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ABSTRACT Meiotic recombination is a fundamental cellular mechanism in sexually reproducing organisms and its different forms,
crossing over and gene conversion both play an important role in shaping genetic variation in populations. Here, we describe a
coalescent-based full-likelihood Markov chain Monte Carlo (MCMC) method for jointly estimating the crossing-over, gene-conversion,
and mean tract length parameters from population genomic data under a Bayesian framework. Although computationally more
expensive than methods that use approximate likelihoods, the relative efficiency of our method is expected to be optimal in theory.
Furthermore, it is also possible to obtain a posterior sample of genealogies for the data using this method. We first check the
performance of the new method on simulated data and verify its correctness. We also extend the method for inference under models
with variable gene-conversion and crossing-over rates and demonstrate its ability to identify recombination hotspots. Then, we apply
the method to two empirical data sets that were sequenced in the telomeric regions of the X chromosome of Drosophila melanogaster.
Our results indicate that gene conversion occurs more frequently than crossing over in the su-w and su-s gene sequences while the local rates
of crossing over as inferred by our program are not low. The mean tract lengths for gene-conversion events are estimated to be�70 bp and
430 bp, respectively, for these data sets. Finally, we discuss ideas and optimizations for reducing the execution time of our algorithm.

CROSSING over and gene conversion refer to two differ-
ent mechanisms of recombination by which homologous

chromosomes exchange genetic material during meiosis. In
many eukaryotes, recombination is an essential requirement
for sexual reproduction because it maintains physical con-
nections between homologous chromosomes and contrib-
utes to proper segregation at the end of the first meiotic
division. As currently understood, recombination starts with
the formation of a double-stranded break in the DNA and
proceeds by a series of biochemical steps leading to its repair
(e.g., see Szostak et al. 1983; Stahl 1994). This repair can
result in either the reciprocal exchange of large chromo-
somal regions (called crossing over) or the exchange of
short DNA tracts (called gene conversion). The stretch of
DNA exchanged during a gene-conversion event is called
a conversion tract. A crossing-over event involves a single

breakpoint in the chromosome and regions beyond this
breakpoint are swapped between homologs to create mosaic
products. In contrast, a gene conversion creates a mosaic in
which a short internal fragment comes from one homolog
while the rest of the chromosome flanking this fragment
comes from the other. The products are similar in length
to the participating homologs.

Crossing over is the better studied mechanism of re-
combination and crossing-over rates are known to vary
tremendously across the genome at all scales. In particular,
sperm-typing experiments as well as population genetic
analysis of human polymorphism data have provided
considerable evidence for fine-scale rate variation along
the genome (e.g., see Fullerton et al. 1994; Dunham et al.
1999; Jeffreys et al. 2001, 2005; Innan et al. 2003; Crawford
et al. 2004; McVean et al. 2004; International Hapmap Con-
sortium 2005; Myers et al. 2005; Fearnhead and Smith
2005; Tiemann Boege et al. 2006; Coop et al. 2008). Nota-
bly, the population genetic studies ignored the effects of
gene conversion and assumed that crossing over was the
only mechanism underlying all exchanges. In general, gene
conversion has been harder to study due to lack of appro-
priate fine-scale data and powerful statistical tools. Sperm-
typing studies at a few individual human loci have provided
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evidence of high rates of gene conversion relative to crossing
over (Zangenberg et al. 1995; Jeffreys and May 2004) and
observed tract lengths that appear to be in the range of 50–
150 bp. Gene conversion has also been studied experimen-
tally in yeast and fruit flies (Fogel et al. 1983; Hilliker et al.
1991, 1994; Paques and Haber 1999; Allers and Lichten
2001; Mancera et al. 2008) and tracts are estimated to be
in the range of 350–2000 bp in these organisms. Neverthe-
less, the nature and extent of variation in gene-conversion
rates along genomes remains by and large unknown.

Characterizing the basic parameters of gene conversion
(i.e., rates and tract lengths) within organisms is useful
for a variety of reasons. First, it helps to better explain
the patterns of linkage disequilibrium observed in single-
nucleotide polymorphism (SNP) data (Wall and Pritchard
2003; Padhukasahasram et al. 2004). Second, algorithms
for association mapping (e.g., Liu et al. 2001; Morris et al.
2002; Niu et al. 2002; Carlson et al. 2004) and for detecting
natural selection (e.g., Voight et al. 2006) make assumptions
about the local recombination parameters and conversion esti-
mates may help fine-tune such methods. Finally, meiotic gene
conversion is a fundamental biological mechanism and its re-
lationship to crossing over is not yet fully understood and is an
important open question. The emergence of dense SNP data
sets from next generation sequencing technologies in the com-
ing years presents a major opportunity to accurately quantify
recombination rates from a population genetics standpoint.
Thus, population genetic analysis of gene-conversion and
crossing-over rates can eventually shed light on the rela-
tionship between these two processes and can supplement
experimental approaches in answering this question (see
previous studies Langley et al. 2000; Allers and Lichten
2001; Andolfatto and Wall 2003; Padhukasahasram et al.
2006; Mancera et al. 2008).

Currently, several statistical methods exist that are designed
to jointly estimate the crossing-over and gene-conversion rates
from population genetic data. Methods developed by Frisse
et al. (2001), Ptak et al. (2004), and Wall (2004) generalize
the composite-likelihood approach first proposed in Hudson
(2001). These approaches divide the data into small subsets
(pairs or triplets of segregating sites), calculate likelihoods for
these subsets, and multiply them together. The likelihood
thus obtained is called the composite likelihood. Composite-
likelihood methods use precomputed likelihood lookup tables
for all the possible configurations of the subsets and are typi-
cally fast. Because the subsets are not independent of one
another, they do not calculate the true likelihood of the data.
Therefore, correct confidence intervals can be obtained only
by using simulations.

Padhukasahasram et al. (2006) describe a rejection-
sampling method that simultaneously utilizes informative
long-range and short-range summary statistics to infer the
recombination parameters. This approach uses only part of
the information available in the data for the sake of compu-
tational efficiency. Confidence intervals may be directly cal-
culated from the likelihood surface in this method.

The approximate-likelihood method for estimating crossing-
over rates [called product of approximate conditionals (PAC)]
that was proposed in Li and Stephens (2003) has also been
extended by several recent studies to include gene conversion.
Briefly, this method infers recombination parameters under
a heuristic model and is computationally efficient. However,
inference is currently restricted to the constant population size
Wright–Fisher model only. Hellenthal (2006) used a PAC
model where the conversion tract can include at most one
marker. Gay et al. (2007) improved on that work to allow for
arbitrary gene-conversion tract lengths and this method can be
used for coestimating crossing-over and gene-conversion rates
as well as tract lengths. One simplification in their model was
that they disallowed overlapping gene-conversion events. Yin
et al. (2009) further generalized this work to allow for over-
lapping events and in theory this method is expected to perform
at least as well as the method of Gay et al. (2007). Simu-
lations indicate that this generalization (at least for a subset
of parameters) leads to a more accurate PAC-based method
for jointly estimating all three recombination parameters.

In this article, we extend the Bayesian Markov chain
Monte Carlo (MCMC) method (originally developed to infer
crossing over exclusively) of Wang and Rannala (2008) to
jointly estimate the population crossing-over rate, the pop-
ulation gene-conversion rate, and the mean conversion tract
length from SNP data. We first check the performance of the
new method on simulated data and verify its correctness. In
addition, we extend the method for inference under models
with variable gene-conversion and crossing-over rates and
demonstrate its ability to identify recombination hotspots.
Next, we apply the method to two empirical data sets that
were sequenced in the telomeric regions of the X chromo-
some of Drosophila melanogaster. Because the new method
generates a posterior sample of genealogies consistent with
the observed data, it is possible to obtain the distribution of
gene-conversion breakpoints for a data set. Comparison of
this distribution with a prior using a Bayes factor may be
informative about the locations of conversion breakpoints in
the history of the sample. We also calculate the Bayes factors
for gene-conversion initiation points for these two Drosoph-
ila data sets. Our analysis suggests that gene conversion
occurs more frequently than crossing over in the su-w and
su-s gene sequences while the local rates of crossing over as
inferred by our program are not low. The estimated mean
tract lengths for these regions are �70 bp and 430 bp, re-
spectively. Furthermore, plots of the logarithm of Bayes fac-
tors for conversion start points do not indicate any strong
deviations from a prior distribution expected under a model
with uniform recombination rates. Finally, we discuss ideas
and optimizations for improving the run-time efficiency of
our algorithm.

Materials and Methods

Our recombination inference method is based on the
retrospective coalescent framework in which the genealogy
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of a sample of sequences is approximated by a graph called
the ancestral recombination graph (ARG) (Kingman 1982;
Hudson 1983; Griffiths and Marjoram 1996). In particular,
the method uses the coalescent with gene conversion as
described in Wiuf and Hein (2000). In this model, conver-
sion tract lengths are assumed to be geometrically distrib-
uted (Hilliker et al. 1994). The distribution of tract length
(Z) given that a gene-conversion event has occurred, i.e.,
P(Z = z|gene conversion), is thus equal to q(1 2 q)z–1,
where q denotes the reciprocal of the mean conversion tract
length (m). Consider a sequence of length L + 1 bp. A gene-
conversion event can initiate between any two adjacent base
pairs along the sequence. Without loss of generality, the
model also assumes that a tract will always be to the right
of the initiation position. Thus, if a conversion event initiates
at gap S, S = 1, 2, 3, . . . , L, then the end point is S + z.
Gene-conversion events that initiate outside the sequence on
the left and terminate within the sequence must also be in-
cluded in our analysis. The probability that the tract length
is greater than km, where m is the mean conversion tract
length and k is a positive integer, becomes negligible as k
grows. So, only a finite sequence (say 50m) on the left of the
sequence of interest needs to be taken into account for the
latter kind of events and the rest of the chromosome can be
ignored.

Let r denote the population crossing-over rate, g the pop-
ulation gene-conversion rate, and u the population mutation
parameter. Let X denote a sample of haplotypes or genotypes
and GS denote a collection of correlated trees (i.e., an ARG)
at the marker locations consistent with X. We are interested
in sampling from the following posterior probability density:

f ðr; g;mjXÞ
¼
Ð
f ðXjGS; uÞfðGSjr; g;mÞf ðrÞfðgÞf ðmÞf ðuÞdudGS

f ðXÞ :
(1)

The posterior distribution of recombination parameters
can be numerically evaluated by using a reversible-jump
MCMC (RJMCMC) scheme. In particular, a Metropolis–Hast-
ings (MH) algorithm is used to estimate the parameters de-
scribed in Equation 1. The MH algorithm has two steps: (i)
the proposal step in which potential new parameter values
are simulated from the proposal density Q(f9|f) and (ii)
the acceptance step in which the proposed values are ac-
cepted with probability a or rejected with probability 1 –

a. If accepted, f9 becomes the current state in the chain;
otherwise the chain remains at f and f9 is discarded. The
acceptance probability for a parameter is given by

a ¼ min
�
1;  

lðf9jXÞQðfjf9Þf ðf9Þ
lðfjXÞQðf9jfÞf ðfÞ

�
; (2)

where f denotes the prior density and l denotes the likeli-
hood. For each node in the ARG, we store an array of size
equal to the number of markers and keep track of marker
positions that are ancestral to the sample. We call this the
ancestry vector [also the Marker Ancestry (MA) vector, see

Wang and Rannala 2008]. The distance between the start
and the end of the ancestral locations in this vector is re-
ferred to as the length of the ancestry vector. Our joint es-
timation program begins with a binary tree that is consistent
with the observed data and then proceeds according to the
following proposal moves.

Adding (or removing) a pair of crossing-over and
coalescence nodes

We generate two uniform random variables u and v from the
interval (0, tH), where tH denotes the height of the geneal-
ogy. The smaller of the two becomes the time for inserting
a new crossing-over node and the larger is the time corre-
sponding to the coalescence node. The remainder of this
move is identical to the one in Wang and Rannala (2008)
except that the probability of acceptance becomes

a ¼ min

 
1;  

lðXjG9S; uÞQðGSjG9SÞf ðG9Sjr; g;mÞ
lðX��GS; uÞQðG9S

��GSÞf ðGS
��r; g;mÞ

!
;

where the proposal ratio is

QðGSjG9SÞ
QðG9S

��GSÞ
¼ t2Hn9br1n9br2ðl2 2 l1Þ

2npair
:

GS denotes the current genealogy and G9S denotes the newly
proposed genealogy. npair here refers to the number of pos-
sible pairs of crossing-over and coalescence nodes that can
be deleted from G9S. n9br1 and n9br2 refer to the number of
eligible branches at the times at which new crossing-over
and coalescence nodes will be inserted where eligible
branches must have ancestry vector length .1 when insert-
ing crossing-over nodes. l2 2 l1 refers to the distance be-
tween the start and the end of the ancestral segment in
a branch.

The probability of adding a pair of nodes to move from GS

to G9S is given by

�
2=t2H

�
· ð1=n9br1Þ · ð1=n9br2Þ · ð1=ðl2 2 l1ÞÞ:

The first term denotes the probability of proposing the ages
of the two nodes, the second and third terms denote the
probability that the two nodes are inserted into the
particular eligible branches at their respective times, and
the last term denotes the probability of proposing a re-
combination breakpoint in the crossing-over node that is
inserted. Note that when deleting a pair of crossing-over and
coalescence nodes, we randomly choose a pair to delete.
Thus, in the proposal ratio 1/npair denotes the probability
that the same pair of crossing-over and coalescent nodes
that were added are chosen for deletion, to move back from
G9S to GS.

Calculating the likelihood of data given a genealogy GS:
l(X|GS, u) denotes the likelihood of observing a set of
haplotypes/genotypes given an ARG and the population
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mutation rate. Given the genealogical tree ti for a marker
site i, and conditional on one or more mutations having
occurred, the likelihood of a marker tree is given by

Pl2ti IðD
i

l ¼ D
i

lA
Þ½ð12 e20:5utl ÞpDi

l
þ e20:5utl � þ IðDi

l 6¼ D
i

lA
Þ½ð12 e20:5utl ÞpDi

l
�

12 e20:5uTi
;

where l indicates a branch in ti with length tl, connecting D
i

l
and D

i

lA , with D
i

lA being the ancestral allele of D
i

l in that
branch. The likelihood is calculated across all branches in
ti and I denotes the indicator function. Parameter Ti repre-
sents the sum of the branch lengths in ti and pj is the fre-
quency of allele j at stationarity. l(X|GS, u) is the product of
the likelihoods across all the marker trees.

Adding (or removing) a pair of gene-conversion and
coalescence nodes

As before, we generate two uniform random variables u
and v from the interval (0, tH), where tH denotes the
height of the genealogy. The smaller of the two becomes
the time for inserting a new gene-conversion node and the
larger is the time corresponding to the coalescence node.
Note that we are interested only in gene-conversion
events that can potentially change the genealogy of the
sample at the marker locations and thus the sample
configuration.

Let l2 2 l1 denote the distance between the start and the
end of the ancestral segment in a branch of the graph. We
propose a gap position (g) for initiation of gene conversion
nonuniformly from a region of length l2 2 l1 + 50m, where
the sequence of length 50m lies to the immediate left of the
start of the ancestral region in the MA vector and m denotes
the mean conversion tract length.

The probability that a gap location is proposed is pro-
portional to the chance that the tract length is greater than
or equal to the distance (k) from the nearest MA vector
position on the right of that gap location. The chance that
the tract length is $k is given by

qð12 qÞk21 þ qð12 qÞk þ qð12 qÞkþ1. . .N ¼ qð12 qÞk21

ð12 ð12 qÞÞ
¼ ð12 qÞk21:

After choosing the initiation gap, we propose a tract
length (z) according to a truncated geometric distribution
conditional on the tract length greater than or equal to the
distance from the nearest MA vector position on the right, so
that only tracts that can affect the genealogy of the sample
at markers are included. When the start of the gene-conver-
sion tract is to the left of the start of the MA vector, we
include the additional condition that the end of the tract is
always to the left of the end of the MA vector. Thus, we
exclude tracts $l2 – l1 + k for such cases because such tracts
do not affect the sample configuration (the probability of
picking such a gap is proportional to ð12qÞk212
ð12qÞl22l1þk21). The probability of acceptance is equal to

a ¼ min

 
1;  

lðXjG9S; uÞQðGSjG9SÞf ðG9Sjr; g;mÞ
lðX��GS; uÞQðG9S

��GSÞf ðGS
��r; g;mÞ

!
;

where the proposal ratio is

QðGSjG9SÞ
QðG9S

��GSÞ
¼ t2Hn9br1n9br2

2npairpðgÞdðzÞ:

The terms are the same as before except that p(g) denotes
the chance that a gap location is proposed. Let pj denote the
probability that a gene-conversion tract that initiates at the jth
base pair along the sequence includes some but not all ances-
try vector positions. Then, pðgÞ ¼ pg=

Pj¼l2
j¼l1250mpj. d(z) repre-

sents the density of the truncated geometric distribution for
tract length at the chosen gap location; i.e., P(Z = z|Tract
includes some but not all MA vector positions. Note that the
proposal distributions for both initiation points and tract
lengths are identical to the prior distributions when gene-
conversion rates are assumed to be uniform along the
sequence. npair refers to the number of possible pairs of
gene-conversion and coalescence nodes that can be deleted.
n9br1 and n9br2 refer to the number of eligible branches at the
times at which new gene-conversion and coalescence nodes
will be inserted, where eligible branches must have ancestry
vector length .1 when inserting gene-conversion nodes.

Local topology rearrangements

This move consists of moving either a recombination or
a coalescence node to a new location in the graph. It is
identical to what is described in Wang and Rannala (2008)
except that the conditional probability terms will include
parameters r, g, and m instead of r alone.

Propose new waiting times between events in
the graph

We propose a new graph with new waiting times between the
successive (recombination or coalescence) events. The topol-
ogy of the graph is left unchanged in this new move. The
waiting times to the next event are proposed from the prior
distribution expected under coalescent theory on the basis of
the number of lineages and the ancestry vectors after the
previous event. Note that this proposal is independent of the
current waiting times. The probability of acceptance is given by

a ¼ min

 
1;  

lðXjG9S; uÞQðGSjG9SÞf ðG9Sjr; g;mÞ
lðX��GS; uÞQðG9S

��GSÞf ðGS
��r; g;mÞ

!
:

Let k denote the number of lineages after the previous
event. Under coalescent theory, the rate of coalescence is
0.5k(k – 1), the rate of crossing over is 0.5kr, the rate of
gene conversion is 0.5kg, and the waiting time to the next
event is exponentially distributed with an overall rate of
[0.5k(k – 1) + 0.5kr + 0.5kg]. However, because here we
are interested only in informative gene-conversion and
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crossing-over events, we have to make some modifications
when calculating the rates. Let fi denote the fraction of the
sequence included within the start and the end of the an-
cestry vector. Then, the rate of informative crossing-over
events for the ith lineage is given by rfi and the overall rate
of crossing over becomes rt ¼

Pi¼k
i¼1rfi: Similarly, let pij de-

note the probability that a gene-conversion tract that ini-
tiates at the jth basepair along the sequence in lineage i
includes some but not all ancestry vector positions at that
lineage. Let g/L denote the gene-conversion rate per base
pair. Then, the rate of informative gene conversions is given
by gt ¼

Pi¼k
i¼1
Pj¼l2ðiÞ

j¼l1ðiÞ250mpijg=L; where l1(i) and l2(i) denote
the start and the end of the ancestry vector for the ith lin-
eage. Thus, the waiting times to informative events are ex-
ponentially distributed with a rate of [0.5k(k – 1) + 0.5rt +
0.5gt]. The overall probability of a proposal is equal to the
product of the exponential density functions of successive
events. Note that since we propose the new waiting times
from the coalescent prior,

QðGSjG9SÞfðG9Sjr; g;mÞ
QðG9S

��GSÞf ðGS
��r; g;mÞ ¼ 1:

Coalescent prior density for a genealogy: To calculate the
coalescent prior probability for a genealogy GS, i.e., f(GS|r,
g, m), we calculate the product of three quantities at each
event and multiply them together:

1. Density of the waiting time for that event: The time is
exponentially distributed with a rate of [0.5k(k – 1) +
0.5rt + 0.5gt].

2. The probability that the event is a coalescence or a gene
conversion or a crossing over:

PðCoalescenceÞ ¼ 0:5kðk2 1Þ
½0:5kðk2 1Þ þ 0:5rt þ 0:5gt�

Pðgene conversionÞ ¼ 0:5gt
½0:5kðk2 1Þ þ 0:5rt þ 0:5gt�

Pðcrossing overÞ ¼ 0:5rt
½0:5kðk2 1Þ þ 0:5rt þ 0:5gt�

:

3. The chance is calculated that (a) a particular pair of lin-
eages will be picked to coalesce; i.e., 2/k(k – 1) if the
event is coalescence. (b) If the event is crossing over, the
chance that a particular lineage will be picked for crossing
over is multiplied by the chance that its breakpoint will be
picked. (c) If the event is gene conversion, the chance that
the particular lineage is picked for gene conversion is mul-
tiplied by the chance that its initiation point is chosen
multiplied by the chance that the tract length is chosen.

Propose a new breakpoint (and tract length) for
a recombination node

In this move, we pick a crossing-over or gene-conversion node
at random and propose a new breakpoint (and tract length)

for that node. We also randomly propose a new direction for
how the products of recombination get distributed (i.e., which
part goes to the left branch/right branch of the recombination
node). We then update the ancestry vectors of the subsequent
nodes in the graph on the basis of the modified node. The
probability of acceptance as before is equal to

a ¼ min

 
1;  

lðXjG9S; uÞQðGSjG9SÞf ðG9Sjr; g;mÞ
lðX��GS; uÞQðG9S

��GSÞf ðGS
��r; g;mÞ

!
:

If the chosen node is a crossing-over node, we propose
a new breakpoint uniformly between the start and the end of
the ancestry vector positions and the proposal ratio for the
node is equal to 1. The proposal ratio for a new breakpoint
and tract length for a gene-conversion node is given by

QðGSjG9SÞ
QðG9S

��GSÞ
¼ pðgÞdðzÞ

pðg9Þdðz9Þ:

Here, p(g) denotes the probability that a breakpoint loca-
tion is proposed in a gene-conversion node. Let pj denote the
probability that a gene-conversion tract that initiates at the jth
basepair along the sequence includes some but not all ances-
try vector positions. Then, pðgÞ ¼ pg=

Pj¼l2
j¼l1250mpj, where l1

and l2 denote the start and the end of the ancestry vector,
respectively. d(z) is the density of the truncated geometric
distribution for tract length at the chosen gap location;
i.e., P(Z = z| Tract includes some but not all MA vector
positions.

Modify ancestral states, haplotype phases, and
missing data

These steps are identical to those found in Wang and Ran-
nala (2008) because the likelihood of the data given the
genealogy trees and u, i.e., l(X|GS, u), is the same as de-
scribed there.

Propose new values for the parameters r, g, m, and u

New r is proposed according to a sliding window with reflect-
ing boundary at 0. The acceptance probability is given by

a ¼ min
�
1;  

f ðGSjr9; g;mÞf ðr9Þ
f ðGSjr; g;mÞf ðrÞ

�
:

New g is proposed according to a sliding window with
reflecting boundary at 0. The acceptance probability is given
by

a ¼ min
�
1;  

f ðGSjr; g9;mÞf ðg9Þ
fðGSjr; g;mÞf ðgÞ

�
:

New m is proposed according to a sliding window with
reflecting boundaries at 1 and at 2000 or 3000 bp. The
acceptance probability is given by
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a ¼ min
�
1;  

fðGSjr; g;m9Þfðm9Þ
f ðGSjr; g;mÞfðmÞ

�
:

New u is proposed according to a sliding window with
reflecting boundary at 0. The acceptance probability is given by

a ¼ min
�
1;  

lðXjGS; u9Þf ðu9Þ
lðXjGS; uÞf ðuÞ

�
:

Variable recombination rate model

We also use a variable recombination rate model in our
analysis that includes background rate variation and hot-
spots. In this model, the background crossing-over rate
follows a gamma distribution with shape and scale param-
eters and recombination hotspots that arise according to
a Markov process. The waiting distance until the occurrence
or loss of a crossing-over hotspot is exponentially distrib-
uted while the intensity of a hotspot follows a log-normal
distribution. More details about this crossing-over model
can be found in Wang and Rannala (2009). In our exten-
sion of the Wang and Rannala model, we assume that
gene-conversion and crossing-over rates vary in an identi-
cal pattern such that their ratio (f) remains uniform along
the sequence. Thus, all crossing-over hotspots are also
gene-conversion hotspots.

Results

Checking the MCMC program

To check the correctness of our MCMC algorithm, we first
examined the stationary distribution of several genealogy-
based summary statistics when the chain is run with no data
(i.e., with the likelihood ratio set to 1). We fixed the values
of r, g, and m when running the chain and then compared
the distribution of the number of crossing-over (CO) events,
the number of gene-conversion (GC) events, and the gene-
alogy height (H) with coalescent simulations for the same
parameters. As can be seen from Table 1, the expectations
from the MCMC algorithm are in agreement with those
obtained by straightforward Monte Carlo simulations under
the coalescent.

Test runs on simulated data: Next, we tested our inference
program on data sets simulated with gene conversion alone
and compared the posterior distribution of g as estimated by
our program with the true value used in simulations. For this
testing, we fixed the mean tract length and u to their true
values and r was fixed at 0. The results obtained are shown
in supporting information, Figure S1. When gene-conversion
rates are high, we expect that the power to detect gene
conversion will be high and our posterior distribution will
not include 0 most of the time (e.g., g = 4000/Mb, Figure
S1), which would tell us clearly that conversions have
happened. On the other hand, when gene-conversion rates
become lower it becomes difficult to infer whether a conver-

sion event has happened in a particular sample’s history
(because the posterior will often include 0). This is because
not every gene-conversion event is necessarily detectable in
a sample and with only a few conversion events in a sample
history, by chance, we could have samples that are also
consistent with one or more binary trees.

In Figure S1ii we show results when we run our joint
estimation program on data sets simulated with gene con-
version alone with the tract length fixed at its true value. We
can see that estimates of r are low but nonzero and the
credible intervals contain values close to 0. Note that esti-
mates of g under this joint estimation scenario can be con-
siderably lower than the truth although the true value of r is
0 (which means that we interpret some of the gene conver-
sions as crossing overs). In Figure S1iii we show results for
the other boundary case, i.e., when data are simulated with
crossing over alone with g set at 0. For this scenario, we
attempted to estimate both crossing-over and gene-conver-
sion rates with the tract length fixed at different values. In
addition, we also estimated the recombination parameters
and mean tract lengths jointly. We can see that estimates of
g can be substantial although the true value is 0. When the
mean conversion tract length becomes longer (e.g., 2000 bp,
8000 bp), we observe multiple peaks in the joint posterior
distribution. This suggests that more than one combination
of crossing-over and gene-conversion rates can explain the
simulated data and there is difficulty in distinguishing be-
tween the effects of these two processes.

For Figure S2, we assumed that both gene-conversion
rates and mean tract lengths are unknown and estimated
them jointly. Subsequently, we performed simulations with
both crossing over and gene conversion and attempted to
jointly estimate both g and r for these data sets with the
mean tract length set to its true value. The corresponding
results are shown in Figure S3. In all the figures (i.e., Figure
S1, Figure S2, Figure S3), we can see that the modes of the
posterior distribution are close to the true values of the re-
combination parameters. In Figure S3 too, we sometimes
see more than one peak in the posterior distribution.

In general, estimating gene-conversion rates from pop-
ulation genomic data is a challenging problem. This is
because the traces of this phenomenon in data are limited
and subtle. Note that the ability to detect and quantify gene
conversion in both experiments and population genetic
analysis depends on the tract size. When tracts are short
compared to the spacing between markers, a substantial
fraction of gene-conversion events will not leave a trace in
the sample, making it difficult to infer rates accurately. On
the other hand, when tracts are long compared to the
sequence of interest, some fraction of them will fall only
partly inside the sequence and will be indistinguishable from
crossing over. As Figure S1, ii and iii, and Figure S3 high-
light, there can be substantial confounding when attempting
to jointly estimate both these parameters and it is difficult to
tease apart the effects of conversion and crossing over from
one another.
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Simulations with variable recombination rates: We tested
an implementation of InferRho that incorporates variation in
crossing-over and gene-conversion rates on data sets simu-
lated with recombination hotspots. We simulated 20 sam-
ples of 20-kb sequences with u = 20.0, m = 500 bp, and
a single hotspot between 9 kb and 11 kb. Both r and g =
50/Mb outside hotspots, whereas within the hotspot these
numbers were 5000/Mb. The ratio of gene conversion to
crossing over (f) was assumed to be uniform along the se-
quence in these simulations with f = 1.0. Table 2 shows the
results obtained from running our program on three inde-
pendent replicates for these parameters.

Next, we simulated 50 samples of 20-kb sequences with u

= 20.0, m = 500 bp, a single hotspot between 9 kb and 11
kb, and uniform f = 10.0 (parameters used in Gay et al.
2007). r = 50/Mb and g = 500/Mb outside hotspots,
whereas within the hotspot these numbers were 5000/Mb
and 50,000/Mb, respectively. We estimated recombination
rates for these data sets using the program of Gay et al.
(2007), which implements a variable gene-conversion rate
model. Note that this program does not try to identify hot-
spots but estimates a different crossing-over and gene-con-
version rate between adjacent SNPs. We also inferred the
locations of hotspots using InferRho. Figure 1 plots the
results obtained using these two different methods on five
independent replicates for these parameters. In both Table 2
and Figure 1, we can see that the estimated locations of the
starts and ends of hotspots are close to the true locations.

Comparison with other methods: We compared the per-
formance of our method (implemented in the software
package InferRho) with that of the methods described in
Gay et al. (2007) and Yin et al. (2009). For this comparison,
we simulated 100 data sets each for two different parameter

combinations and estimated all three recombination param-
eters (i.e., the population crossing-over rate, the population
gene-conversion rate, and the mean tract length) jointly for
these data sets. Then, we calculated summaries of these
estimates and compared them with those obtained from
the other two methods. These comparisons are shown in
Table 3. Note that the summaries for the methods of Gay
et al. (2007) and Yin et al. (2009) are based on the same set
of simulated data sets whereas those for our method are
based on an independent sample of 100 data sets. When
implementing all three methods, the starting values of the
recombination parameters were set to the true value that
was used in simulations.

For all the parameters tested, we find that the perfor-
mance of the InferRho program and the method of Yin et al.
(2009) are better than that of Gay et al. (2007). Presumably
this is because the approach of Gay et al. (2007) ignores
overlapping gene-conversion events while the other two
methods do not assume this restriction. In theory, we would
expect the Gay et al. (2007) method to perform worse if
overlapping gene-conversion events are significantly fre-
quent in the history of the sample. Compared to the method
of Yin et al. (2009), InferRho appears to have higher mean
squared error for tract length estimation but lower mean
squared error for crossing-over and gene-conversion rate
estimation. This may be due to confounding when attempt-
ing to estimate both gene-conversion rates and tract lengths
jointly from population genetic data.

Estimates in real data

We applied our method to jointly estimate the crossing-over
and gene-conversion rates in two genes, the su-w and su-s
genes of D. melanogaster that were first studied by Langley
et al. (2000). These genes are located close to the telomeric

Table 1 Comparison between the MCMC program and coalescent simulations

ra ga E(CO)b E(CO)c E(GC)b E(GC)c E(H)b E(H)c Mean tract Sample size Md Le

0.000 0.300 0.0000 0.0000 4.4084 4.4233 2.4454 2.4572 5 8 4 4
0.000 0.100 0.0000 0.0000 1.2583 1.2614 1.9721 1.9781 2 8 4 4
0.100 0.100 0.3163 0.3162 0.5782 0.5777 1.2694 1.2682 5 2 4 4
0.300 0.300 2.4264 2.4281 2.7716 2.7760 4.4577 4.4683 5 8 4 4
0.100 0.300 0.8060 0.8061 2.5602 2.5605 4.4287 4.4282 5 8 4 4
0.001 0.001 29.884 30.646 3.3402 3.4341 5.7887 5.9864 100 8 8 8000
a Population crossing-over and gene-conversion rates per base pair.
b Average of crossing-over count, gene-conversion count, and height of genealogy from coalescent simulations.
c Average of crossing-over count, gene-conversion count, and height of genealogy from MCMC algorithm.
d Number of markers.
e Sequence length in base pairs.

Table 2 Estimated locations of hotspots in three independent simulated data sets

Data set Hotspot start, bp Hotspot end, bp Hotspot intensity estimate f̂

Replicate 1 9,486 (8,746–10,226) 10,555 (8,911–12,199) 4,030.71 2.375 (0.375–6.125)
Replicate 2 10,885 (5,240–16,530) 11,879 (6,969–16,789) 8,160.21 0.375 (0.125–7.375)
Replicate 3 9,822 (8,087–11,557) 11,068 (9,240–12,896) 3,968.12 3.625 (1.125–4.625)

Each simulated data set consists of 20-kb sequences and 20 samples with a single hotspot of intensity 5000/Mb between 9 kb and 11 kb. The relative rate of gene conversion
to crossing over (f) was uniform along the sequence and was equal to 1. The estimated locations for the start and end of hotspots and f are shown along with the 90%
credible intervals in parentheses.
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regions of the X chromosome and are �4.1 kb and 2.5 kb
long, respectively. The su-s data set contains 50 haplotypes
and 41 SNPs whereas the su-w data set that we used con-
tains 50 haplotypes and 46 SNPs in an African-only sample.
We did not try to estimate tract lengths in our initial analysis
and fixed them to 352 bp (estimates from Hilliker et al.
1994). The value of u was set to be equal to Watterson’s
estimate for each data set. Table 4 shows the results
obtained for this analysis (see also Figure S5).

Subsequently, we implemented a version of our inference
program where we estimated both mean tract lengths and

recombination rates jointly. These results are shown in Table
5. Figure S4 shows 95% credible intervals with maximum
posterior density for the estimated parameter values. Note
that the estimated rate of gene conversion depends on the
mean tract length and for shorter tracts the inferred rates
are expected to be higher (see also Figure S5).

We also compared our results with those obtained by the
methods in Gay et al. (2007) and Yin et al. (2009) in Tables
4 and 5. We observe that there is some difference between
the point estimates provided by the three different pro-
grams. Presumably, this is because there is limited

Figure 1 Estimated locations of hotspots in data sets simulated with a uniform ratio of gene conversion to crossing over (f) ¼ 10. Simulations consisted
of 20-kb sequences and 50 samples with a single hotspot between 9 kb and 11 kb. The red curve shows the gene-conversion rates as inferred by the
program of Gay et al. 2007 under a variable rate model. The red asterisks mark the posterior means of the starts and ends of hotspots as estimated by
InferRho, the blue lines represent 90% credible intervals, and the green lines show the true locations of hotspots. Most of the posterior samples
obtained from InferRho contained a single hotspot.
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information in these data sets for joint estimation and there
is difficulty in distinguishing between the effects of the dif-
ferent recombination mechanisms in the short sequences of
the Drosophila genes.

Bayes factor in real data

We compared the posterior distribution of gene-conversion
start points in the su-w and su-s genes with the distribution
under an uninformative prior. The prior distributions were
obtained by running the chain without any data (i.e., with
likelihood ratio = 1) for the same sample size and marker
positions as in the real data sets and assuming uniform re-
combination rates. Let p1 denote the probability that a con-
version initiation point lies within a particular window for
the prior sample of genealogies (This is the fraction of initi-
ation points that lie within that window). Similarly, let p2
denote the corresponding probability for the posterior sam-
ple of genealogies. The odds for the prior and posterior for
a window are given by p1/(1 2 p1) and p2/(1 2 p2), re-

spectively. Formally, the Bayes factor (BF) is defined as the
ratio of the posterior and prior odds; i.e.,

BF ¼ p2ð12 p1Þ
p1ð12 p2Þ:

The log of the BF should be interpreted as the change in
the evidence for gene-conversion initiation in a region due
to the data. A large negative value indicates evidence
against gene-conversion initiation and a large positive value
indicates evidence for gene-conversion initiation. The BF for
10-bp windows is plotted along the genes, assuming the
mean tract length = 352 bp (see Figure 2, A and B). Note
that the Bayes factors for the windows were expected to
indicate where gene-conversion events have occurred in
the history of the sample but their values do not necessarily
imply high or low rates. Thus, this analysis is unrelated to
hotspot identification described in the Simulations with vari-
able recombination rates section. For these Drosophila data
sets, it seems that there is little information concerning the
location of gene-conversion start points because we do not
see very large or very small BFs (|log(BF)| , 2 generally).

Discussion

We have described a Bayesian MCMC method for jointly
inferring the crossing-over and gene-conversion parameters
from SNP data sets that extends the crossing-over estimation
method originally proposed by Wang and Rannala (2008).
In this method, we model the genealogy of a sample as
a recombination graph and keep track of ancestral marker
sites in the MA vectors of its nodes. Furthermore, we include
only informative crossing-over and gene-conversion events
that can potentially change the genealogy of the sample at
the marker locations. These aspects of our algorithm make
the full-likelihood estimation of recombination rates effi-
cient in terms of both the running time and memory require-
ments. Assuming an uninformative prior for the parameters
of interest, we can estimate their joint posterior distribution
using a reversible-jump MCMC scheme. In the Metropolis–
Hastings step, we propose changes to various features of the

Figure 1 Continued.

Table 3 Comparison between three different methods for recombination rate estimation

Method ra ga ma MSE(r̂)b MSE(ĝ)b MSE(m̂)b #(r̂:2)c #(ĝ:2)c #(m̂:2)c

Gay et al. (2007) 500 500 500 3.488 1,022,389 0.723 0.71 0.26 0.36
Yin et al. (2009) 500 500 500 0.079 0.661 0.105 0.71 0.55 0.88
InferRho 500 500 500 0.041 0.222 0.644 0.89 0.77 0.56
Gay et al. (2007) 500 1000 500 0.085 618,219 0.349 0.78 0.48 0.35
Yin et al. (2009) 500 1000 500 0.060 1.348 0.098 0.79 0.70 0.87
InferRho 500 1000 500 0.043 0.487 0.250 0.88 0.81 0.62
a r denotes population crossing-over rate, g denotes the population gene-conversion rate, and m denotes the mean conversion tract length for the 100 simulated data sets.
Recombination rates and mean tract lengths are shown in units of per megabase and base pair, respectively.

b MSE, the mean square error of the parameter estimates for the 100 simulated data sets · 1026. For InferRho, we calculated the marginal estimate of each recombination
parameter from the joint posterior distribution. Numbers for the other methods are taken from Yin (2010).

c #(r̂:2) represents the fraction of the 100 data sets for which estimates are within a factor of 2 of the true parameter value used in simulations (i.e., r). #(ĝ:2) and #(m̂:2) are
defined similarly.
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ancestral recombination graph such as the relative locations
of the recombination or coalescence nodes, the number of
crossing-over or gene-conversion nodes, the ancestral
alleles, and the waiting times between consecutive events
in the graph, etc. The method has been implemented in
a new version of the software package InferRho (see Wang
and Rannala 2008), which will become available online at
http://rannala.org. Currently, we are checking the soft-
ware’s performance for larger values of r and g ($50.0).

The MCMC method described here attempts to generate
a posterior sample of genealogies for the data under the
coalescent. It uses all the information contained in the
haplotypes or genotypes for this purpose (because we
propose and accept only genealogies consistent with the
observed data) and theoretically, after a very large number
of iterations, we expect samples from essentially the correct
posterior distribution. In contrast, PAC-based models (e.g.,
Hellenthal 2006; Gay et al. 2007; Yin et al. 2009) evaluate
likelihoods of the data assuming a heuristic model that is an
approximation of the constant population size coalescent.
The relationship between the PAC model and the coalescent
process is not well understood theoretically although they
appear to be analogous. Apart from the benefit of having
a posterior sample of genealogies, the main advantage of
our Bayesian approach compared to other alternatives is
that we expect to obtain better confidence intervals for the
estimated parameter values (if the coalescent is a closer ap-
proximation to reality). It is also worth mentioning that the
PAC model developed by Yin et al. (2009) considers only
a restricted class of gene-conversion events (with regard to
overlaps between events) whereas our method is more gen-
eral and models all the conversion events that can poten-

tially affect the configuration of the sample. Finally, since the
InferRho algorithm lies within the coalescent framework, it
is flexible and in principle can be extended for estimation
under demographic models other than constant sized ones
(e.g., exponential growth, population bottlenecks, etc.).

We performed two different kinds of tests on simulated
data to verify the correctness of our estimation program.
First, we ran the program without any data using a likeli-
hood ratio of 1 and compared the average of several
genealogy-based summary statistics to those obtained by
Monte Carlo simulations under the coalescent. Second, we
simulated data sets for which the true parameter values are
known and compared them with the mode of the posterior
distributions as estimated by the program. From both these
tests, it appears that the modified InferRho program is
working correctly. In addition to these, we also compared
the accuracy of our inference method with that of two other
comparable methods (proposed in Gay et al. 2007 and Yin
et al. 2009) for samples of 100 simulated data sets. For
estimating crossing-over and gene-conversion rates, Infer-
Rho has smaller mean squared error compared to the meth-
ods of Gay et al. (2007) and Yin et al. (2009) for the
parameters tested in this study. For estimation of tract
length, the mean squared error of InferRho is lower than
the program of Gay et al. (2007) but higher than that of Yin
et al. (2009).

We used the new version of InferRho to jointly estimate
crossing-over and gene-conversion rates in the su-w and su-s
genes of D. melanogaster. Our analysis with a fixed mean
tract length of 352 bp suggests that gene conversion occurs
more frequently than crossing over in these regions while
the local estimates of crossing-over rate are not low. Further-
more, we also attempted to jointly estimate recombination
rates and gene-conversion tract lengths and from this
analysis it appears that mean tract lengths are �70 bp and
430 bp for the su-w and su-s genes, respectively. Finally, we
compared the posterior distribution of gene-conversion ini-
tiation points with an uninformative prior distribution, using
the Bayes factor calculated for 10-bp windows along these
genes. Plots of the logarithm of Bayes factors for gene-con-
version start points do not indicate any strong deviations
from a prior distribution expected under the uniform recom-
bination rate model. This suggests that there is not sufficient
information in the data to infer the locations of historical
conversion breakpoints.

Table 4 Joint estimates of crossing over (r̂) and gene conversion (ĝ) for m = 352 bp

Gene Method r̂/Mb per Mb ĝ/Mb per Mb f̂ ¼ ĝ/r̂

su-s Gay et al. (2007) 1,700 12,000 7.10
su-s Yin et al. (2009) 2,240 11,510 5.14
su-s InferRho 1,500 (700–5,500) 6,900 (3,500–10,300) 4.60 (0.875–7.875)
su-w Gay et al. (2007) 570 28,000 48.0
su-w Yin et al. (2009) 33 27,040 819.4
su-w InferRho 4,300 (2,500–8,100) 11,700 (5,300–16,100) 2.72 (0.875–3.625)

The 95% maximum posterior density credible intervals for InferRho are shown in parentheses. For InferRho, MCMC chains were run for 40 million iterations and the first 10
million iterations were discarded as burn-in. For other methods, the numbers are taken from Yin (2010).

Table 5 Estimates of crossing over (r̂), gene conversion (ĝ),
and mean tract length (m̂)

Gene Method r̂/Mb ĝ/Mb m̂, bp

su-s Gay et al. (2007) 920 11,600 480
su-s Yin et al. (2009) 1,290 9,860 560
su-s InferRho 3,350 5,950 430
su-w Gay et al. (2007) 8,520 251,130 5
su-w Yin et al. (2009) 1,450 41,090 162
su-w InferRho 5,550 28,950 70

For InferRho, MCMC chains were run for 41 million and 37 million iterations (for
su-s and su-w, respectively) and the first 10 million iterations were discarded as
burn-in. We show the marginal estimate of each parameter from the joint posterior
distribution. For other methods, the numbers are taken from Yin (2010).
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One area of concern with using full-likelihood methods is
their high computational expense when data sets become
large. Note that the execution time of the InferRho
algorithm is much higher (orders of magnitude) than those
of Gay et al. (2007) and Yin et al. (2009). Therefore, it
would be desirable to make such inference methods as op-
timal as possible in terms of run-time efficiency. To improve
speed, we implemented several optimizations in the current
version of our program. In our MA vectors, we keep track of
marker locations that are ancestral to the sample and ex-

clude uninformative gene-conversion and crossing-over
events in the ARGs. We use arrays of size equal to the num-
ber of markers to represent the MA vectors. Operations on
MA vectors (e.g., merging two MA vector arrays during co-
alescence, finding which marker positions have coalesced in
a node, etc.) take linear time in terms of the total number of
markers. Second, we use lookup tables to keep track of the
coalescent prior likelihood of a graph and the likelihood of
observed data given a graph once they have been calculated.
Since a majority of newly proposed genealogies do not get

Figure 2 (A) Bayes factors along the su-w gene for 10-bp windows. The logarithm of the ratio of posterior to prior odds for gene-conversion initiation
points is plotted along the gene. The su-w gene is 2.5 kb long. (B) Bayes factors along the su-s gene for 10-bp windows. The logarithm of the ratio of
posterior to prior odds for gene-conversion initiation points is plotted along the gene. The su-s gene is 4.1 kb long.
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accepted, these values are reused multiple times when cal-
culating the acceptance probabilities in the algorithm. Fi-
nally, modifying some part of the graph (e.g., adding,
deleting, or moving a node) during a proposal entails that
we update the MA vectors of the subsequent nodes in the
graph. While implementing this step, we first mark all the
nodes that are ancestral to the modified node and then
update only the MA vectors of the marked nodes. This
previous step as well as parallelization of the code when
running multiple MCMC chains can lead to further improve-
ments in run-time efficiency.
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