapid (5–60 min) process of
NET formation that did not require cell lysis or even breach
of the plasma membrane. The authors show that neutrophils
treated with S. aureus supernatant show rounded and condensed
nuclei, followed by the separation of the inner and outer
nuclear membrane and budding of vesicles filled with nuclear
DNA. The vesicles are extruded intact into extracellular space
where they rupture, release the chromatin and form NETs.
PVL was identified as one key effector of NET formation
present in the S. aureus supernatant, but other yet unidentified
molecules aside from PVL cannot be excluded as contributors
to NET production. This rapid process of NET formation
against S. aureus was dubbed “dynamic NETosis” and was
recently proven to serve as an efficient host defense strategy
during S. aureus skin infections in man and mice (Yipp
et al., 2012). Since, PVL targets a different receptor on the
neutrophil compared to the LukGH/AB, namely the C5aR
receptor (Spaan et al., 2013) and the CD11b receptor (Dumont
et al., 2013), respectively, it still remains to be determined
if the receptor-mediated signaling leads to the different NET
phenotypes.

Two toxins have been described so far to suppress NET
formation, perhaps representing an immune evasion strategy by
the respective pathogens: Bordetella pertussis adenylate cyclase
toxin (Eby et al., 2014) and S. pyogenes streptolysin O (SLO;
Uchiyama et al., 2015). Both mechanisms are coupled to
suppression of neutrophil oxidative burst. In case of S. pyogenes
SLO, this mechanism plays a key role of SLO in the pathogen’s
resistance to immediate neutrophil killing. In case of B. pertussis,
the relevance of NET inhibition by the toxin is still unclear, since
it is not known whether or not NETs are able to entrap and
clear B. pertussis. This study highlighted how convalescent phase
serum from humans following clinical pertussis blocked the
ACT-mediated suppression of NET formation (Eby et al., 2014).
Based on this finding, the authors mention that their data should
alert investigators to the ability for ACT, and antibodies to ACT,
to dysregulate neutrophil death mechanisms and potentially
influence local tissue damage during infection with B. pertussis.

CONCLUDING COMMENTS

With increasing publications in the NET field it is well-known
that NETs are on one hand protective against several infections,
but may also result in detrimental effects when released in
excessive amount. The complexity may be compared with the
release of cytokines during infection and inflammation, which
serve an essential role in an efficient immune response of the
host against infections, but in which overwhelming cytokine
storm can lead to septic shock and accelerate death of the
host. The cumulative balance between NET formation and
NET degradation – similar to cytokine release – defines the
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protective versus detrimental effects on the organism. Currently,
it is under discussion in the literature if and how NETs can act as
a novel therapeutic or prophylactic target for boosting immunity
to bacterial infections or mitigating inflammatory diseases
associated with detrimental NET formation. To rationally and
effectively pharmacologically interfere with the process of NET
formation, the cellular processes mediating this phenomenon
need to be understood more in detail. Identification of
bacterial factors, especially exotoxins, with specific roles in
NET modulation, may serve as probes to understand the
molecular basis of NET generation and antimicrobial activity.
Furthermore, exotoxins might themselves harbor therapeutic
potential when their effects against the host cells are fully
characterized.
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