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Abstract

Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002–2003 epidemic. Many of
the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15),
which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with
slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC) to the draining lymph
nodes (DLN) with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are
treated with liposomes containing clodronate, which deplete alveolar macrophages (AM). Inhibitory AMs are believed to
prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung
dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which
directly activate AMs and rDCs through toll-like receptors 3 (TLR3). Further, adoptive transfer of activated but not resting
bone marrow–derived dendritic cells (BMDC) protect mice from lethal MA15 infection. These results may be relevant for
SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-
specific immune response in individuals with severe disease.

Citation: Zhao J, Zhao J, Van Rooijen N, Perlman S (2009) Evasion by Stealth: Inefficient Immune Activation Underlies Poor T Cell Response and Severe Disease in
SARS-CoV-Infected Mice. PLoS Pathog 5(10): e1000636. doi:10.1371/journal.ppat.1000636

Editor: Michael Gale Jr., University of Washington, United States of America

Received July 7, 2009; Accepted September 25, 2009; Published October 23, 2009

Copyright: � 2009 Zhao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported in part by a grant from the NIH (PO1 AI060699). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Stanley-perlman@uiowa.edu

Introduction

The lung is exposed to many challenges, both environmental

and pathogenic. Defense of this portal must be tightly regulated so

that appropriate immune responses to pathogens are mounted but

responses to innocuous antigens are minimized. Alveolar macro-

phages (AM) play a central role in maintaining this immunological

homeostasis [1,2,3]. In the lung, resident AMs are continuously

encountering inhaled substances due to their exposed position in

the alveolar lumen, but they are kept in a quiescent state. They

function poorly as accessory cells for in vitro T cell activation [4,5]

and in many situations actively suppress the induction of adaptive

immunity through their effects on alveolar and interstitial DCs and

T cells [6,7,8]. In vivo elimination of alveolar macrophages using

clodronate-filled liposomes (CL) leads to overt inflammatory

reactions to otherwise harmless particulate and soluble antigens

[9]. Alveolar macrophages adhere closely to alveolar epithelial

cells (AECs) at the alveolar wall and are separated by a distance of

only 0.2–0.5 mm from rDCs [6]. In macrophage-depleted mice,

DCs have enhanced antigen-presenting function [6]. It has been

estimated that the pool of murine alveolar macrophages can

process up to 109 intratracheally injected bacteria before there is

‘‘spillover’’ of bacteria to DCs and before adaptive immunity is

induced [10].

Although the importance of such mechanisms to control

undesirable responses to inert environmental antigens is self-

evident, it is also axiomatic that countermeasures must be

available to allow reversal of this inhibition after challenge with

inhaled pathogenic (notably microbial) antigens. During infection

with respiratory pathogens, such as influenza virus, antigen is

acquired by respiratory dendritic cells (rDCs) and these cells must

be sufficiently activated to overcome anti-inflammatory factors in

the lungs. These rDCs then migrate to the lung draining lymph

nodes (DLN) to initiate an antiviral CD8 T cell response [11,12].

After the interaction of naive T cells with such antigen-bearing

DCs, CD8 and likely CD4 T cells undergo activation and division

in the DLNs and migrate into the lungs to eliminate virus-infected

cells, leading to resolution of the infection [13,14,15]. Recently, a

secondary peripheral interaction of CD8 T cells with antigen-

bearing rDCs in the lung was found important for effective

antiviral immunity [16]. Overall rDC activation is a prerequisite

for initiation and maintenance of the immune response.

Patients with the Severe Acute Respiratory Syndrome (SARS),

caused by a novel coronavirus (SARS-CoV), developed mild to

fatal pulmonary disease, with a mortality incidence of 10% [17].

Patients with worse outcomes generally exhibited a more

protracted clinical course, characterized by the development of

Adult Respiratory Distress Syndrome (ARDS), as well as

lymphopenia, neutrophilia and prolonged cytokine production

[17,18,19,20]. Virus could be detected in nasopharyngeal aspirate

and feces for as long as 21 days after disease onset [19,21].

Delayed virus clearance may have resulted from suboptimal T and
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B cell responses; suboptimal neutralizing antibody responses are

detected in patients with severe disease [17,18,19,20]. Numerous

studies demonstrated that SARS-CoV infection fails to activate

macrophages and dendritic cells. Although these cells can be

infected, they are functionally impaired: antiviral cytokines such as

type I interferon were not expressed and endocytic capacity

(antigen capture) was compromised ([22,23,24,25,26,27,28] and

reviewed in [29]). These unusual findings raised the possibility that

initial infection with the virus resulted in delayed or suboptimal

activation of the innate immune system. Inefficient activation of

rDCs might be unable to counter the potent anti-inflammatory

factors that are normally present in the lung, resulting in both a

deficient T cell response and delayed kinetics of virus clearance.

Recently, rodent-adapted strains of SARS-CoV, which cause

mild to fatal respiratory disease, were developed in several

laboratories [30,31]. Here, we demonstrate that lethal disease in

mice infected with a mouse-adapted strain of SARS-CoV (MA15)

can be prevented if AMs with anti-inflammatory properties are

depleted from the lung prior to infection. Treatment with toll-like

receptor (TLR) agonists to activate rDCs or transfer of activated

bone marrow-derived dendritic cells (BMDC) also prevents a

lethal outcome. Together, these results demonstrate that SARS-

CoV, by inefficiently activating the immune system, uses a novel

mechanism to evade immune recognition.

Results

AM depletion before inoculation protected BALB/c mice
from lethal MA15 infection

SARS-CoV infection results in inefficient activation of macro-

phages and DCs in vitro [22,23,24,25,26,27,28] and slow virus

clearance and a prolonged clinical course in humans [17,18,19].

Similarly, MA15 infection in vitro did not result in upregulation of

CD86 on AM (Fig. S2, Gating shown in Fig. S1 A). To determine

whether inhibitory AMs play a role in MA15-mediated severe lung

disease, we depleted these cells by intranasal administration of

clodronate liposomes (CL). CL are useful for depletion of AM, and

to a lesser extent, alveolar/airway DCs [9], but intranasal

administration does not affect the level of circulating macrophages

[32]. As a control, we treated mice with PBS as described

previously [33].

BALB/c mice were treated with 75 ml of CL or PBS intranasally

(i.n.) and total lung cells were harvested after enzymatic digestion.

After 24 h, there was a decrease of AMs (CD11c+CD11b2siglec

F+ [34]) in the lung, both in frequency (.70%) and absolute

number (from 5–66104 to 1–26104 cells/lung), in CL, but not

PBS-treated mice (Fig. S3 A and B). By 48 h, approximately 90%

of AMs in the lung were depleted (Fig. S3 A and B).

To determine whether there was a change in clinical disease

after AM depletion, BALB/c mice were treated with 75 ml of CL

and infected i.n. with 36104 PFU of MA15 virus. Mice were

monitored daily for weight loss and mortality. At this virus dosage,

control mice lost more than 20% of their body weight and 60%–

70% of them died (Fig. 1 A), generally from day 6 to day 8 post

infection (p.i.). Depletion of AM before inoculation (at day 21 and

day 22) completely protected mice from this lethal infection and

animals rapidly regained their body weight (Fig. 1 A). AM

depletion at day 2 p.i. was not protective and may have resulted in

more severe disease, as observed also in influenza A virus-infected

mice [16]. Of note, 6 week old C57Bl/6 mice are resistant to

MA15 infection and treatment at day 21 or 2 with clodronate had

no effect on the clinical course in these mice (data not shown).

Clodronate treatment resulted in enhanced kinetics of virus

clearance, with virus cleared from all treated but not control

BALB/c mice by day 7 p.i. (Fig. 1 B). We next examined lung

sections for changes in histology. There were no histological

differences in the lungs between CL-treated and control mice at

day 0, indicating that depletion of AMs did not result in significant

inflammatory cell recruitment to the lung. From day 2 p.i., PBS-

treated mice developed a rapidly progressive interstitial pneumo-

nia with extensive edema and damage to bronchiolar and alveolar

epithelial cells (Fig. 1 C). Inflammatory infiltrates were consistently

identified from days 2-to 6 p.i. CL-treated mice had a much better

outcome with less destruction of the pulmonary architecture, but

extensive alveolar, interstitial and perivascular inflammatory cell

infiltration (Fig. 1 C, day 4 and day 6). Total lung cell numbers are

shown in Fig. 2 A. Clodronate treatment, by removing AM, also

altered the inflammatory milieu of the lungs. As a consequence,

levels of pro-inflammatory cytokines and chemokines, such as IL-

1b, Il-6, IL-12, CCL2 and CCL3 increased within 24 hours of CL,

but not PBS treatment, prior to virus infection. By day 2 p.i., levels

of these cytokines were generally similar in CL and PBS-treated

mice, consistent with the notion that a delayed, and possibly

dysregulated, immune response contributed to severe disease in

control mice (Table S1).

AM depletion enhanced rDC activation, migration and
recruitment

Infection with respiratory viruses such as influenza A virus and

respiratory syncytial virus (RSV) results in recruitment of

CD11c+MHC II+ DCs to the lung [12,35,36,37]. Unlike these

infections, recruitment of inflammatory cells, including DCs, to the

lung is impaired in MA15-infected mice (Fig. 2 A). The total lung

cell number increased slightly, but there was no appreciable change

in numbers of the respiratory dendritic cells (rDC) in control mice.

Clodronate treatment resulted in enhancement of inflammatory cell

recruitment to the lung (Fig. 1 C and 2 A), with a nearly tenfold

increase in numbers of rDCs within 6 days (Fig. 2 A). For these

experiments, we distinguished two populations of rDCs: alveolar/

airway dendritic cells (aDC: CD11c+CC11b2MHC II+) and

interstitial dendritic cells (iDC: CD11c+CD11b+MHC II+) using

the gating strategy shown in Fig. S1. By day 4 p.i., the frequencies of

MHC IIhigh/CD86+ and MHC IIhigh/CD40+ aDC and iDC

Author Summary

Severe Acute Respiratory Syndrome (SARS) occurred in
human populations in 2002–2003 and was caused by a
novel coronavirus (CoV). Human SARS was characterized
by prolonged virus excretion, lymphopenia and delayed
adaptive immune responses in patients with severe
disease. Recently, small animal models have been devel-
oped that mimic some of the features of the human
disease. Specifically, BALB/c mice infected with mouse-
adapted SARS-CoV develop severe respiratory disease.
Here, we show that the T cell response is defective in these
mice and that this results from inefficient activation of the
initial immune response to the virus. This defect can be
corrected by several treatments, including depletion of
inhibitory macrophages from the lungs and direct
activation of respiratory dendritic cells, important in
initiating the immune response or transfer of activated
dendritic cells prior to infection. All of these modalities
result in improved initiation of the immune response and
an enhanced anti-virus T cell response. Inefficient activa-
tion of the immune response may play a role in human
SARS, and our results suggest possible strategies that
might be used to develop novel anti-viral therapies.

Macrophages and DCs in SARS-CoV Infection
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increased significantly in drug-treated mice but only modestly on

iDC and not at all on aDC in PBS-treated mice Over the next few

days aDCs and iDCs remain activated in CL-treated mice but

mostly returned to a baseline state in control mice (Fig. 2 B and C).

Concomitant with this recruitment and activation of rDCs, we also

observed enhanced rDC migration to draining lymph nodes (DLN),

using a tracking method in which rDCs are labeled in the lung by

i.n. inoculation of carboxyfluorescein diacetate succinimidyl ester

(CFSE) (see Materials and Methods and Fig. S1 B for gating) [12].

In all mice, rDC migration to the DLNs peaked at 18 h p.i., but

migration was accelerated by treatment with clodronate. After

48 hours the frequency and number of CFSE+ rDCs in the DLNs

decreased suggesting that the first 48 h p.i. were most important

period for rDC migration. There was also a two-three fold increase

in total cell numbers in the DLNs (Fig. 2 D). Collectively, these

results show that DCs remained activated for longer times in the

Figure 1. Effect of CL treatment on weight loss, mortality, histological changes and virus titers in MA15-infected BALB/c mice. (A)
BALB/c mice (6–8 weeks old) were treated with 75 ml CL or PBS at before or after intranasal infection with 36104 PFU MA15 virus in 25 ml DMEM.
Weight loss and mortality were monitored daily. n = 12 mice in PBS group; 20 mice in CL group. (B) For virus titers, lungs were homogenized and
titeted on Vero E6 cells. Viral titers are expressed as PFU/g tissue. n = 4 mice/group/time point. *P values of ,0.05. (C) BALB/c mice were treated with
CL or PBS 18–24 h prior to infection with 36104 PFU MA15 virus. Lungs were removed at the indicated time points p.i.. Lungs were fixed in zinc
formalin, and paraffin embedded. Sections were stained with hematoxylin and eosin.
doi:10.1371/journal.ppat.1000636.g001

Macrophages and DCs in SARS-CoV Infection
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Figure 2. Respiratory dendritic cell recruitment, migration and activation in MA15-infected mice after CL or PBS treatment. Mice
were treated with CL or PBS 18–24 h prior to infection with 36104 PFU MA15. Lungs were harvested at the indicated time points, and after enzyme
digestion, single cell suspensions were acquired. Cells were stained for CD11c, MHC class II, CD11b, CD86 and CD40 expression. Total numbers of
inflammatory cells and of CD11c+MHC II+ rDC in the lung are shown (A). CD86 and CD40 expression was measured on aDCs (CD11c+CD11b2MHC II+)
and iDCs (CD11c+CD11b+MHC II+). An example of CD86 expression at day 6 p.i. (B) and a summary of MHChighCD86+ or MHChighCD40+ expression
frequencies (C) are shown. Data are representative of two independent experiments and are the mean values6SEM (n = 7–8 mice/group/time point).
(D) Mice were treated with CL or PBS 18–24 h before i.n. inoculation of 50 ml 8 mM CFSE. 6 h after CFSE instillation, mice were infected with 36104

PFU MA15 virus or were mock infected. At the indicated time points p.i., single cell suspensions were prepared from lung DLNs and gated for CD11c
expression by flow cytometry. The values represent the percentage of CFSE+ cells within the CD11c+ DC population per LN. n = 4 mice/group/time
point. *P values of ,0.05.
doi:10.1371/journal.ppat.1000636.g002

Macrophages and DCs in SARS-CoV Infection
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lung and exhibited enhanced migration to DLNs after CL

treatment. A consequence of the increase in both numbers of rDCs

and the frequency that was activated was a 30–50 fold increase in

total activated DCs in the lung.

AM depletion before infection results in enhanced T cell
responses

Since enhanced rDC migration to DLNs is predicted to result in

enhanced virus-specific T cell responses, we next examined the

magnitude of total and MA15-specific T cell responses in the lungs

of CL treated and control infected mice. Clodronate treatment

resulted in greater numbers of activated CD8 and CD4 T cells in

the MA15-infected lung (Fig. S4 A and B), compared to PBS

treatment, as determined by CD43 (clone 1B11) expression. The

latter is upregulated on activated effector T cells [38,39].

To assess effects on MA15-specific T cell responses, we initially

identified a set of H-2d-restricted virus-specific CD4 and CD8 T

cells epitopes using lung derived cells harvested from infected mice

and a peptide library covering all four structural proteins (S, N, M,

E) of SARS-CoV. Several IFN-c inducing CD8 and CD4 epitopes

in the spike (S) and nucleocapsid (N) proteins (S366–374, S521–

529, S1061–1071 and N353–370) were identified (manuscript in

preparation). Some of these epitopes were described previously,

but S521 and S1061 epitopes were newly discovered. Of note, all

other previously described H-2d-restricted T cell epitopes were not

recognized by lung-derived T cells in our assays [40,41,42]. These

previous reports identified T cell epitopes using adenovirus vectors

or DNA constructs expressing single SARS-CoV proteins, or

isolated peptides. We speculate that the numbers of T cells

recognizing these previously described epitopes are present at very

low levels in infected mice compared to the immunodominant

epitopes that we identify, possibly because of differences in antigen

presentation between infected and immunized mice.

Using these epitopes, we found that AM-depleted mice

exhibited earlier and more robust virus-specific T cell responses,

as measured by intracellular cytokine staining (ICS) for IFN-c,

whereas control mice had almost no virus-specific T cell responses

at days 6 and 7 p.i. (Fig. 3 A and B). PBS-treated mice that

survived until day 8 p.i. mounted virus-specific T cell responses in

the lung, but at a level that was much less than observed in CL-

treated mice. We confirmed that these cells were functional using

in vivo cytotoxicity assays. Naı̈ve splenocytes were costained with

PKH26 and CFSE, pulsed with MA15-specific CD8 T cell

peptides and adoptively transferred i.n. into mice 12 h before

harvest of total lung cells. Robust CD8 T cell cytotoxic responses

were observed in AM-depleted mice, with 40%–50% killing of

virus-specific targets. By comparison, only about 5% of target cells

were lysed in control mice (Fig. 3 C).

Alveolar macrophages are inhibitory in vivo and in vitro
Results thus far suggest that inhibitory macrophages are

dominant in MA15-infected lungs. In support of this, AM were

only transiently and slightly activated, as measured by CD86 and

CD40 expression, after infection with MA15 (Fig. 4 A). F4/80,

considered a marker for macrophage maturation and phagocytosis

[43], was present at lower levels on AMs harvested from

uninfected mice compared to macrophages isolated from other

sites (e.g., peritoneal macrophages [44], Fig. S5) and was not

upregulated after MA15 infection (Fig. 4 A). Further, surface levels

of CD200R, important in maintaining lung homeostasis, were

higher on AM than peritoneal macrophages [44] (Fig. S5) and

were not significantly downregulated after infection (Fig. 4 A),

indicating that AMs continued to be inhibitory even after the onset

of the infection. The number and frequency of AMs increased at

day 2 before returning to baseline by day 6 p.i. in control mice but,

as expected, remained low throughout the infection after

clodronate treatment, (Fig. 4 B).

Mature ‘‘resting’’ AMs are able to suppress in vitro proliferation

of homologous T-cells, and freshly isolated rDCs are poor antigen-

presenting cells, consistent with a suppressive state [6,45]. To

confirm the inhibitory properties of AMs, we isolated aDCs from

total lung cells and cultured them in vitro for 24 h in the presence

and absence of AMs. When cultured in the absence of AMs, aDC

upregulated expression of CD86, MHC II and CD40. Co-culture

with AMs prevented CD86 and MHC class II, and to a lesser

extent, CD40 upregulation (Fig. 4 C).

The prolonged presence of AMs in MA15-infected lungs

suggested that AMs not only inhibited rDCs activation, and

thereby delayed DC migration from lung to lymph nodes, but also

inhibited the function of anti-virus T cells in the lung. To examine

this possibility, we co-cultured AMs and T cells in vitro.

Concanavalin A (Con A) and soluble anti-CD3 (sCD3) antibody

treatment of lung cells resulted in proliferation of both CD4 and

CD8 T cells as measured by CFSE dilution. This proliferation was

almost completely inhibited by co-culture with purified AMs at a

ratio of 10:1 (10 T cells:1 AM) (Fig. 4 D). Of note, endogeous AMs

were removed from the lung cell preparations by incubation in a

tissue culture plate for 2 h (90% depletion, measured by flow

cytometry). In the absence of this prior incubation, no robust

proliferation was observed. To assess the effect of AM on virus-

specific T cells, we isolated CD8 T cells from MA15-infected, CL-

treated mouse lungs at day 8 p.i. using microbeads and stained

them with CFSE. Cells were then stimulated for 72 hours with

lung cells or splenocytes that were pulsed with three MA15-specific

CD8 T cell peptides (S366/S521/S1061) with or without AMs.

Although only about 30% of CD8 T cells were MA15-specific,

proliferation of CD8 T cells was clearly detected. When co-

cultured with AMs, CD8 T cell proliferation was totally inhibited

(Fig. 4 E). Thus, AMs inhibited both nonspecific and specific CD8

T cell proliferation. However, AM co-culture in vitro did not inhibit

IFN-c expression after stimulation with MA15-specific peptides

(Fig. S6 A), consistent with previous data, showing that AMs did

not inhibit IL-2 secretion by Con A-stimulated T cells [45].

Further, when AMs and T cells were separated by a transwell

during co-culture, no significant decrease of proliferation was

observed as measured by CFSE dilution (Fig. S6 B) suggesting that

AM inhibition of T cell proliferation required direct cell contact.

Poly I:C treatment protected mice from lethal MA15
infection

The results described above raised the possibility that direct

activation of rDCs in the lung or adoptive transfer of activated DCs

to the lung would bypass AM inhibitory function. Signaling through

Toll-like receptors (TLR) results in a series of signaling events that

leads to the induction of an acute inflammatory response. Ligand

binding to TLRs also results in dendritic cell maturation, which is

necessary for the initiation of adaptive immune responses

[46,47,48]. Previous reports showed that Poly I:C or CpG treatment

protected animal from lethal virus infection, but the mechanism of

protection was not investigated in those studies [49,50]. In

preliminary experiments, we treated mice with ligands for several

TLRs, including poly I:C (TLR3), LPS (TLR4), CpG (TLR9),

R837(TLR7), R848 (TLR7/8), Pam3CSK4 (TLR1/2), and

Pam2CSK4 (TLR2/6). We observed that treatment with poly I:C

(Fig. 5 A) and, to a lesser extent, CpG (data not shown), but not the

other TLR ligands, protected mice from lethal disease. Conse-

quently, additional analyses were performed after treatment with

poly I:C and as a control, LPS since both are widely used to

Macrophages and DCs in SARS-CoV Infection
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Figure 3. MA15-specific T cell responses in the lungs after CL treatment. Mice were treated with CL or PBS, 18–24 h prior to infection with
36104 PFU MA15 virus. At the indicated time points, single cell suspension were prepared from lungs, and stimulated with SARS-CoV CD8 (S366, S521
and S1061) or CD4 (N353) T cell peptides for 6 h in the presence of brefeldin A. Frequencies (A) and numbers (B) of total and MA15-specific T cells
(determined by IFN-c intracellular staining) are shown. Data are representative of two to four independent experiments n = 5–8 mice/group/time
point. (C) In vivo cytotoxicity assays were performed on day 6 p.i.. Target cells were co-stained with PKH26 and different concentrations of CFSE
(0.1 mM or 1 mM) and then incubated with SARS-CoV specific CD8 T cell peptides (0.1 mM CFSE) or in the absence of added peptides (1 mM CFSE) at
37uC for 1 h. 56105 target cells from each group were mixed together (16106 in total) and transferred i.n. to infected mice. 12 h after transfer, single
cell suspensions were prepared from the lung and examined by flow cytometry. n = 3–4 mice/group. Data are representative of two independent
experiments. *P values of ,0.05.
doi:10.1371/journal.ppat.1000636.g003

Macrophages and DCs in SARS-CoV Infection
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Figure 4. Phenotype and numbers of AM in MA15-infected lungs after treatment with CL or PBS and AM-mediated inhibition of
aDC activation and T cell proliferation in vitro. Mice were treated with CL or PBS at day 21 prior to infection with 36104 PFU MA15. CD86,
CD40, F4/80 and CD200R expression on CD11c+CD11b2Siglec F+ AM (A) and numbers and frequency (B) of AM were determined by flow cytometry.
Black, isotype control; green, naive; blue day 2; red, day 4. yellow, D6. Data are representative of two independent experiments and are the mean
values6SEM (n = 7–8 mice/group/time point). *P values of ,0.05. (C) To assess the ability of AM to suppress aDC activation in vitro. AMs were
harvested from BAL (bronchoalveolar) fluid and cultured at 46104/well in 96-well dishes for 48 h before use. aDCs were purified from naı̈ve mice
lungs by FACS sorting. aDCs were cultured in the presence or absence of AMs together at a 1:1 ratio for 24 h at 37uC and subjected to flow
cytometry. Data are representative of four independent experiments. (D) To assess the ability of AM to inhibit T cell proliferation in vitro, single cell
suspensions were prepared from the lungs of naı̈ve mice or CL-treated MA15-infected mice at day 8 p.i. Cells were incubated on plastic dishes for 2 h
at 37uC, to remove AMs. Naı̈ve lung cells (46105/96-well) were stained with 1 mM CFSE and stimulated with either 2.5 mg/ml Con A or 1 mg/ml soluble
CD3 antibody with or without AMs (46104 / 96-well) for 72 h. Solid line, without AMs; gray, with AMs. (E) Total CD8 T cells were purified by
microbeads from lung cells of AM-depleted MA15-infected mice at day 8, stained with 1 mM CFSE and stimulated with splenocytes from naı̈ve mice or
CD8 T cell-depleted infected lung cells (46105/96-well) that were pulsed with SARS-CoV CD8 T cell peptides with or without AM (46104 / 96-well) for
72 h. Cells were then subjected to flow cytometry. Solid line, without AMs; gray, with AMs. Data are repesentative of two independent experiments.
doi:10.1371/journal.ppat.1000636.g004

Macrophages and DCs in SARS-CoV Infection
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Figure 5. Protective effects of poly I:C treatment. (A) Mice were treated with 20 mg poly I:C or 5 mg LPS 18–24 h before infection with MA15.
Weight loss and mortality were monitored daily. n = 18 in LPS group; 14 mice in Poly I:C group. (B) Lungs were harvested and homogenized and virus
was titered on Vero E6 cells. Viral titers are expressed as PFU/g tissue. (n = 4 mice/group/time point). (C) Single cell suspensions were prepared from
lungs of naı̈ve and treated mice. CD86, CD40. F4/80 and CD200R expression by CD11c+CD11b2Siglec F+ AMs after poly I:C, LPS or no treatment was
determined by flow cytometry. The frequencies of MHC II+ CD86+ cell populations are shown. (D and E) Mice were treated with poly I:C or LPS 18–
24 h prior to MA15 infection. At day 7 p.i., single cell suspensions were prepared from lungs, and stimulated with SARS-CoV CD8 (S366, S521 and
S1061) or CD4 (N353) T cell peptides for 6 h in the presence of brefeldin A. Cells were analyzed for IFN-c expression. Frequency (D) and numbers (E) of
virus specific T cells are shown. Data are representative of two independent experiments and are the mean values6SEM (n = 5–8 mice/group/time
point). (F) In vivo cytotoxicity assays were performed on day 6 p.i. Target cells were co-stained with PKH26 and different concentrations of CSFE, then
pulsed with/without SARS-CoV specific CD8 T cell peptides, mixed together (16106 in total) and transferred i.n. to mice. 12 h after transfer, lung cells
were examined by flow cytometry. n = 3–4 mice/group. Data are representative of two independent experiments.
doi:10.1371/journal.ppat.1000636.g005

Macrophages and DCs in SARS-CoV Infection
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stimulate macrophages and DCs [51]. Poly I:C (20 mg/mouse)-

treated mice lost about 10% of their original weight but quickly

recovered within 7 days. The LPS-treated group (5 mg/mouse), lost

more than 20% of their weight with death occurring in all mice

within 6–7 days. Virus titers were higher at day 5 in the lungs of

these mice compared to mice treated with poly I:C (Fig. 5 B).

Poly I:C, and to a much less extent LPS treatment resulted in

enhanced CD86 and CD40 upregulation on AMs (Fig. 5 C) and

rDCs (Fig. S7). Treatment with both TLR agonists resulted in a

modest increase in F4/80 and a small decrease in CD200R

expression (Fig. 5 C). Consistent with the results obtained after

clodronate treatment (Fig. 3 A), poly I:C treatment resulted in an

earlier and more robust antigen-specific T cell responses than

observed in PBS (Fig. 3 A) or LPS-treated mice (Fig. 5 D, E).

Nearly twenty fold more MA15-specific T cells were detected in

the lungs of poly I:C treated mice compared to LPS recipients at

day 7 p.i. and these cells were functional in in vivo killing assays

(Fig. 5 E and F). To determine whether poly I:C or LPS directly

activated AMs, AMs were isolated and stimulated in vitro with both

agonists. After 24 h stimulation, poly I:C but not LPS treatment

resulted in a pronounced upregulation of CD86 (Fig. 6 A).

Further, treatment with poly I:C but not LPS partially reversed the

ability of AM to inhibit CD8 T cell proliferation after stimulation

with Con A or sCD3 (Fig. 6 B). These results indicate that poly I:C

can abrogate AM inhibitory function both in vivo and in vitro, by

directly activating AMs and rDCs.

Adoptive transfer of activated BMDCs protected mice
from lethal MA15 infection

Given these results, direct delivery of activated DCs to the lungs

might overcome AM-mediated inhibition. Activated DCs exhibit

an enhanced ability to migrate to DLNs and to stimulate CD8 T

cell proliferation and IFN-c expression [52,53,54,55]. Since AMs

were unable to inhibit costimulatory molecule expression on

previously activated DCs (Fig. 7 A), we next assessed whether

adoptively transferred activated DCs could bypass AM inhibition

and protect mice from a lethal MA15 infection. For this purpose,

bone marrow cells were harvested from naı̈ve mice, and DCs

selectively cultured by treatment with GM-CSF plus IL-4 for 6

days [56]. BMDCs were then activated with either LPS or poly

I:C, which resulted in enhanced CD86 and MHC class II

expression on BMDCs (Fig. 7 B). As expected, MA15 was unable

to activate these cells. 36105 activated or resting BMDCs were

transferred to mice i.n. 18 h prior to infection. Mice that received

BMDCs activated with either poly I:C or LPS were protected from

a fatal outcome, although they still lost about 15% of their body

weight. In marked contrast, recipients of resting BMDC were not

protected (Fig. 7 C). Further, higher virus titers were detected in

the lungs at day 5 mice that received resting BMDC as opposed to

activated BMDC (Fig. 7 D). BMDC migration from the lungs to

DLNs was accelerated by prior activation. More CFSE+ activated

BMDC than resting BMDC accumulated in the DLNs of recipient

mice (Fig. 8 A and B) and additionally, the total number of cells in

the DLNs was increased dramatically by activated BMDC transfer

(Fig. 8 B). Consistent with enhanced rDC migration to the DLNs,

recipients of activated BMDCs developed more robust CD4 and

CD8 T cell responses in the lungs when compared to those that

received resting BMDC (Fig. 8 C and D). Nearly tenfold more

MA15-specific T cells were detected in the lungs of activated

BMDC compared to resting BMDC recipients at day 7 p.i. and

these cells were functional in in vivo killing assays (Fig. 8 E).

Collectively, these results indicate that adoptive transfer of

activated BMDCs to the lung amplified virus specific T cell

responses, cleared virus earlier and protected mice from lethal

MA15 infection.

Discussion

The pathogenesis of SARS in patients that exhibit more severe

disease is not well understood but includes slow virus clearance

and a prolonged clinical course [19,21,57,58]. The results

presented herein suggest that this severe disease may occur in

part because infected individuals do not mount an appropriate

anti-virus T cell response. Anti-virus CD8 T cells are critical for

virus clearance in mice infected with other pathogens, such as

influenza A virus and LCMV [15,59], so it is not unexpected that

they are necessary for resolution of infection with SARS-CoV.

While lymphopenia is associated with a worse prognosis in SARS

patients [17,18,19], no prior studies, to our knowledge, has shown

that this poor prognosis results, in part, from a sub-optimal CD8 T

cell response. This defect in development of a protective T cell

response occurs because the virus does not reverse the anti-

inflammatory state that is naturally present in the uninfected lung.

These results are consistent with in vitro studies in which the SARS-

CoV is able to infect but can not activate human DCs or

macrophages [22,23,24,25,26,27,28]. This may occur, in part,

because coronaviruses, including SARS-CoV, are ‘‘invisible’’ to

cellular sensors in some cell types [29].

Alveolar macrophages play a central role in maintaining

immunological homeostasis [1,2] and actively suppress the

induction of adaptive immunity through their effects on alveolar

and interstitial DCs and T cells [6,7,8]. Several molecules,

including nitric oxide, TGF-b and CD200R have been implicated

in AM suppressive function. These molecules have either short

half lives or require cell-to-cell contact [1,44,60,61]. Consistent

with this, AMs are separated by a distance of only 0.2–0.5 mm

from rDCs in the lung [10]. Our results also suggest that cell

contact or close proximity to target cells is required, because AMs

were unable to suppress T cell proliferation if separated from

responders by a transwell membrane (Fig. S6 B). In another

mechanism that maintains an anti-inflammatory state in the lungs,

AMs ingest and process innocuous antigen and bacteria before

they can reach and activate rDCs [10]. AM depletion results in

enhanced antigen-presenting function by rDCs [6] and in

increased ability to lyse influenza A virus-infected cells [62].

These reports indicate that countering the quiescent, anti-

inflammatory state of AM is critical for developing a protective

immune response; our results indicate that infection with SARS-

CoV reverses this quiescent state inefficiently. We used three

approaches to support this conclusion. First, pre-treatment of

MA15-infected mice with clodronate depleted AM, resulting in

enhanced activation and migration of rDCs, which in turn led to

the development of a vigorous and protective virus-specific T cell

response in the lung (Fig. 2 and 3). The activation and migration of

rDCs at early times p.i. are critical for the timely initiation of anti-

SARS-CoV T cell responses. Consistent with this, treatment with

clodronate at day 2 p.i. was not protective (Fig. 1), because rDC

migration to the DLNs is largely complete by 48 hours p.i. ((Fig. 2

D) and [12]). Depletion at day 2 p.i. resulted in more severe

disease, suggesting that in SARS-CoV-infected mice, virus-specific

T cells require additional DC stimulation in the lungs, as occurs in

influenza A-infected animals [16].

Second, activation of AMs and rDCs in situ via treatment with

TLR agonists also circumvented the anti-inflammatory state of the

lung. Our results showed that only poly I:C, a TLR3 agonist, and

to a lesser extent CpG, a TLR9 agonist, were able to perform this

function. TLR7 is primarily located on plasmacytoid DCs and the
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Figure 6. Poly I:C treatment partially reverses AM inhibition of T cell proliferation in vitro. (A) AMs were harvested from BAL fluid, and
cultured at 2.56105/well in 24-well dishes for 48 h in the presence of 20 mg/ml poly I:C or 1 mg/ml LPS. Cells were detached and subjected to flow
cytometry. (B) Single cell suspension were prepared from spleens of naı̈ve mice, stained with 1 mM CFSE and stimulated with either 2.5 mg/ml Con A
or 1 mg/ml soluble CD3 antibody for 72 h in the presence or absence of poly I:C-stimulated AMs from (A). Samples were then subjected to flow
cytometry. Data are representative of two independent experiments.
doi:10.1371/journal.ppat.1000636.g006
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Figure 7. Activation of BMDCs and protective effect of adoptive transfer of activated but not resting BMDCs. (A) LPS (1 mg/ml)
activated BMDCs were co-cultured with AMs harvested from BAL of naı̈ve mice for 24 h. Phenotype changes were assessed by flow cytometry. AM co-
culture did not inhibit costimulatory molecule expression by previously activated BMDCs. (B) BMDCs were stimulated with 20 mg/ml poly I:C or 1 mg/
ml LPS or MA15 virus (m.o.i. = 5) and assayed for CD86 expression. Both poly I:C and LPS activated AM, as measured by CD86 expression. (C) 36105

activated or resting BMDCs were transferred by i.n. inoculation 18 h before MA15 infection (36104 PFU/mouse). Weight loss and mortality were
monitored daily. n = 12 mice in resting BMDC group; 15 mice in activated BMDC group. (D) Lungs were homogenized and virus titered on Vero E6
cells. Viral titers are expressed as PFU/g tissue. (n = 4 mice/group).
doi:10.1371/journal.ppat.1000636.g007
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Figure 8. Enhanced DC migration to DLN and MA15-specific T cell response after. transfer of activated but not resting BMDCs. (A)
Activated or resting BMDCs were stained with 1 mM CFSE, and adoptively transferred to mice. After 18 h, mice were infected with 36104 PFU MA15.
Single cell suspensions were prepared from DLNs and CFSE+ cells were identified by flow cytometry. Total CFSE+ cells and LN cells numbers are
shown in (B). Activation of BMDC enhanced migration to DLN and also increased total DLN cellularity. Data are representative of two independent
experiments and are the mean values6SEM (n = 6–8 mice/group/time point). (C and D) Activated or resting BMDCs were transferred 18–24 h prior to
infection with MA15. At day 7 p.i., single cell suspensions were prepared from lungs, and stimulated with SARS-CoV CD8 (S366, S521 and S1061) or
CD4 (N353) T cell peptides for 6 h in the presence of brefeldin. Cells were analyzed for IFN-c expression A. Frequency (C) and numbers (D) of MA15-
specific T cells are shown. Data are representative of two independent experiments and are the mean values6SEM (n = 6–7 mice/group/time point).
(E) In vivo cytotoxicity assays were performed on day 6 p.i. Target cells were co-stained with PKH26 and different concentrations of CSFE, pulsed with/
without SARS-CoV specific CD8 T cell peptides, mixed together (16106 in total) and transferred i.n. to mice. 12 h after transfer, lung cells were
examined by flow cytometry. n = 3–4 mice/group. Data are representative of two independent experiments.
doi:10.1371/journal.ppat.1000636.g008
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inability of R848 to protect mice indicates that activation of these

cells was insufficient to induce a protective immune response. Poly

I:C, which activated AMs and rDC in vivo (Fig. 5 C and S7) and in

vitro (Fig. 6 A), protected animals from lethal MA15 infection. The

ability of poly I:C to stimulate rDC activation and migration has

been described previously [12], and is likely to explain its

protective ability. It should be noted that poly I:C treatment also

induced type 1 IFN expression in the lung. This may also have

contributed to the protective effect of poly I:C, but this is not likely

to be the major effect because SARS-CoV is only modestly

sensitive to IFN treatment of cultured cells or of mice [63,64]. In

addition, CL treatment did not induce type 1 IFN in the lungs,

showing that IFN induction is not required for protection (data not

shown).

LPS, which is a TLR4 agonist, was unable to protect mice from

lethal disease. We considered the possibility that LPS might have

toxic effects unrelated to TLR4 binding, but treatment with

monophosphoryl lipid A (MPLA), a derivative of LPS that is a

TLR4 agonist but is less toxic [65,66], was also not protective (data

not shown). Our results are consistent with a recent study that

showed that TLR4 ligation contributed to worse outcomes in

several models of lung injury [67]. TLR4 ligation, in the absence

of treatment with specific agonists, did not contribute to worsened

disease in MA15-infected BALB/c mice since infection of

TLR42/2 BALB/c mice did not result in significant differences

in clinical disease when compared to wild type BALB/c mice (data

not shown).

Third, we showed that adoptive transfer of activated but not

resting BMDCs bypassed AM-mediated suppression and protected

mice from lethal disease (Fig. 7). While DC maturation makes

these cells the most potent in antigen presentation in an animal, it

also results in the loss of ability to take up antigen. However,

antigen macropinocytosis is transiently stimulated after activation

[52], possibly explaining how transferred BMDC could acquire

SARS-CoV antigen for presentation to T cells in the DLNs.

Alternatively, mature DCs are able to uptake antigen for cross-

presentation [68]. Activated BMDCs preferentially migrated to

the DLNs (Fig. 8 A and B) and initiated a protective T cell

response in the lungs (Fig. 8 C–E). This transfer was successful

because inhibitory AMs cannot reverse prior rDC activation (Fig. 7

A). All of these three experimental interventions resulted in

enhanced rDC migration to the DLNs, enhanced MA15-specific

T cell responses at the site of infection, the lungs, and improved

outcomes.

It is notable that virus-specific T cells are also critical for virus

clearance in C57BL/6 mice, which are resistant to MA15

infection. Six week old mice deficient in recombination activating

enzyme activity 1 (RAG12/2) on a C57Bl/6 background do not

clear virus when measured at 9 days [69] or even 21 days p.i. (data

not shown), yet remain completely asymptomatic. On the other

hand, mice with Severe Combined Immunodeficiency Syndrome

(SCID) on a BALB/c background, which, like RAG12/2 mice,

are genetically unable to mount a T cell response, develop clinical

disease that is more severe than that observed in wild type BALB/

c mice. All SCID mice succumb to the infection (data not shown),

compared to a 60–70% mortality rate in BALB/c mice that are

infected with the same dosage of virus (Fig. 1 A). Collectively, these

results show that an optimal T cell response is required for virus

clearance but that strain-specific components of the initial immune

response, not yet defined, are critical for preventing clinical disease

in resistant strains.

An outstanding question is why SARS-CoV does not activate

AMs and rDCs in BALB/c mice. As described above, SARS-CoV

does not efficiently activate human DCs or macrophages. We have

also shown that MA15 does not efficiently induce costimulatory

molecule upregulation on murine rDCs or AM in vivo and/or in

vitro (Fig. 2 C, 4 A and S2). However, while most viruses have

mechanisms to evade host recognition sensors, they still efficiently

induce an immune response. For example, successful resolution of

influenza A virus infections requires activation of immune

responses via TLR7, RIG-I and NLR (NOD-like receptors)

inflammasome pathways [70], even though influenza A virus

encodes an immune-evading protein, nsp1 [71]. HSV, lympho-

cytic choriomeningitis virus, hepatitis C virus, RSV and human

cytomegalovirus are recognized via TLR2-dependent mechanisms

while the RSV F protein activates cells via a TLR4-dependent

mechanism [37]. Some viruses, such as vaccinia virus, directly

inhibit TLR expression, confirming the importance of these

molecules in virus recognition by the host [72]. TLR signaling is

also important for SARS-CoV recognition by the innate immune

system, since C57BL/6 mice, which are very resistant to the virus,

become susceptible when MyD88 is genetically deleted [69]. The

precise TLR or other receptor required for protection in C57BL/6

mice is not known at present. Why this same pathway is not

efficiently induced in BALB/c mice after MA15 infection will be

an area of future investigation.

In conclusion, we have shown that lethal disease in mice

infected with a mouse-adapted strain of SARS-CoV (MA15) is

correlated with a lack of activation of AMs and rDCs. Further,

lethal disease can be prevented if AMs with anti-inflammatory

properties are depleted from lungs prior to infection. Depletion

results in enhanced DC recruitment to the lung and accelerated

migration to DLN, and a more vigorous anti-SARS-CoV T cell

response. Treatment with TLR agonists to activate AMs and rDCs

or transfer of activated BMDCs also prevents a lethal outcome.

Together, these results demonstrate that SARS-CoV, by ‘‘hiding’’

from the immune system, uses a novel mechanism to evade

immune recognition in mice. The pathogenesis of SARS in

humans may involve similar stealth mechanisms.

Materials and Methods

Mice, cells and virus
Pathogen-free BALB/c mice were purchased from the National

Cancer Institute (Frederick, MD). Mice were maintained in the

animal care facility at the University of Iowa. Animal studies were

approved by the University of Iowa Animal Care and Use

Committee. African Green monkey kidney-derived Vero E6 cells

were grown in Dulbecco’s modified Eagle’s medium (DMEM,

GIBCO, Grand Island, NY) supplemented with 25 mM HEPES

and 10% fetal bovine serum (FBS) (Atlas Biologicals, Fort Collins,

CO). Mouse-adapted SARS-CoV (MA15) was a kind gift from Dr.

Kanta Subbarao (N.I.H., Bethesda, Maryland) [30]. Virus was

passaged once on Vero E6 cells.

Virus infection and titration
Mice were lightly anesthetized with isoflurane and infected

intranasally (i.n.) with 36104 PFU of MA15 virus in 25 ml of

DMEM medium. Mice were monitored for weight loss and

mortality daily. All work with MA15 virus was conducted in the

University of Iowa Biosafety level 3 (BSL3) Laboratory Core

Facility. To obtain lungs for virus titers, animals were sacrificed at

the indicated time points post-infection (p.i.) and lungs were

removed into phosphate buffered saline (PBS). Tissues were

homogenized using a manual homogenizer, and titered on Vero

E6 cells. For plaque assays, cells were fixed with 10%

formaldehyde and stained with crystal violet three days post-

infection. Viral titers are expressed as PFU/g tissue.
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Peptides and chemicals
A peptide library, covering all 4 structural proteins of SARS-

CoV was provided by BEI Resources (Manassas, VA). Virus-

specific peptides were synthesized by BioSynthesis Inc. (Lewisville,

TX). TLR agonists poly I:C, Monophosphoryl Lipid A (MPLA),

CpG, Imidazoquinoline compound (R837 and R848), Pam3CSK4

and Pam2CSK4 were purchased from Invivogen (San Diego, CA).

LPS was purchased from Alexis Biochemicals (Farmingdale, NY).

Clodronate-liposome treatment
Alveolar macrophage depletion was performed by treatment

with liposomes containing dichloromethylene bisphosphonate

(clodronate). Clodronate was a gift from Roche Diagnostics

GmbH (Mannheim, Germany), and it was encapsulated in

liposomes as described earlier [9,33]. At the indicated times, mice

were anesthetized by intraperitoneal injection of 2% avertin and

administered 75 ml of clodronate liposomes, or PBS i.n.

Histology
Animals were anesthetized and transcardially perfused with PBS

followed by zinc formalin. Lungs were removed, fixed in zinc

formalin, and paraffin embedded. Sections were stained with

hematoxylin and eosin.

Lung cells and draining lymph node cells preparation
Mice were anaesthetized with 100 ml pentobarbital (50 mg/ml,

Lundbeck Inc., Deerfield, IL) at the indicated time points. The

lung vascular bed was flushed via the right ventricle with 5 ml PBS

to eliminate any blood and lungs and draining lymph nodes were

then removed. Lungs were cut into small pieces and digested in

HBSS buffer containing 2% FCS, 25 mM HEPES, 1 mg/ml

Collagenase D (Roche, Indianapolis, IN) and 0.1 mg/ml DNase

(Roche) for 30 min at RT. Lymph nodes were minced and pressed

though a wire screen. Particulate matter was removed with a

70 mm nylon filter to obtain single-cell suspensions. Cells were

enumerated by 0.2% trypan blue exclusion.

In situ CFSE staining
CFSE (Molecular Probes, Eugene, OR) was dissolved at 25 mM

in DMSO stored at 220uC until use. The CFSE stock solution

was diluted in DMEM media to a concentration of 8 mM and

then administered i.n. (50 ml/mouse) following anesthesia with

isoflurane [12].

Flow cytometry
The following monoclonal antibodies were used for these

studies: rat anti-mouse CD3 (145-2C11), rat anti-mouse CD4

(RM4-5), rat anti-mouse CD8b (53-6.7), rat anti-mouse CD11b

(M1/70), hamster anti-mouse CD11c (HL3), rat anti-mouse

CD16/32 (2.4G2), rat anti-mouse Siglec F (E50-2440), mouse

anti-mouse I-Ad (AMS-32.1), all from BD Bioscience (San Diego,

CA); rat anti-mouse IFN-c (XMG1.2), anti-mouse F4/80 (BM8),

rat anti-mouse CD40 (1C10), all from eBioscience (San Diego,

CA); rat anti-mouse CD43 (1B11, Biolegend, San Diego, CA); rat

anti-mouse CD200R (OX-110, Serotec, Raleigh, NC).

For surface staining, 106 cells were blocked with 1 mg anti-

CD16/32 antibody and 1% rat serum, stained with the indicated

antibodies, and then fixed using Cytofix Solution (BD Biosciences).

For intracellular cytokine staining (ICS), cells were cultured at

16106 per 96-well at 37uC for 6 h or the indicated time period in

the presence of brefeldin A (BD Biosciences). Cells were then

labeled with surface antibodies, fixed/permeabilized with Cytofix/

Cytoperm Solution (BD Biosciences) and labeled with anti-IFN-c

antibody. All flow cytometry data were acquired on a BD

FACSCalibur or an LSR II (BD Biosciences) flow cytometer with

CellQuest (BD Biosciences) and were analyzed using FlowJo

software (Tree Star, Inc. Ash, OR).

In vivo cytotoxicity assay
In vivo cytotoxicity assays were performed on day 6 after MA15

infection, as previously described [73]. Briefly, splenocytes from

naive mice were costained with PKH26 (Sigma-Aldrich, St. Louis,

MO) and either 1 mM or 100 nM CFSE (Molecular Probes,

Eugene, OR). Labeled cells were then pulsed with the indicated

peptides (3 mM) at 37uC for 1 h and 56105 cells from each group

were mixed together (16106 cells in total). Cells were transferred

i.n. into mice and at 12 h after transfer, total lung cells were

isolated. Target cells were distinguished from host cells on the basis

of PKH26 staining and from each other on CFSE staining. After

gating on PKH26+ cells, the percentage killing was calculated as

previously described [73].

Alveolar macrophage preparation and in vitro T cell co-
culture

AMs were obtained from uninfected lungs as previously

described [74]. Briefly, lungs were inflated with warm PBS

containing 0.2% BSA and 12 mM lignocaine (Sigma-Aldrich, St.

Louis, MO) via cannulation of the trachea, and were lavaged at

least 6 times. Cells were collected by centrifugation, resuspended

in RPMI 1640 (Gibco, Grand Island, NY) containing 10% FCS

(Atlanta, Lawrenceville, GA) and cultured at 46104 in each 96-

well for 48 h before use in the presence or absence of stimulators

[75].

To demonstrate inhibition of polyclonal T cell proliferation,

46105 splenocytes or lung cells (after AM-depletion by attachment

to plates for 2 h at 37uC) were labeled with 1 mM CFSE and

added to wells, stimulated with 2.5 mg/ml Con A (Sigma) or 1 mg/

ml soluble CD3 (eBioscience) and cultured with AMs at a ratio of

10:1 for 72 h. For inhibition of virus-specific CD8 T cell

proliferation, lung CD8 T cells were purified from AM-depleted,

MA15-infected animals at day 8 p.i. using CD8 Microbeads

(Miltenyi Biotec, Cologne, Germany) at day 8. Splenocytes pulsed

with 1 mM peptides or CD8 T cell-depleted lung cells were added

as APCs and cultured with AMs at a ratio of 10:1 for 72 h. Cells

were then harvested, stained with antibodies and subjected to flow

cytometric analysis.

Purification of lung DCs
aDC population were purified from the lungs of naı̈ve BALB/c

mice by FACS sorting based on their expression of CD11c+MHC

II+CD11b2 (Fig. S1) and enriched to about 80% purity.

Generation of BM-derived DCs and adoptive transfer
Bone marrow-derived DCs (BMDC) were generated as

previously described [56]. Briefly, red blood cell-depleted BM

cells were plated at a density of 16106/ml in RP10 (RPMI with

10% fetal calf serum, 1.0 mM HEPES, 0.2 mM L-glutamine,

0.05 mM gentamicin sulfate, 1% penicillin- streptomycin, 1 mM

sodium pyruvate, and 0.02 mM 2-mercaptoethanol) supplemented

with 1,000 U/ml recombinant granulocyte-macrophage colony

stimulating factor (BD Pharmingen) and 50 U/ml recombinant

interleukin-4 (eBioscience). Cells were incubated for 6 days, with

75% medium replacement every 2 days. At day 6, BMDCs were

stimulated with or without 20 mg/ml Poly I:C or 1 mg/ml LPS for

18–24 h. CD11c microbeads and a Miltenyi autoMACS magnetic

cell sorter (Miltenyi Biotec, Cologne, Germany) were used to
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purify CD11c+ DCs. Purity was confirmed by flow cytometry.

BALB/c mice were lightly anesthetized with isoflurane and 36105

BMDCs in 75 ml PBS were adoptively transfer i.n. 18 h before

MA15 infection.

Statistical analysis
A Student’s t test was used to analyze differences in mean values

between groups. All results are expressed as means6standard

errors of the means (SEM). P values of ,0.05 were considered

statistically significant.

Supporting Information

Figure S1 Gating strategy for DC and AM. (A) Gating strategy

for aDCs, iDCs and AMs. Lungs were harvested, digested with

collagenase, and examined for aDCs, iDCs and AMs populations

by flow cytometry gating on the following markers: iDCs,

CD11c+CD11b+MHC II+; aDCs, CD11c+CD11b2MHC II+;

AM, CD11c+CD11b2Siglec F+. (B) Gating strategy for migratory

DCs. Mice were treated with 50 ml 8 mM CFSE i.n. 6 h after

CFSE instillation, single cell suspensions were prepared from lung

DLNs and gated for CD11c expression by flow cytometry.

Representative side scatter versus CFSE staining of CD11c+ gated

cells is shown.

Found at: doi:10.1371/journal.ppat.1000636.s001 (2.30 MB TIF)

Figure S2 MA15 infection did not activate AM in vitro. AMs

were harvested from BAL fluid and infected with MA15

(multiplicity of infection = 5) for 24 h Expression of CD86 were

determined by flow cytometry. Data are representative of three

independent experiments.

Found at: doi:10.1371/journal.ppat.1000636.s002 (0.42 MB TIF)

Figure S3 Depletion of alveolar macrophages by clodronate-

liposomes. Mice were treated with 75 ml clodronate-liposomes, or

PBS i.n. 24 or 48 h after treatment, lungs were examined by flow

cytometry for frequency (A) and total numbers (B) of AM

(CD11c+CD11b2SiglecF+). Data are representative of four

independent experiments and are the mean values6SEM (n = 8

mice/group/time point).

Found at: doi:10.1371/journal.ppat.1000636.s003 (0.71 MB TIF)

Figure S4 Activation of T cells during MA15 infection. Mice

treated with CL or PBS were infected with 36104 PFU MA15

virus. At the indicated time points, single cell suspension were

prepared from lungs and the expression of CD43 (mAb 1B11),

CD8 and CD4 determined by flow cytometry. Frequency and

numbers of CD8 (A) and CD4 (B) T cells are shown. Data are

representative of two independent experiments and are the mean

values6SEM (n = 6–8 mice/group/time point).

Found at: doi:10.1371/journal.ppat.1000636.s004 (1.58 MB TIF)

Figure S5 F4/80 and CD200R expression on alveolar and

peritoneal macrophages. AMs were harvested from BAL fluid. To

obtain peritoneal macrophages, mice were inoculated with 2 ml 3%

thioglycolate media 4 days before peritoneal lavage. Cells were

examined by flow cytometry for expression of F4/80 and CD200R

(solid line). Gray, isotype control. Change of Mean fluorescence

intensity (DMFI) = MFItest2MFIiso. DMFI of F4/80 expression: PM

(87.4) vs AM (13.4), DMFI of CD200R expression: PM (39.3) vs AM

(115). Data are representative of three independent experiments.

Found at: doi:10.1371/journal.ppat.1000636.s005 (0.48 MB TIF)

Figure S6 Cytokine expression after AM and T cell co-culture

and requirement for direct AM-T cell contact for inhibition of cell

proliferation. (A) AMs were harvested from bronchoalveolar

lavage fluid (BALF) and cultured at 46104 in each 96-well. AM-

depleted MA15-infected lung cells were stimulated with SARS-

CoV CD8 (S366, S521 and S1061) peptides for 6 h in the

presence or absence AMs. Brefeldin A was added during the last

2 h of co-culture. IFN-c expression was determined by intracel-

lular staining. Data are representative of three independent

experiments. (B) AMs were harvested from BAL fluid and cultured

at 2.56105 /well in 24-well dishes for 48 h before use. Single cell

suspension were prepared from spleens of naı̈ve mice, stained with

1 mM CFSE, stimulated with either 2.5 mg/ml Con A or 1 mg/ml

soluble CD3 antibody for 72 h above a semi-membrane, and

subjected to flow cytometry. Data are representative of two

independent experiments.

Found at: doi:10.1371/journal.ppat.1000636.s006 (0.85 MB TIF)

Figure S7 rDC phenotypic changes after poly I:C and LPS

treatment in vivo. Mice were treated with 20 mg poly I:C or 5 mg

LPS for 18–24 h. Single cell suspension were prepared from lungs.

CD86 and CD40 expression on aDCs (CD11c+CD11b2MHC II+)

and iDCs (CD11c+CD11b+MHC II+) were determined by flow

cytometry. The frequencies of MHC IIhighCD86+ or CD40+MHC

IIhigh populations are shown. Data are representative of three

independent experiments.

Found at: doi:10.1371/journal.ppat.1000636.s007 (1.19 MB TIF)

Table S1 Bio-plex assay for cytokines and chemokines production

during MA15 infection. Mice were treated with either PBS or CL

24 h before MA15 infection. Lungs were harvested at day 0, day 2

and day 4 p.i. After homogenization and ultraviolet light inactivation,

samples were analyzed for cytokine and chemokine expression using

a Bio-Plex cytometric bead assay and a Luminex 200 luminometer

(Bio-Rad). The concentration of cytokines and chemockines was

expressed as pg/ml lung homogenate. *P values of ,0.05.

Found at: doi:10.1371/journal.ppat.1000636.s008 (0.04 MB

DOC)
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