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Abstract: There is evidence that spaceflight poses acute and late risks to the central nervous system.
To explore possible mechanisms, the proteomic changes following spaceflight in mouse brain were
characterized. Space Shuttle Atlantis (STS-135) was launched from the Kennedy Space Center (KSC)
on a 13-day mission. Within 3–5 h after landing, brain tissue was collected to evaluate protein
expression profiles using quantitative proteomic analysis. Our results showed that there were 26
proteins that were significantly altered after spaceflight in the gray and/or white matter. While
there was no overlap between the white and gray matter in terms of individual proteins, there was
overlap in terms of function, synaptic plasticity, vesical activity, protein/organelle transport, and
metabolism. Our data demonstrate that exposure to the spaceflight environment induces significant
changes in protein expression related to neuronal structure and metabolic function. This might lead
to a significant impact on brain structural and functional integrity that could affect the outcome of
space missions.

Keywords: brain; spaceflight; microgravity; proteomics

1. Introduction

Long-term deep space missions expose astronauts to an environment that is characterized mainly
by ultraviolet and ionizing radiation, microgravity, and physiological/psychological stressors. These
conditions present a significant hazard to spaceflight crews during and after the course of mission
activities. The hazards posed to normal tissues, such as the central nervous system (CNS), are not fully
understood. The health risks of spaceflight-induced neuronal damage and potential neurodegenerative
effects have long been a concern. Brain damage and degeneration can be promoted by many
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factors including aging, ischemia, fluctuation in oxygen tension, oxidative stress, and increased
intraocular pressure.

There is some evidence that low-dose, space-relevant radiation induces changes in neuronal
functions [1]. Microgravity induces intraocular pressure and vascular changes [2,3] and promotes
apoptosis of astrocytes [4]. Spaceflight also induces cognitive and perceptual motor performance
deterioration under stress [5]. Studies have shown that exposure to spaceflights has a strong
impact on metabolic and stress response [6]. Collective evidence indicates that exposure to stressful
spaceflight environments might induce changes in brain neuronal structure and function. However,
the pathophysiological consequences and role of cellular mechanisms of stress stimuli, especially those
stemming from the spaceflight environment, in facilitating brain damage and neurodegeneration have
been studied less and remain unclear.

Gray matter consists of neurons (i.e., it contains the cell bodies, dendrites and axon terminals of
neurons), nerve fibers, astrocytes, microglia, and capillaries. Gray matter is closely associated with
the functional domains of performance, locomotion, learning, memory and coordination. On the
other hand, white matter consists mostly of oligodendroglial cells, myelinated axons and capillaries.
White matter allows communication to and from gray matter areas, and between gray matter and
the other parts of the body. It functions by transmitting the information from the different parts of
the body towards the cerebral cortex. It modulates the distribution of action potentials, acting as a
relay and coordinating communication between different brain regions [7]. Changes in gray matter are
known to be primarily associated with Alzheimer’s disease and other neurodegenerative diseases,
with secondary effects on the white matter [8]. The deficits range from language ability to delayed
memory and visuospatial construction. Disrupted white matter organization has been linked to poorer
motor performance [9]. Studies have shown altered expressions of a number of genes and proteins
involving a wide spectrum of biological functions following exposure to space environments. These
alterations induced distinct changes specific to the regions of the brain [10]. Regional difference in
stress response was also documented following simulated microgravity in human brain gray matter
and white matter [11].

The purpose of the present investigation was to study spaceflight condition-induced changes
in protein expression profiles in mouse gray matter and to compare these changes to those in white
matter regions. Our unique data might provide new insights and improve risk assessment for future
long-term space travel.

2. Results

There were nine and 17 proteins that were significantly altered after spaceflight in the white
(Table 1) and gray (Table 2) matter, respectively (p < 0.05, log fold change >1.0 or <−1.0). In general,
proteins that were significantly altered were upregulated in both areas of the brain. However, there
was no overlap between the brain area data sets. If log fold change constraints were reduced to >0.5,
the number of proteins increased to 16 and 25 for white and gray matter, respectively.

There were no significant changes in canonical pathways or upstream regulators in the pathway
analysis for either the white or gray matter proteins. However, there were strong trends for changes in
functionally related proteins in both brain regions (Table 3). In the white matter, there was a strong
trend for a downregulation of functions related to the formation of cellular protrusions (Z = −1.98).
In the gray matter, there was a significant downregulation of functions related to overall organismal
death and organ degeneration (Z < −2.0). There were also strong trends for downregulation in cellular
and neural degenerative functions (Z = −1.98). Interestingly, there was a significant upregulation in
functions related to viral infection (Z > 2.0).
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Table 1. Spaceflight induced alterations to the proteomic profile in the white matter.

Symbol Entrez Gene Name Expr p-Value Expr Log Ratio Location Type(s)

ARG1 arginase 1 0.037 3.742 Cytoplasm enzyme
CACNA2D1 calcium voltage-gated channel auxiliary subunit alpha2delta 1 0.024 2.244 Plasma Membrane ion channel

PPFIA3 PTPRF interacting protein alpha 3 0.025 2.189 Plasma Membrane phosphatase
PITPNA phosphatidylinositol transfer protein alpha 0.010 1.328 Cytoplasm transporter
MYO5A myosin VA 0.034 1.304 Cytoplasm enzyme
DYNLL2 dynein light chain LC8-type 2 0.040 1.152 Cytoplasm other

VPS35 VPS35, retromer complex component 0.046 −1.164 Cytoplasm transporter
GAPDH glyceraldehyde-3-phosphate dehydrogenase 0.015 −1.478 Cytoplasm enzyme

MBP myelin basic protein 0.003 −2.536 Extracellular Space other

Table 2. Spaceflight induced alterations to the proteomic profile in the gray matter.

Symbol Entrez Gene Name Expr p-Value Expr Log Ratio Location Type(s)

QDPR quinoid dihydropteridine reductase 0.0229 2.458 Cytoplasm enzyme
DNM3 dynamin 3 0.00186 1.781 Cytoplasm enzyme
ACAT1 acetyl-CoA acetyltransferase 1 0.0000214 1.637 Cytoplasm enzyme

DNAJC5 DnaJ heat shock protein family (Hsp40) member C5 0.00702 1.501 Plasma Membrane other
SH3GL2 SH3 domain containing GRB2-like 2, endophilin A1 0.0136 1.377 Plasma Membrane enzyme

RAP1GDS1 Rap1 GTPase-GDP dissociation stimulator 1 0.0284 1.363 Cytoplasm other
DNM1L dynamin 1-like 0.0069 1.284 Cytoplasm enzyme

CNP 2′,3′-cyclic nucleotide 3′ phosphodiesterase 0.000816 1.261 Cytoplasm enzyme
YWHAE tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon 0.00989 1.261 Cytoplasm other
ACTN1 actinin alpha 1 0.0308 1.254 Cytoplasm transcription regulator

ATP6V0A1 ATPase H+ transporting V0 subunit a1 0.00028 1.191 Cytoplasm transporter
IMMT inner membrane mitochondrial protein 0.00436 1.154 Cytoplasm other
NEFL neurofilament light 0.00557 1.153 Cytoplasm other
ENO2 enolase 2 0.0281 1.123 Cytoplasm enzyme
STX1A syntaxin 1A 0.00859 1.074 Cytoplasm transporter
UQCRB ubiquinol-cytochrome c reductase binding protein 0.0447 −1.059 Cytoplasm enzyme
SEC22B SEC22 homolog B, vesicle trafficking protein (gene/pseudogene) 0.00601 −2.709 Cytoplasm other
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Table 3. Spaceflight induced changes in white and gray matter proteins indicative of functional deficits.

Region Categories Diseases or Functions Annotation p-Value Activation Z-Score

White Matter Cell Morphology, Cellular Assembly and Organization, Cellular Function and Maintenance formation of cellular protrusions 1.69 × 10−3 −1.982
Organismal Survival organismal death 3.76 × 10−2 −1.156

Cellular Assembly and Organization, Cellular Function and Maintenance organization of cytoplasm 6.40 × 10−5 −1.154
Cellular Assembly and Organization, Cellular Function and Maintenance microtubule dynamics 9.47 × 10−5 −1.154

Tissue Morphology quantity of cells 3.44 × 10−2 −0.44
Cell Death and Survival apoptosis 4.26 × 10−2 0.003
Cell Death and Survival necrosis 1.41 × 10−2 0.014
Cell Death and Survival cell death of tumor cell lines 4.40 × 10−3 0.028
Cell Death and Survival cell death 1.41 × 10−2 0.166
Cell Death and Survival apoptosis of tumor cell lines 3.86 × 10−2 0.176

Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry concentration of lipid 7.47 × 10−3 0.333

Gray Matter Organismal Survival organismal death 1.22 × 10−3 −3.257
Organismal Injury and Abnormalities organ degeneration 1.46 × 10−5 −2.186

Cellular Compromise degeneration of cells 1.36 × 10−4 −1.982
Developmental Disorder growth failure 1.45 × 10−2 −1.982

Neurological Disease neurodegeneration 8.36 × 10−5 −1.981
Cell Death and Survival necrosis 1.84 × 10−5 −1.6
Cell Death and Survival apoptosis 5.78 × 10−3 −1.404
Cell Death and Survival neuronal cell death 2.96 × 10−3 −0.958

Molecular Transport transport of molecule 9.80 × 10−3 −0.722
Cell Death and Survival cell viability 1.48 × 10−2 0.555

Infectious Diseases infection by HIV-1 2.45 × 10−3 1.98
Infectious Diseases Viral Infection 1.12 × 10−2 2.2
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3. Discussion

While there do not appear to be enough significantly different proteins in either white or gray
matter in this analysis to appear as a significantly activated canonical pathway, there still appear to be
common functional themes: (1) synaptic function, (2) intracellular communication, (3) metabolism, (4)
oxidative stress and tissue damage responses, and (5) activation of catecholamines.

3.1. Synaptic Function: Plasticity, Vesicles and Dendritic Spines

In the white matter there were three proteins related to synaptic plasticity that were upregulated.
Calcium voltage-gated channel auxiliary subunit α2δ1 (CACNA2D1) is intimately involved in calcium
channel trafficking [12] and regulates excitatory synapse formation during development or after
injury [13]. PTPRF interacting protein α 3 (PPFIA3, also known as Liprin-α-3) is typically found
to be co-expressed with a variety of pre-synaptic proteins in neurons but has also been found in
astrocytes [14,15]. It is thought to be involved in presynaptic plasticity and synaptic vesicle release,
particularly in excitatory synapses [15,16]. Myosin VA (MYO5A) is an F-actin-based motor protein that
is also important in the generation and movement of synaptic vesicles. It has been found in dendritic
spines and synaptic vesicles and appears to be critical for synaptic plasticity and organelle transport
(reviewed in Reference [17]).

Several proteins associated with synaptic function that are upregulated in the gray matter after
flight involve vesicle formation, exocytosis and endocytosis. Syntaxin 1A (STX1A) is a soluble
N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) protein that is expressed
in most neurons [18] and is a critical component of synaptic vesicle formation and exocytosis [19,20].
DNAJ heat shock protein family (Hsp40) member C5 (DNAJC5) is a pre-synaptic DNAJ C-class Hsp40
co-chaperone that is primarily expressed in the brain and retina (reviewed in [21]). It is part of a
complex of proteins that resides on synaptic vesicles and chaperones pre-synaptic SNARE proteins,
making it critical during repeated synaptic vesicle cycles [22]. Indeed, DNAJC5 knockout mice have
progressive, age-dependent sensorimotor deficits and the protein appears to be critical to preventing
pre-synaptic degeneration via deficits in endocytosis [21,23].

Upregulated within gray matter, dynamin 3 (DNM3) is expressed in the dendritic spines and is
primarily associated with regulating synaptic vesicle endocytosis and recycling [24–26]. There are
three isoforms of dynamin that share about 80% overall homology and have mostly redundant roles in
clathrin-mediated endocytosis and membrane fission [24,27]. The SH3 domain containing GRB2-like 2,
endophilin A1 (SH3GL2, also known as endophilin-1) is a potential tumor suppressor gene [28] that is
highly expressed in the brain, particularly in presynaptic ganglion [29]. However, the primary function
of this protein is to regulate clathrin-mediated endocytosis (reviewed in [30]). Finally, while not directly
related to neuronal communication, ATPase H+ transporting V0 subunit A1 (ATP6V0A1) involves
a form of endocytosis in microglia. This protein that was upregulated in gray matter, is involved
with the merging of lysosomes and phagosomes during phagocytosis in the brain [31]. Interestingly,
clathrin-mediated endocytosis was significantly and highly upregulated in the liver of these mice as
well [32], suggesting a systemic response.

In addition to vesicle formation, several of the proteins upregulated in gray matter after spaceflight
have been implicated in neurite and dendritic spine formation. Tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein epsilon (YWHAE) is believed to play a critical role during
neuronal development and migration [33] and neurite formation during cortical development [34].
Over expression of this gene disrupts neurite formation through the microtubule binding protein,
doublecortin [34]. Enolase 2 (ENO2) has also been shown to have neurotrophic activity [35] and is
involved in cytoskeletal remodeling and neurite regeneration [36].

Similarly, both dynamin 3 (DNM3) [37] and SH3 domain containing GRB2-like 2, endophilin A1
(SH3GL2) [38] that were upregulated in gray matter are involved with dendritic spine morphogenesis
and stability. Another upregulated protein in the gray matter is actinin alpha 1 (ACTN1). Expressed
in the dendritic spines of the post-synaptic density (PSD) [39,40], this protein is an actin-crosslinking
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protein [41] that is involved with synaptic plasticity [39]. This is interesting because changes in dendrite
activity might be related to synaptic plasticity [42,43].

Consistent with the upregulation of proteins related to neurite and dendrite growth is the
downregulation of SEC22B (SEC22 homolog B, a vesicle trafficking protein) in the gray matter.
Knocking down this protein using siRNA reduced neurite length had no impact on neuronal
migration [44].

3.2. Intracellular Communication: Myelination and Protein/Organelle Transport

Another broad category impacted by spaceflight is involved in intracellular communication.
Specifically, (1) axonal signaling that is “insulated” via myelin and (2) protein and organelle transport.
Downregulated in the murine white matter, myelin basic protein (MBP) has an important role in
the process of myelination of axons, particularly in the adhesion of myelin layers between cytosolic
surfaces [45,46]. MBP is implicated in auto-immune responses within the human CNS, and is thought
to be a target for T cell activity in multiple sclerosis and other demyelinating or degenerative disorders.
Its reduction over an extended period is usually associated with glial inflammation activation and
proliferation, leading to reactive astrocytosis [47,48].

Interestingly, three important factors found in oligodendrocytes and involved in myelin formation
were upregulated in the gray matter: acyl-coenzyme A, a cholesterol acyltransferase 1 (ACAT1) [49];
2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) [50,51]; and neurofilament light (NEFL) [52,53].

Two components of protein/organelle transport were upregulated in the white matter. As stated
previously, myosin VA (MYO5A) is important for organelle transport (reviewed in Reference [17]).
Similarly, dynein light chain LC8-type 2 (DYNLL2, also known as DLC2), originally identified as part
of the microtubule-based motor protein dynein [54], is involved with transporting mitochondria along
the axons of neurons in response to local energy and metabolic requirements [55]. However, DYNLL2
has also been shown to have a variety of other targets including nNOS, post synaptic scaffolding
proteins, and pro-apoptotic proteins [54].

However, there were also two factors involved in protein transport that were downregulated in
white matter. Vacuolar protein sorting 35 ortholog (VPS35) is a component of the “cargo recognition
complex” of the retromer complex responsible for the retrograde transport of proteins from endosomes
to the trans-Golgi network or the plasma membrane [56,57]. Already mentioned above as an important
component of myelin, MBP also interacts with the cytoskeleton and/or tight junctions, making it
critical for communicating extracellular signaling to the inside of the cell [46]. Decreases in MBP have
been associated with glial activation [58].

3.3. Metabolism: Glycolysis and Mitochondrial Function

Consistent with our previous results, in the liver and skin of the same mice in which we found
that spaceflight had a major impact on metabolism [32,59,60], the next broad category involved the
impact of spaceflight on the brain, including glycolysis and metabolism.

Two proteins involved in glycolysis or metabolism were altered by spaceflight in the white matter.
This first one was upregulated. Phosphatidylinositol transfer protein α (PITPNA) is involved with
coordinating lipid metabolism and signaling [61], transferring phospholipids out of the endoplasmic
reticulum and into other membranes [62]. Interestingly, an increase in oxidative stress has been shown
to cause a decrease in this protein, particularly in the brains of aged or Parkinson’s disease models [63].
This lack has been associated with neurodegenerative disease, which has been linked to changes in
glucose homeostasis [64]. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an abundant
enzyme in brain tissue that is critical to energy metabolism and glycolysis [65]. In conditions of
oxidative stress, GAPDH activity is impaired, leading to cellular aging and apoptosis [65]. This enzyme
can undergo sulfhydration, S-nitrosylation and oxidation, which, in turn, can lead to memory loss,
apoptotic cell death and neurodegeneration, noted in ischemia and Alzheimer’s disease models [66–68].
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In the gray matter, enolase 2 (ENO2) was upregulated after flight, also suggesting glycolysis
may be impacted. ENO2 is a glycolytic enzyme [69] found in neurons, neuroendocrine cells and
microglia [69,70]. However, one of the few proteins that were downregulated in the gray matter,
SEC22B (SEC22 homolog B, vesicle trafficking protein), also complexes with SNARE proteins in the
endoplasmic reticulum (ER) [44,71]. Knocking down this protein using siRNA had no impact on
exocytosis [44]. Instead, SEC22B interacted with lipid transfer proteins, a factor which, when inhibited,
has been shown to result in changes in lipid metabolism and transfer [44].

Simultaneously, four proteins critical to mitochondrial function were also upregulated in the
gray matter. The mitochondrial localized enzyme, acetyl-CoA acetyltransferase 1 (ACAT1), has been
linked to cholesterol homeostasis and metabolism [72,73] and can be found in axons of the cerebral
cortex and hippocampus [49]. Dynamin 1-like (DNM1L) is critical to mitochondrial fission [74]. This
protein drives mitochondrial division by self-assembling into filaments that constrict around the
organelle [75]. The 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) can also be found in the inner
membranes of mitochondria [76] and is important for Ca2+ transport [77]. Interestingly CNP levels
decreased in non-synaptic mitochondria in the brains of old rats [77]. An increase in CNP release
suggests mitochondria may be in a calcium-overloaded condition [78]. Inner membrane mitochondrial
protein (IMMT), also known as MIC60 and mitofilin, is important for protein translocation across the
mitochondrial membrane, regulating both morphology and protein biogenesis [79].

Even though the tissues were collected and prepared for analysis less than five hours after landing,
it is possible that the changes in proteins related to metabolism are simply a response to the landing
and do not reflect changes in the spaceflight environment. To confirm or deny this possibility would
require that mice be euthanized in orbit and tissues immediately preserved for analysis on the ground.
Indeed, such studies have already been planned. However, in our previous study examining the livers
of these same mice, there were significant changes in lipid metabolism indicative of a pre-diabetic state
that seems to suggest a long-term effect rather than an acute response due to landing [32,59,80].

3.4. Oxidative Stress and Tissue Damage Responses

The changes noted in metabolism are likely related to increases in proteins involved with oxidative
stress and inflammation in the white matter. Arginase 1 (ARG1), which was highly upregulated, is
an important enzyme of the urea cycle that is generally found in the liver and is critical to removing
ammonia from the body [81]. However, ARG1+ is also commonly expressed by alternatively-activated
macrophages and microglia [82], which tend to be anti-inflammatory. In the brain, ARG1+ microglia
have been implicated in amyloid beta plaque removal [83]. Furthermore, it is important to nitric oxide
(NO)-mediated vasodilation in microvascular endothelial cells [84]. In activated macrophages, ARG1+
competes with NO synthase (NOS) for their common substrate, L-arginine, leading to a reduction in
NO production [85].

Not surprisingly, many of the mitochondrial proteins that were upregulated in the gray matter
are also involved in the oxidative stress response. ACAT1 expression has been shown to be elevated
during conditions of oxidative stress [49]. Mutations in DNM1L often result in death associated with
oxidative stress-induced neurodegeneration [75,86]. In vitro, deleting DNML1 from Purkinje cells
resulted in increased oxidative damage via the peroxidation of proteins and lipids [75]. Decreases
in IMMT appear to result in increases in ROS levels [87] and seem to be an anti-apoptotic protein
important for the regulation of cytochrome c release [87–89]. Interestingly, the oxidative damage due
to lipid peroxidation found in the interfibrillar mitochondria of diabetic heart tissue was reduced by
overexpressing IMMT [90,91].

Increases in the above oxidative stress factors are consistent with the decreases noted in another
mitochondrial protein, UQCRB (ubiquinol-cytochrome c reductase binding protein), a subunit of
complex III in the mitochondrial respiratory chain [92] of the gray matter. UQCRB is important in
mediating mitochondrial-derived reactive oxygen species (ROS) that are both independent of NADPH
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oxidase and important for angiogenesis [93]. Drugs which inhibit the activity of UQCRB reduce the
ROS produced by the mitochondria [92–94].

Although not found in mitochondria, Quinonoid dihydropteridine reductase (QDPR) is
also upregulated in the gray matter. QDPR is primarily associated with the regeneration of
tetrahydrobiopterin (BH4) from quinonoid dihydrobiopterin (qBH2). This is important because BH4 is a
critical co-factor in the generation of all three NO synthases, iNOS, nNOS, and eNOS [95]. In quinonoid
dihydropteridine reductase (QDPR)−/− knockout mice, the biomarkers of folate-dependent oxidative
stress such as ophthalamate, spermine, and γ-Glu-Cys all appeared to be elevated [95].

Given the changes in markers indicative of oxidative stress, it should not be surprising that
there were also changes in proteins related to cell damage and death. In the gray matter, at least
four upregulated proteins dealing with intracellular damage and/or cell death appeared to be
involved. This is consistent with the IPA analysis that found changes in proteins related to organismal
death, degeneration of cells, and neurodegeneration. ATP6V0A1 is critically important in mediating
autophagosome-lysosome fusion [96]. DNAJC5 appears to have some influence on protein folding
and endosomal autophagy, depending on the presence of SGT and Hsc70 [97]. ACAT1 is instrumental
in induction of necroptosis through lipid droplet formation that has been demonstrated to be the
initial key event in cell death [98]. Finally, CNP appears to play a role with caspase-independent
apoptosis [99].

3.5. Activation of Catecholamines

Finally, there were several changes in the white matter involved in sympathetic activity and
catecholamine production. As mentioned previously, CACNA2D1 was upregulated in the white
matter. Although we did not specifically look at areas within the brain, this protein is active in the
periventricular nucleus (PVN) and is involved with sympathetic outflow [13]. This is interesting
because two proteins involved with sympathetic responses were also upregulated in the gray matter.
Quinonoid dihydropteridine reductase (QDPR) is primarily associated with the regeneration of
tetrahydrobiopterin (BH4) from quinonoid dihydrobiopterin (qBH2). BH4 is a critical co-factor in
the biosynthesis of the neurotransmitters dopamine and serotonin [95]. Syntaxin 1A (STX1A) is
expressed in endocrine cells [18] and STX1A knockout mice had decreased circulating levels of the
stress hormones, CRH and ACTH, as well as serotonergic precursors [18].

4. Materials and Methods

4.1. STS-135 Flight Mice and Control Conditions

Space Shuttle Atlantis, i.e., Space Transportation System 135 (STS-135), was launched from the
Kennedy Space Center (KSC) on a 13-day mission in July of 2011. Female C57BL/6 mice (Charles River
Laboratories, Inc., Hollister, CA, USA) were flown in STS-135 using NASA’s animal enclosure modules
(AEMs). Mice were housed in two groups of five per AEM, separated by mesh wire. A set of ground
controls (Ground AEMs) was housed at the Space Life Science Laboratory (SLSL) at the KSC. Ground
AEM control mice were placed into the same housing hardware used in flight and environmental
parameters such as temperature and carbon dioxide (CO2) levels were matched as closely as possible
based on 48-h delayed telemetry data.

All mice were under ambient temperatures of 26–28 ◦C with a 12-h day/night cycle during the
flight. The mid deck CO2 levels that the mice were exposed to averaged 2150 parts per million (ppm)
and ranged from a few hundred ppm while on the ground, before installation in the shuttle, to a
maximum level of 3480 ppm in the shuttle during the mission. AEM controls were fed a special NASA
food bar diet, the same as the space-flown mice. All mice received the same access to food and water
ad libitum.

The Loma Linda University (LLU) Institutional Animal Care and Use Committee (IACUC) was
consulted but no protocol was required since tissues were only obtained after euthanasia. However, it



Int. J. Mol. Sci. 2019, 20, 7 9 of 16

should be noted that all NASA research with vertebrate animals is done in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institute of
Health (NIH). The primary science team responsible for running the project obtained approval from
the NASA Ames Research Center ACUC (NAS-11-002-Y1) on 5/31/2011.

Upon return to Earth, animals were removed from the AEM nursing facility and assessed for
survival and health. It was reported that all the mice survived the 13-day space mission. All animals
were described by the inspecting personnel as being in good condition.

4.2. Dissection and Preservation of Mouse Brains Post Flight

Within 3–5 h after landing, the mice were euthanized and the brains were removed (4–8 mice/group).
As part of the primary science, all mice underwent dual energy X-ray absorptiometry (DEXA)
densitometry (Piximus, Inc., Fitchburg, WI, USA) immediately prior to anesthesia and euthanasia.
Mice were anesthetized with 3–5% isoflurane and euthanized with 100% CO2 and exsanguination via
cardiac puncture. The whole brain hemispheres were fixed in 4% paraformaldehyde in phosphate
buffered saline (PBS) for 24 h and then rinsed with PBS and infiltrated overnight with 30% sucrose in
PBS at 4 ◦C. Fixed samples were sent to Loma Linda University (LLU) via courier for analysis. As we
were part of the NASA Biospecimen Sharing Program (BSP) team, we did not have access to all the
tissues from all the mice. However, we received tissues from four flight mice and eight ground control
mice. Tissue from two of the ground control samples were lost during processing, giving us a final
sample size of n = 4 or 6 for flight and ground, respectively.

4.3. Brain Sectioning for Proteomic Analysis

Paraffin-embedded brain sections were coronally gross sectioned at a thickness of 10 µm. After
mounting and de-paraffinizing, six 3 mm diameter circular punches of tissue were obtained to
provide three replicate samples each of white matter of the corpus callosum and gray matter of
the cerebral cortex. Each tissue punch (disk) was transferred to a vial for individual processing (work
up) by a modification of the methodology of Craven et al. [100]. When tissues are processed by the
Craven method, formalin fixed tissues still yield 80% or more of the available proteins for proteomic
analyses [100]. The preparation of the tissue samples for proteomic mass spectrometry (MS) analysis
in this paper is described by the steps below.

4.4. Protein Extraction from Tissue

We used boil-proof 1.7 mL low retention polypropylene snap-top vials to process the tissues. Lysis
buffer was made by combining 50 µL each of stock solutions A and B, plus 10 µL of freshly prepared
1.1 M dithiothreitol (DTT). Solution A consisted of 300 mM Tris-Cl pH 8.2. Solution B was made
by combining five liquid components: 20% sodium dodecyl sulfate (SDS), glycerol, trifluorethanol,
thiodiethanol, and water at the volumetric ratio of 3:2:1:1:3. Protein extraction was initiated by the
addition of 110 µL lysis buffer to each vial containing a tissue punch (disk), followed by incubation for
30 min at 105 ◦C in a fume hood because of trifluorethanol toxicity. After cooling the vials were stored
indefinitely at −80 ◦C.

4.5. Trypsin Digestion

This was done using Amicon Ultra-0.5 mL 30 kDa centrifugal filter devices (http://www.
emdmillipore.com). A urea-ammonium bicarbonate buffer (UA) that is 50 mM with respect to
ammonium bicarbonate (ABC) and 8 M with respect to ultrapure urea (https://www.thermofisher.com)
was prepared fresh on the day of use. The use of the Amicon Ultra centrifugal filter device has been
outlined next. (a) To each vial after protein extraction (see above) 300 µL of UA were added and
vortexed. The sample components were transferred to an Amicon Ultra, centrifuged at 10,000× g for
10 min, and the filtrate was discarded. (b) To complete the transfer initiated above and to continue
the replacement of reagents from the protein extraction procedure described in 2.4 above with UA

http://www.emdmillipore.com
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constituents, the above process was repeated twice using 400 µL UA each time, and both filtrates were
discarded. (c) Next, 5 µL each of 5 mM Tris (2-carboxyethyl) phosphine (TCEP) and 10 mM acrylamide
and 200 µL UA were combined. The entire volume was then transferred to the Amicon Ultra, incubated
for 30 min at ambient temperatures, centrifuged, and the filtrate was discarded. (d) The reagents were
washed by the addition of 400 µL UA, centrifuged, and the filtrate was discarded. (e) The urea was
washed out by the addition of 400 µL of 50 mM ABC, centrifuged, and the filtrate was discarded.
This process was repeated twice more. (f) Next, 200 µL of 50 mM ABC were added and a protein
assay (Nanodrop, http://www.nanodrop.com, or Micro BCA, http://www.thermofisher.com) was
performed on an aliquot. (g) A prepared trypsin digestion solution was added to the remaining protein
in the Amicon Ultra. The 100 µL of 250 mM ABC were combined with 2.5 µL of 1% Promega PMax
(http://promega.com) to give a 0.025% working solution plus sufficient sequencer-grade trypsin to
result in an enzyme to protein ratio in the range of 1:25–50. (h) The solution was incubated overnight at
37 ◦C to convert the proteins to peptides. (i) The next morning, 150 µL of water was added, centrifuged,
and the filtrate containing the peptides was collected. These steps were repeated using another 150 µL
water and the filtrates were combined. (j) Next, 20 µL of 10% TFA were added to the combined filtrates
to destroy the PMax. (k) The filtrate was concentrated in a vacuum centrifuge to a volume of 100 µL
and stored at −80 ◦C. (l) Just prior to MS analysis, a 2–5 µg portion of each protein/peptide sample
was purified with a Zip-tip C18 P10 (http://www.emdmillipore.com). The sample preparations from
each set of the three replicate “punches” were pooled, resulting in a total of 20 samples for MS analysis.

4.6. MS Analyses and Data Processing

An Easy-nLC system with an autosampler was attached to an LTQ-Orbitrap Velos Pro mass
spectrometer (http://thermoscientificbio.com). This was used for all MS analyses utilizing 2 to 2.5 µg
peptide loadings after zip-tip purification. After injection, the 5 µL peptide samples in 0.25% TFA were
passed through a 2 cm× 100 µm C18, of 5 µm particle size, precolumn (http://thermoscientificbio.com)
in series with a 10 cm × 75 µm in-house-prepared capillary column packed with Microm Magic C18 of
5 µ particle size (http://www.michrom.com/) for separation and elution.

A 2-h gradient was used (Solvent A 0.1% FA in water, Solvent B 0.1% FA in ACN, 5–30% Solvent B).
Collision-induced disassociation was used to fragment the top 10 most abundant ions and the MS/MS
spectra were collected between 250 and 1500 m/z, following the parent full-scan mass spectrum
collected at 60,000 resolution.

The raw data files from these analyses were processed first through Proteome Discoverer (http:
//thermoscientificbio.com) for precursor intensity with the following search parameters using the
mouse Uniprot/Swissprot database: 2 missed trypsin cleavages allowed, dynamic oxidation on
methionine, deamidation on asparagine and glutamine, and static proprionamide attachment on
cysteine. In parallel, the data processing was performed using our DeMix Q algorithm. Briefly, DeMix
“unmixes” the MS/MS events that become frequently but accidentally multiplexed because more
than one (up to four) precursor ions are selected for fragmentation within the same m/z window
simultaneously [101]. DeMix allows one to identify more peptides on average than there were
precursors selected for MS/MS. For extension of the peptide identity “between the runs” and thus
additionally increase the number of identified peptides while simultaneously improving quantification
accuracy, we used DeMix Q [102], an extension of the DeMix algorithm that employs the scoring of
identity transfer. Further improvement in quantification accuracy can be achieved with the help of our
Diffacto algorithm [103] that selects for protein quantification of only “well-behaved” peptides.

All spread sheets with protein relative abundances were then exported into Ingenuity Pathway
Analysis (IPA; http://www.ingenuity.com/products/ipa). In IPA, only direct relationships were
allowed in the general settings and genes. Endogenous chemical interactions and causal networks
were both included. All items were selected under data sources, confidence, species and mutation.
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5. Conclusions

In summary, this study is the first to identify spaceflight-induced proteomic significance and
biomarkers in the gray and white matter of the murine brain. These unique “proteomic signatures”
of brain tissue may provide new mechanistic insight into the complex biological response to space
environment. We propose that spaceflight conditions induce changes in neuronal structure, cellular
function, oxidative response, mitochondrial function and metabolism, which, in turn, might lead to
tissue injury and late neurodegeneration. The diverse changes in protein expression profiles in white
and gray matter in response to spaceflight conditions warrants further investigation. Further studies
are also necessary to elucidate the possible tissue and functional impact responsible for our findings
and to identify effective countermeasures.
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